Skip to main content

Orientably-Regular Maps on Twisted Linear Fractional Groups

  • Conference paper
  • First Online:
Isomorphisms, Symmetry and Computations in Algebraic Graph Theory (WAGT 2016)

Abstract

We present an enumeration of orientably-regular maps with automorphism group isomorphic to the twisted linear fractional group \(M(q^2)\) for any odd prime power q.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Cameron, G.R. Omidi, B. Tayfeh-Rezaie, \(3\)-designs from \({\rm PGL}(2,q)\). Electron. J. Combin. 13, Art. R50 (2006)

    Google Scholar 

  2. M.D.E. Conder, List of orientably-regular chiral and reflexible maps up to genus \(301\) (2012), https://www.math.auckland.ac.nz/~conder/

  3. M.D.E. Conder, P. Potočnik, J. Širáň, Regular hypermaps over projective linear groups. J. Australian Math. Soc. 85, 155–175 (2008)

    Article  MathSciNet  Google Scholar 

  4. M.D.E. Conder, P. Potočnik, J. Širáň, Regular maps with almost Sylow-cyclic automorphism groups, and classification of regular maps with Euler characteristic \(-p^2\). J. Algebra 324, 2620–2635 (2010)

    Google Scholar 

  5. M.D.E. Conder, T. Tucker, Regular Cayley maps for cyclic groups. Trans. Am. Math. Soc. 366(7), 3585–3609 (2014)

    Article  MathSciNet  Google Scholar 

  6. H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups (Springer, Berlin, 1980)

    Book  Google Scholar 

  7. F.G. Frobenius, Über Gruppencharaktere (Sitzber. Königlich Preuss. Akad. Wiss. Berlin, 1896), pp. 985–1021

    Google Scholar 

  8. M. Giudici, Maximal subgroups of almost simple groups with socle \({\rm PSL} (2,q)\) (2007), arXiv:math/0703685

  9. G.A. Jones, Ree groups and Riemann surfaces. J. Algebra 165, 41–62 (1994)

    Article  MathSciNet  Google Scholar 

  10. G.A. Jones, S.A. Silver, Suzuki groups and surfaces. J. Lond. Math. Soc. 48(2), 117–125 (1993)

    Article  MathSciNet  Google Scholar 

  11. G.A. Jones, D. Singerman, Belyĭ functions, hypermaps and Galois groups. Bull. London Math. Soc. 28(6), 561–590 (1996)

    Article  MathSciNet  Google Scholar 

  12. G.A. Jones, D. Singerman, Theory of maps on orientable surfaces. Proc. Lond. Math. Soc. 3–37(2), 273–307 (1978)

    Article  MathSciNet  Google Scholar 

  13. G.A. Jones, Combinatorial categories and permutation groups. Ars Math. Contemp. 10(2), 237–254 (2016)

    Article  MathSciNet  Google Scholar 

  14. J.B. Kelly, A characteristic property of quadratic residues. Proc. Amer. Math. Soc. 5, 38–46 (1954)

    Article  MathSciNet  Google Scholar 

  15. D. Leemans, J. de Saadeleer, On the rank two geometries of the groups \({\rm PSL}(2, q)\): part I. Ars Math. Contemp. 3, 177–192 (2010)

    Article  MathSciNet  Google Scholar 

  16. A.M. Macbeath, Generators of the linear fractional groups, in 1969 Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex.), Am. Math. Soc. (Providence, R.I. 1967), pp. 14–32

    Google Scholar 

  17. A. Malnič, R. Nedela, M. Škoviera, Regular maps with nilpotent automorphism groups. Eur. J. Combin. 33(8), 1974–1986 (2012)

    Article  MathSciNet  Google Scholar 

  18. R. Nedela, Regular maps—combinatorial objects relating different fields of mathematics. J. Korean Math. Soc. 38, 1069–1105 (2001)

    Google Scholar 

  19. C.H. Sah, Groups related to compact Riemann surfaces. Acta Math. 123, 13–42 (1969)

    Article  MathSciNet  Google Scholar 

  20. J. Širáň, How symmetric can maps on surfaces be? in Surveys in Combinatorics, vol. 409. London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2013), pp. 161–238

    Google Scholar 

  21. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.7.8 (2015), http://www.gap-system.org

  22. H. Zassenhaus, Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11, 187–220 (1936)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marston Conder for independently checking our computational results displayed in Table 1 using the MAGMA package. The last two authors gratefully acknowledge the support of this work by the Slovak Research Grants APVV-15-0220, APVV-17-0428, VEGA 1/0142/17 and VEGA 1/0238/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Širáň .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erskine, G., Hriňáková, K., Širáň, J. (2020). Orientably-Regular Maps on Twisted Linear Fractional Groups. In: Jones, G., Ponomarenko, I., Širáň, J. (eds) Isomorphisms, Symmetry and Computations in Algebraic Graph Theory. WAGT 2016. Springer Proceedings in Mathematics & Statistics, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-32808-5_1

Download citation

Publish with us

Policies and ethics