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Abstract In times of growing integrated electricity markets and needed coordina-
tion of large inter-regional physical power flows, multi-area Optimal Power Flow
(OPF), also referred to as distributed OPF, has gained importance in research.
However, the conventional OPF is only of limited use since a TSO is strongly
interested in N-1 security. Furthermore, time-dependent constraints such as gen-
erator ramping or energy storage limits play a growing role. Consequently, a
Security-Constrained Dynamic OPF (SC-D-OPF) includes both N-1 security and
quasi-stationary dynamics. We present a decoupling approach to compute an SC-
D-OPF by coordination among inter-connected areas. Privacy is maintained by
implementing an Alternating Direction of Multipliers Method (ADMM), where
only results of boundary variables are exchanged with a neighbor. We show the
functionality of the approach in a small test case, where the distributed result is
close to that of a centralized optimization.
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1 Introduction

The increasing penetration of Renewable Energy Sources (RES) leads to a power
system operation closer to its operational limits. Enhanced methods and tools will be
crucial for a secure, but also efficient and cheap planning and operation of the power
grid. A Transmission System Operator (TSO) will have larger assets of controllable
devices at hand, such as Voltage Source Converter (VSC-) based HVDC-systems
and energy storage systems. Combined with the need to assure N-1 security, this
requires a Security-Constrained Dynamic Optimal Power Flow (SC-D-OPF), which
incorporates both N-1 security and multiple time steps into the optimization. First
research in that area was done in [1], where not only power but also necessary
energy reserves can be determined to ensure N-1 security. In [2], successive linear
algorithms and approximated power flows are used to solve large-scale SC-D-OPF
problems in a European context. The authors of [3] propose an SC-D-OPF model
including uncertainty of wind power or equipment availability, which is solved in
a two-stage stochastic program. In [4], SC-D-OPF is used as inner iteration in a
hierarchical approach to optimize a central deployment signal which is sent to the
units able to provide a reserve. Furthermore, [5–7] include energy storage systems
in an SC-D-OPF calculation. A further extension is shown in [8], where SC-D-OPF
is solved in a hybrid AC-DC grid with energy storage.

Due to the increasing complexity of the power system and an operation closer to
network limitations, central coordination in large scale networks comes with major
computational burdens. Furthermore, privacy can be a concern for each transmission
system operator (TSO) controlling a certain region. Subsequently, the interest in
distributed optimization, also referred to as multi-area optimization has substantially
grown in recent years. An early overview of distributed OPF algorithms can be
found in [9] and the most recent developments are examined in detail in [10]. The
Alternating Direction of Multipliers Method (ADMM) [11], has become a popular
branch to tackle the non-convex AC OPF problem [12–14]. Each area uses variable
duplicates from neighboring areas and is solved to optimality. Penalty terms, which
are calculated from the coupling variable deviation and Lagrangian multipliers,
are added to the objective function to push two neighbors towards a common
boundary solution. ADMM was applied to a hybrid AC-DC grid in [15]. Multi-
area optimization is applied to D-OPF with storage in [16] using OCD, but to the
best of our knowledge, no attempts have been made toward distributing SC-D-OPF.

2 Security-Constrained Dynamic Optimal Power Flow
(SC-D-OPF)

The optimization horizon is defined by a set of time steps T = {1, . . . , T } with
T the total number of considered time steps. Furthermore, we define a scenario set
C = {0, . . . , C}. Here, scenario c = 0 defines the base case, i.e. the original fault-
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free network. A total of C possible contingencies is added by including modified
versions of the base case to the scenario set. A modification could be the outage of
an AC line, a DC line or a converter. With xt,c the optimization variables of time
step t and scenario c, the full set of optimization variables is collected in

x = (
(x1,0)�, . . . , (x1,C)�, . . . , (xT ,0)�, . . . , (xT ,C)�

)�
. (1)

The full problem has the form (2):

minimize
x

∑

t∈T

∑

c∈C
pt,c · f (xt,c) (2a)

subject to hbase(x
t,c) ≤ 0 ∀t ∈ T , c ∈ C (2b)

hdyn(x
t,0, xt−1,0) ≤ 0 ∀t ∈ T \ 1 (2c)

hN-1(x
t,0, xt,c) ≤ 0 ∀t ∈ T , c ∈ C \ 0. (2d)

It minimizes the sum of weighted costs f over all scenarios. Factor pt,c defines
a probability of each contingency to enable a risk-based OPF. Constraints hbase
describe the basic constraints of a conventional OPF, which must be fulfilled during
each scenario (t, c). That includes AC and DC node power balance; thermal AC
and DC branch limits; AC and DC voltage limits; quadratic loss function of AC-
DC converters; and operational limits of generators, converters or sheddable loads.
Time-dependent constraints, such as storage energy limits or generator ramping
limits, are collected in hdyn. Those constraints only apply to the base case (c = 0),
since set points after an outage are coupled solely to the respective base case of
the identical time step. This N-1 coupling is modeled by the constraints hN-1 and
guarantees N-1 security. Here, the coupling between each contingency and the base
case is explicitly modeled. That is, set point deviation limits from before to after
the occurrence of an outage can be defined. Note that for the sake of readability, we
omit equality constraints which can be interpreted as reformulated inequalities as
well. We refer to [8] for more details on the modeling.

3 Distributed Formulation

For the sake of readability, we write (2) in the form (3):

minimize
x

f (x) (3a)

subject to h(x) ≤ 0. (3b)



30 N. Huebner et al.

Let R non-overlapping regions be defined in R = {1, . . . , R}, that is, each node
belongs to exactly one region. An equivalent problem as (3), but in separable form,
can be written as (4):

minimize
xk,∀k∈R

∑

k∈R
fk(xk) (4a)

subject to hk(xk) ≤ 0, ∀k ∈ R (4b)
∑

k∈R
Akxk = 0. (4c)

Here, xk ∈ R
lk , hk : R

lk → R
mk and fk : R

lk → R are optimization
variables, non-linear constraints and objective function, respectively, in a region
k. Matrix Ak ∈ R

n×lk maps xk onto the full set of n coupling constraints and
enforces consensus between regions. Thus, (4b) forms independent local SC-D-
OPF constraints and (4c) form the coupling constraints which recuperate a feasible
overall power flow.

4 Network Decomposition in AC-DC Grids

To allow for a separable formulation, the network is first partitioned and then
decomposed.

Network partitioning can be crucial for distributed algorithms to achieve good
performance. We believe that network partitions are inherently given by structural
responsibilities. For example, a region or control area could represent one TSO,
multiple TSOs or a whole country. Thus, the number and dimension of AC regions
are historically known. However, responsibilities in overlaying DC networks are
yet to be defined and various options are thinkable [15]. We choose a Shared-DC
approach. Here, we define R = RAC hybrid AC-DC regions, where each AC region
may also contain DC nodes. Thus, each existing TSO gains control over converters
in its own control area. Let Nk identify all nodes in region k. Herewith,NAC

k collects
all AC nodes and NDC

k all DC nodes in region k.

4.1 Decoupling of AC or DC Tie Line

In principle, the decoupling of AC and DC tie line is identical, except for extended
consensus constraints due to complex voltage and power in the AC case (Fig. 1).

The original line is cut into two halves; auxiliary nodes (m, n) and auxiliary
generators (a, b) are added at both open ends. Thus, node sets are augmented to
NA ← {NA,m}, NB ← {NB, n}. To guarantee a feasible power flow, the voltage
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Z/2 Z/2

Region A Region B

Fig. 1 Decoupling model of a tie line (AC or DC) between nodes i and j . Two auxiliary nodes (m
and n) and two auxiliary generators (a and b) are added at the middle. Reactive power source QG
is only added for an AC tie line

must be equal at nodes m and n. Furthermore, the generators must produce the same
amount of power of the opposite sign. In the case of an AC tie line (i ∈ NAC

A , j ∈
NAC

B ), this leads to boundary conditions including complex voltage and both active
and reactive power. For time step and scenario (t, c), we have:

|V t,c
AC,m| = |V t,c

AC,n| (5a)

� V
t,c
AC,m = � V

t,c
AC,n (5b)

P
t,c
G,a = −P

t,c
G,b (5c)

Q
t,c
G,a = −Q

t,c
G,b. (5d)

In the case of a DC tie line (i ∈ NDC
A , j ∈ NDC

B ), only real voltage and active power
must meet the constraints. For time step and scenario (t, c), we have:

V
t,c
DC,m = V

t,c
DC,n (6a)

P
t,c
G,a = −P

t,c
G,b. (6b)

Equations (5) and (6) are the only boundary constraints.

4.2 Building Consensus Constraint Matrix A

Since x
t,c
k uses the augmented node sets of region k, the auxiliary generator variables

are included. Thus, consensus constraints (5)–(6) between region A and B can be
written to

Ã
t,c
A x

t,c
A + Ã

t,c
B x

t,c
B = 0. (7)
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t ∈ T
c ∈ C

Fig. 2 Schematic problem decomposition for two areas (blue and green) under consideration of
three time steps and two contingencies. A dashed box represents an optimization problem. (a)
Centralized SC-D-OPF. (b) Distributed SC-D-OPF

This must be fulfilled for every considered time or contingency scenario (Fig. 2).
Then we have

⎡

⎢
⎢
⎣

Ã
1,0
A Ã

1,0
B

. . .
. . .

Ã
T ,C
A Ã

T ,C
B

⎤

⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x
1,0
A
...

x
T ,C
A

x
1,0
B
...

x
T ,C
B

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

= 0. (8)

In a more compact form, (8) can be written as

∑

k∈{A,B}
Akxk = 0. (9)

5 Implemented ADMM Algorithm

The general idea of ADMM, see also [11], is the following. Augmented regional
OPFs are solved and the deviation of boundary variables from a fixed auxiliary
variable z, which is information stemming from neighboring regions, is penalized.
The regions then exchange information and z is updated. The update is re-distributed
to the local agents (areas) for a new OPF calculation until consensus between
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regions is achieved. It is constructed an augmented Lagrangian of the form

L(x, z, λ) =
∑

k∈R

{
fk(xk) + λ�

k Ak(xk − zk)

+ ρ

2
||Ak(xk − zk)||2W

}
, (10)

with penalty parameter ρ ∈ R. Dual variables of the consensus constraints are
denoted with λk ∈ R

n×1, and W ∈ R
n×n is a positive definite, diagonal weighting

matrix,1 where each entry is related to one coupling constraint. We refer to W(S)

if the entry is related to a power variable, and to W(V ) if the entry is related to
a voltage variable. In ADMM literature, W is the identity matrix. The main steps
during one iteration of the solving process are

1. x = argminx∈X L(x, z, λ) (11a)

2. z = argminz∈Z L(x, z, λ) (11b)

3. λ ← λ + ρWA(x − z) (11c)

with z = [z�
1 . . . z�

R ]�. The first step (11a) minimizes a non-linear problem,
where constraint region

X = {
x|hk(xk) ≤ 0,∀k ∈ R

}
(12)

enforces local constraints (4b). Since z is fixed, (11a) is in fact a series of
R independent problems which can be calculated in parallel. The second step
minimizes a coupled quadratic problem, where

Z =
⎧
⎨

⎩
z|

∑

k∈R
Akzk = 0

⎫
⎬

⎭
(13)

enforces consensus of auxiliary variables z. In fact, (11b) calculates the average
value between two consensus variables of neighboring regions [11, 13] and the
problem can be reduced to

z = argminz∈Z
∑

k∈R

ρ

2
||Ak(xk − zk)||2W . (14)

1A weighted norm is calculated with ||X||2W = X�WX.
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Fig. 3 Test system with embedded HVDC, energy storage and RES. Partitioning into 3 control
areas

The weighting factors ρ and W can be neglected in (14), if the same weight is
assigned to two coupled variables, which is a reasonable choice. Once a region has
gathered necessary neighbor information, this step can be calculated locally as well
[12]. In the third step (11c), dual variables are updated based on a weighted distance
between x and z. Again, with given local xk and zk , each region can calculate λk

independently (Fig. 3).
In ADMM, an update rule on ρ can be useful to enforce consensus. A ρk ∈ R

is assigned to each region, which can be increased depending on the local residual,
see (18b). If the residual has not decreased sufficiently compared to the previous
iteration (indicator 0 < Θ ∈ R < 1), the penalty is increased by a constant factor of
τ ∈ R > 1. The penalty parameter must be chosen carefully since it is widely known
to be crucial for good convergence behavior [17]. An overview of the implemented
ADMM is given in Algorithm 1.

6 Results

6.1 Test Scenario

We use the illustrative AC-DC test system from [15], see Tables 1 and 2 for line and
generator parameters, respectively. The generator at Node 5 is interpreted as a wind
park and a PV park is connected to Node 3. RES upper power limit and load are
variable over time. Forecast power profiles are taken from the Belgian transmission
system operator Elia, which provides detailed RES generation and load data on its
website. Adapted profiles for usage in the 5-bus test system are shown in Figs. 6 and
7. We assume quadratic generator cost functions as in [18] (see Table 3) and one
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Algorithm 1 ADMM
1: Initialization: Weighting matrix W , tolerance ε; for all k ∈ R: initial guesses zk , penalty

parameters ρk = ρ, dual variables λk = 0, local solutions xk = ∞, local residues Γk = ∞.
2: while ||Ax||∞ > ε and ||x − z||∞ > ε do
3: Solve for all k ∈ R the decoupled NLPs

minimize
xk

fk(xk) + λ�
k Akxk + ρk

2
||Ak(xk − zk)||2W (15a)

subject to hk(xk) ≤ 0 (15b)

4: Solve the coupled averaging step

minimize
z

∑

k∈R
||Ak(xk − zk)||22 (16a)

subject to
∑

k∈R
Akzk = 0 (16b)

5: Update dual variables for all k ∈ R

λk ← λk + ρkWAk(xk − zk) (17)

6: Calculate local residues and penalty parameter updates for all k ∈ R

Γ +
k = ||Ak(xk − zk)||∞ (18a)

ρk ←
⎧
⎨

⎩
ρk if Γ +

k ≤ ΘΓk

τρk otherwise
(18b)

7: Update Γk ← Γ +
k for all k ∈ R

8: end while

cost coefficient for all reactive power injections. RES power injection is prioritized
by assigning a low fuel price. Two energy storage systems with characteristics from
Table 4 are connected to Node 3 and 5, respectively. Line flow limits of 400 MVA
for Line 1–2 and 240 MVA for Line 4–5, respectively, are used. Furthermore, the
capacity of each VSC is set to 200 MVA. Allowed voltage ranges lie between 0.9
and 1.1 pu on the AC side, and between 0.95 and 1.05 pu on the DC side.

6.2 Multi-area SC-D-OPF

To show applicability of the distributed approach to N-1 secure and dynamic
OPF problems, a small example is presented in the following. An SC-D-OPF
dispatch optimization is performed for the scenario set C = {0, Line 1–2} and
T = {1, . . . , 4}. Storages and VSCs are allowed curative control, that is, operating
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Fig. 4 Convergence behavior of distributed SC-D-OPF in the 5-bus system with 4 time steps and
1 contingency. Left: consensus error, right: cost error. Both relative to central solution

set points are allowed to move freely to a new set point after an outage. Contrarily,
conventional generators are operated preventively, that is, the power set point must
be valid both before and after the outage. However, to cope with changing system
losses after an outage, a deviation of 1 % of installed capacity is allowed.

We use ADMM settings ρ = 500, τ = 1.02, Θ = 0.99, W(S) = 1 and W(V ) =
100.

General convergence behavior is shown in Fig. 4. Consensus error and objective
suboptimality show similar behavior compared to conventional OPF cases. Consen-
sus error (||Ax||∞) which depicts cross-border feasibility, falls below the threshold
of 10−4 after 344 iterations. The deviation from centrally computed costs f ∗ is
denoted with f̃ = |1 − f/f ∗|. The objective value error falls below 0.01 % when
convergence is achieved.

The progress of storage variables is shown in Fig. 5 for all time steps after the
outage. Dashed lines denote results from the centralized solution. Storage systems
provide positive (ESS 2) and negative (ESS 1) power reserve after the outage. The
amount of reserve is increased with time for a growing network stress level, but
energy levels remain within limits. The distributed solution is represented by solid
lines. Those oscillate around and eventually approach the target levels.

7 Conclusion

This paper presents an approach to calculate SC-D-OPF in a distributed manner.
That is, each control area computes a local N-1 secure and dynamic optimal dispatch
which respects boundary constraints from neighboring areas for each time step and
topology. After iteratively exchanging information and updating the local solution,
a consensus is found which allows for a feasible cross-border power flow for all
possible scenarios. Additionally, the result is close to the central optimal solution.
Optimal curative storage or VSC set points can be determined for a contingency
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Fig. 5 Convergence of storage power and energy levels after the outage
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scenario which is in a foreign area. In this work, we apply the method to a small
test system – the next steps are to increase system size, time horizon and number of
contingencies.

Appendix

Table 1 Line parameters
with base power 100 MVA

Line R [pu] X [pu] Total B [pu]

1–2 0.00281 0.0281 0.00712

1–4 0.00304 0.0304 0.00658

1–5 0.00064 0.0064 0.03126

2–3 0.00108 0.0108 0.01852

4–3 0.00297 0.0297 0.00674

5–4 0.00297 0.0297 0.00674

DC 0.0002 0 0

Table 2 Generator
parameters. (PG, PG) in

[MW] and (QG,QG) in
[Mvar]

Generator Node PG PG QG QG

G1 1 0 170 −127.5 127.5

G2 3 0 520 −390 390

G3 4 0 200 −150 150

Table 3 Generator cost
coefficients

Cost coefficients

Generator aG
[ 1

MW2
e
h

]
bG

[ 1
MW

e
h

]
aq

[ 1
Mvar2

e
h

]

G1 0.010 15 0.001

G2 0.011 30 0.001

G3 0.012 40 0.001

RES 0 5 0.001

Table 4 Parameters for each
energy storage system

Capacity 200 MWh

Maximal power 100 MW

Minimal energy 20 MWh

Maximal energy 180 MWh

Efficiency 95%

Costs

– discharge 10 e/MWh

– charge 0 e/MWh
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