Chapter 8 ®)
CAOS: CAD as an Adaptive ez
Open-Platform Service for High

Performance Reconfigurable Systems

Marco Rabozzi

Abstract The increasing demand for computing power in fields such as genomics,
image processing and machine learning is pushing towards hardware specializa-
tion and heterogeneous systems in order to keep up with the required performance
level at sustainable power consumption. Among the available solutions, Field Pro-
grammable Gate Arrays (FPGAs), thanks to their advancements, currently repre-
sent a very promising candidate, offering a compelling trade-off between efficiency
and flexibility. Despite the potential benefits of reconfigurable hardware, one of the
main limiting factor to the widespread adoption of FPGAs is complexity in pro-
grammability, as well as the effort required to port software solutions to efficient
hardware-software implementations. In this chapter, we present CAD as an Adap-
tive Open-platform Service (CAOS), a platform to guide the application developer
in the implementation of efficient hardware-software solutions for high performance
reconfigurable systems. The platform assists the designer from the high-level anal-
ysis of the code, towards the optimization and implementation of the functionalities
to be accelerated on the reconfigurable nodes. Finally, CAOS is designed to facilitate
the integration of external contributions and to foster research on Computer Aided
Design (CAD) tools for accelerating software applications on FPGA-based systems.

8.1 Introduction

Over the last 40 years, software performance has benefited from the exponential
improvement of General Purpose Processors (GPPs) that resulted from a combina-
tion of architectural and technological enhancements. Despite such achievements,
the performance measured on standard benchmarks in the last 3 years only improved

M. Rabozzi ()

Dipartimento di elettronica, informazione e bioingegneria, Politecnico di Milano, Piazza
Leonardo da Vinci 32, 20133 Milano, Italy

e-mail: marco.rabozzi @polimi.it

© The Author(s) 2020 103
B. Pernici (ed.), Special Topics in Information Technology, PoliMI SpringerBriefs,
https://doi.org/10.1007/978-3-030-32094-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32094-2_8&domain=pdf
mailto:marco.rabozzi@polimi.it
https://doi.org/10.1007/978-3-030-32094-2_8

104 M. Rabozzi

at a rate of about 3% per year [11]. Indeed, after the failure of Dennard scaling [21],
the current diminishing performance improvements of GPP reside in the difficulty to
efficiently extract more fine-grained and coarse-grained parallelism from software.
Considering the shortcomings of GPP, in current years we are assisting at a new era
of computer architectures in which the need for energy-efficiency is pushing towards
hardware specialization and the adoption of heterogeneous systems. This trend is
also reflected in the High Performance Computing (HPC) domain that, in order to
sustain the ever-increasing demand for performance and energy efficiency, started
to embrace heterogeneity and to consider hardware accelerators such as Graphics
Processing Units (GPUs), FPGAs and dedicated Application-Specific Integrated Cir-
cuits (ASICs) along with standard CPU. Albeit ASICs show the best performance
and energy efficiency figure, they are not cost-effective solutions due to the diverse
and ever-evolving HPC workloads and the high complexity of their development
and deployment, especially for HPC. Among the available solutions, FPGAs, thanks
to their advancements, currently represent the most promising candidate, offering a
compelling trade-off between efficiency and flexibility. Indeed, FPGAs are becom-
ing a valid HPC alternative to GPUs, as they provide very high computational per-
formance with superior energy efficiency by employing customized datapaths and
thanks to hardware specialization. FPGA devices have also attained renewed inter-
ests in recent years as hardware accelerators within the cloud domain. The possibility
to access FPGAs as on-demand resources is a key step towards the democratization
of the technology and to expose them to a wide range of potential domains [2, 6,
24].

Despite the benefits of embracing reconfigurable hardware in both the HPC and
cloud contexts, we notice that one of the main limiting factor to the widespread
adoption of FPGAs is complexity in programmability as well as the effort required
to port a pure software solution to an efficient hardware-software implementation
targeting reconfigurable heterogeneous systems [1]. During the past decade, we have
seen significant progress in High-Level Synthesis (HLS) tools which partially mit-
igate this issue by allowing to translate functions written in a high-level language
such as C/C++ to a hardware description language suitable for hardware synthesis.
Nevertheless, current tools still require experienced users in order to achieve efficient
implementations. In most cases indeed, the proposed workflows require the user to
learn the usage of specific optimization directives [22], code rewriting techniques
and, in other cases, to master domain specific languages [10, 13]. In addition to this,
most of the available solutions [9, 10, 13] focus on the acceleration of specific ker-
nel functions and leave to the user the responsibility to explore hardware/software
partitioning as well as to identify the most time-consuming functions which might
benefit the most from hardware acceleration. To tackle these challenges, we propose
the CAOS platform bringing the following contributions:

e A comprehensive design flow guiding the designer from the initial software to the
final implementation to a high performance FPGA-based system.

e Well-defined Application Programming Interfaces (APIs) and an infrastructure
allowing researchers to integrate and test their own modules within CAOS.

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ... 105

e A general method for translating high-level functions into FPGA-accelerated ker-
nels by matching software functions to appropriate architectural templates.

e Support for three different architectural templates allowing to target software func-
tions with different characteristics within CAOS.

Section 8.2 describes the overall CAOS platform, its design flow and infrastruc-
ture, while Sect.8.3 presents an overview of the supported architectural. Section
8.4 discuss the experimental results on case studies targeting different architectural
templates. Finally, Sect. 8.5 draws the conclusions.

8.2 The CAOS Platform

The CAOS platform has been developed in the context of the Exploiting eXascale
Technology with Reconfigurable Architectures (EXTRA) project and shares with it
the same vision [19]. CAOS targets both application developers and researches while
its design has been conceived focusing on three key principles: usability, interactiv-
ity and modularity. From a usability perspective, the platform supports application
designers with low expertise on reconfigurable heterogeneous systems in quickly
optimizing their code, analyzing the potential performance gain and deploying the
resulting application on the target reconfigurable architecture. Nevertheless, the plat-
form does not aim to perform the analysis and optimizations fully automatically, but
instead interactively guides the users towards the design flow, providing suggestion
and error reports at each stage of the process. Finally, CAOS is composed of a set of
independent modules accessed by the CAOS flow manager that orchestrates the exe-
cution of the modules according to the current stage of the design flow. Each module
is required to implement a set of well-defined APIs so that external researchers can
easily integrate their implementations and compare them against the ones already
offered by CAOS.

8.2.1 CAOS Design Flow

The platform expects the application designer to provide the application code written
in a high-level language such as C/C++, one or multiple datasets to be used for code
profiling and a description of the target reconfigurable system. In order to narrow
down and simplify the set of possible optimizations and analysis that can be per-
formed on a specific algorithm, CAOS allows the user to accelerate its application
using one of the available architectural templates. An architectural template is a
characterization of the accelerator both in terms of its computational model and the
communication with the off-chip memory. As a consequence, an architectural tem-
plate constrains the architecture to be implemented on the reconfigurable hardware
and poses restrictions on the application code that can be accelerated, so that the

106 M. Rabozzi

Input data provided profiling ot
bypthe userp HW description: dataset Application
+ node definition
+ system definition
CAQOS platform
F===""" |
A{gmtel;g;a' Frontend flow
P IR generation, architectural templates applicability check,
. code profiling, HW/SW partitioning
=0 :
Master slave H l
Q. Q Functions optimization flow
OO —_(Xx O static code analysis, hardware resources estimation,
U CT performance estimation, code optimization
Dataflow H l
1
OG0 Backend flow
SST functions mapping and scheduling, runtime generation,
high level synthesis, floorplanning, system implementation
L '

Result generated by the

platform FPGA Application

! .exe
bitstreams runtime

Fig. 8.1 High-level overview of the CAOS platform. The overall design flow can be divided in
three main parts: the frontend, the functions optimization and the backend flow. The application
code, datasets to profile the application and an HW description constitute the input data provided
by the designer. The final outputs generated by the platform are the bitstreams, that the user can use
to configure the FPGAs, and the application runtime, needed to run the optimized version of the
application

number and types of optimizations available can be tailored for a specific type of
implementation. Furthermore, CAOS is meant to be orthogonal and build on top of
tools that perform High-Level Synthesis (HLS), place and route and bitstream gener-
ation. Code transformations and optimizations are performed at the source code level
while each architectural template has its own requirements in terms of High-Level
Synthesis (HLS) and hardware synthesis tools to use.

As shown in Fig. 8.1, the overall CAOS design flow is subdivided into three main
flows: the frontend flow, the function optimization flow and the backend flow. The
main goal of the frontend is to analyze the application provided by the user, match
the application against one or more architectural templates available within the plat-
form, profile the user application against the user specified datasets and, finally, guide

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ... 107

6 S >| Web usler |‘nterface |
v

Ej—» CAOS Flow Manager —>
jj@ ~~~~~ [Lj @ [Lj [fj ~~~~~ [éj @ ~~~~~ ['j [j e

REST
interfaces

(Module A) (Module B (Module C) (Module D) (Module E)

Fig. 8.2 CAOS infrastructure in terms of its main components and their interaction

the user through the hardware/software partitioning of the application to define the
functions of the application that should be implemented on the reconfigurable hard-
ware. The function optimization flow performs static analysis and hardware resource
estimation of the functionalities to be accelerated on the FPGA. Such analyses are
dependent upon the considered architectural template and the derived information
are used to estimate the performance of the hardware functions and to derive the opti-
mizations to apply (such as loop pipelining, loop tiling and loop unrolling). After one
or more iterations of the function optimization flow, the resulting functions are given
to the backend flow in which the desired architectural template for implementing the
system is selected and the required High-Level Synthesis (HLS) and hardware syn-
thesis tools are leveraged to generate the final FPGA bitstreams. Within the backend,
CAOS takes care of generating the host code for running the FPGA accelerators and
optionally guides the place and route tools by floorplanning the system components.

8.2.2 CAOS Infrastructure

In order to simplify the adoption of the platform while being open to contributions,
the CAOS infrastructure is organized as a microservices architecture which can be
accessed by application designers through a web user interface. The infrastructure,
shown in Fig. 8.2, leverages on Docker [8] application containers to isolate the mod-
ules and to provide scalability. Each module is deployed in a single container, and
several implementations of the same module can coexist to provide different function-
alities to different users. Moreover, each module’s implementation can be replicated
to scale horizontally depending on system load. The modules are connected together
and driven by the CAOS Flow manager which serves the User Interface (UI) and
provides the glue logic that routes each request to the proper module.

108 M. Rabozzi

The interaction between the flow manager and the CAOS modules is performed
by means of data transfer objects defined with a JSON Domain Specific Lan-
guage (DSL). The user can specify at each phase the desired module implementation
and the platform will take care of routing the request to the proper module auto-
matically. Moreover, the platform supports modules deployed remotely by simply
specifying their IP address. Another advantage of the proposed infrastructure is that,
thanks to Docker containers, it can also be easily deployed on cloud instances, pos-
sibly featuring FPGA boards, such as the Amazon EC2 F1 instances. This allows a
complete design process in the cloud in which the user can optimize the application
through a web UI, while the final result of the CAOS design flow can be directly
tested and run on the same cloud instance. CAOS supports the integration of new
implementations of the modules described in Sect.8.2.1. Researchers are free to
adopt the preferred tools and programming languages that fit their needs, as long as
the module provides the implementation of the REST APIs prescribed by the CAOS
flow manager.

8.3 Architectural Templates

The core idea for devising efficient FPGA-based implementations in CAOS revolves
around matching software functions to an architectural template suitable for its
acceleration. CAOS currently supports three architectural templates: Master/Slave,
Dataflow and Streaming architectural templates. In the next sections, we provide an
overview of the templates, describing the supported software functions and hardware
platforms, the proposed optimizations and the tools on which the templates rely.

8.3.1 Master/Slave Architectural Template

The Master/Slave architectural template [7] targets systems with a shared Double
Data Rate (DDR) memory that can be accessed both by the host running the software
portion of the application and by the FPGA devices on which we implement the
accelerated functionalities (also referred as kernel). The template also requires that
the communication between the accelerator and the DDR memory is performed via
memory mapped interfaces. Such requirements allow to standardize the data transfer
as well as to support random memory accesses to pointer arguments of the target
C/C++ function. Currently, the template supports two target systems: Amazon F1
instances in the cloud and Xilinx Zynq System-on-Chips (SoCs).

The generality of the communication model of the Master/Slave architectural tem-
plate allows supporting a wide range of C/C++ functions. In particular, the function
has to abide to quite general constraints for High-Level Synthesis (HLS) such as
no dynamic creation of objects/arrays, no syscalls and no recursive function calls.
The Master/Slave architectural template currently leverages on Vivado HLS [23]

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ... 109

for the High-Level Synthesis (HLS) of C/C++ code to Hardware Description Lan-
guage (HDL). Hence, in the CAOS frontend, we verify the applicability of the tem-
plate to a given function by running Vivado HLS on it and verify that no errors are
generated. In addition to the Vivado HLS constraints, we also require the size of the
function arguments to be known. This is needed by CAOS to properly estimate the
kernel performance throughout the function optimizations flow. During the CAOS
functions optimization flow, the template performs static code analysis by leveraging
on custom Low-Level Virtual Machine (LLVM) [12] passes. In particular, it identifies
loop nests with their trip counts, local arrays and information on the input and output
function arguments. Furthermore, the template collects hardware and performance
estimations of the current version of the target function directly from Vivado HLS.
Such information is then used to identify the next candidate optimizations among
loop pipelining, loop unrolling, on-chip caching and memory partitioning. The user
can then either select the suggested optimization or conclude the optimization flow if
he/she is satisfied with the estimated performance. After having optimized the kernel,
the design proceeds to the CAOS backend flow. Here the optimized C/C++ function
is translated to HDL and, according to the target system, the template leverages either
on the Xilinx SDAccel toolchain [22] or Xilinx Vivado [23] for the implementation
and bitstream generation. In both cases, CAOS takes care of modifying the original
application and inserts the necessary code and APIs calls to offload the computation
of the original software function to the generated FPGA accelerator.

8.3.2 Dataflow Architectural Template

The dataflow architectural template trades off the generality of codes supported by
the Master/Slave architectural template in order to achieve higher performance. In
a dataflow computing model, the data is streamed from the memory directly to the
chip containing an array of Processing Elements (PEs) each of which is responsible
for a single operation of the algorithm. The data flow from a PE to the next one in a
statically defined directed graph, without the need for any kind of control mechanism.
In such a model, each PE performs its operation as soon as the input data is available
and forwards the result to the next element in the network as soon as it is computed.
The target system for the dataflow architectural template consists in a host CPU
and the dataflow accelerator deployed on a FPGA connected via PCle to the host. Both
the host CPU and the FPGA logic have access to the host DDR memory containing
the input/output data. The FPGA accelerator is organized internally as a Globally
Asynchronous Locally Synchronous (GALS) architecture divided into the actual
accelerated kernel function and a manager. The manager handles the asynchronous
communication between the host and the accelerator, whereas the kernel is internally
organized as a set of synchronous PEs that perform the computation in parallel.

110 M. Rabozzi

The architectural template leverages on the OXiGen toolchain [18] and its exten-
sion [17] to translate C/C++ functions into optimized dataflow kernels defined with
the MaxJ language. In order to efficiently perform the translation from sequential
C/C++ code to a dataflow representation, the target function has to satisfy certain
requirements detailed in [18]. An exemplary code supported by the template is shown
in Listing 8.1. The code requirements are validated in the CAOS frontend flow in
order to identify functions that can be optimized with the dataflow architectural tem-
plate. Within the CAOS function optimization flow, OXiGen performs the dataflow
graph construction directly from the LLVM Intermediate Representation (IR) of the
target function. Nevertheless, the initial dataflow design might either exceed or under-
utilize the available FPGA resources. Hence, in order to identify an optimal imple-
mentation that fits within the FPGA resources and available data transfer bandwidth,
OXiGen supports loop rerolling, to reduce resource consumption, and vectorization,
to replicate the processing elements in order to fully utilize the available bandwidth
and compute resources. In order to derive the best implementation, OXiGen relies
on resource and performance models and runs a design space exploration using an
approach based on Mixed-Integer Linear Programming (MILP). Once having gener-
ated an optimized kernel, the CAOS backend runs MaxCompiler [13] to synthesize
the MaxJ code generated by OXiGen to a Maxeler DFE (Dataflow Engine) that can
be accessed by the host system.

Listing 8.1 An exemplary code supported by the dataflow template. The function takes as input a
combination of array types and scalar types. The outer loops iterate over the outer dimension of the
array types which are translated as streams. Accesses to the streams are linear with constant offsets.
The function can have a combination of nesting levels iterating over the inputs or local variables.
void foo(type_lx* in_1, type_l* in_2, type_2% out_l, int iter) {

type_1 tmp_vect [15];

for(int i = const_1; i < iter — const_2; i++) {

...Statements...

for(int j = const_3; j < 15; j++)
tmp_vect[j] = ...expression... ;

type_1 tmp_scalar = ...expression... ;

for(int j = const_3; j < 15; j++)
tmp_scalar = tmp_scalar + tmp_vect[j];

8.3.3 Streaming Architectural Template

Iterative Stencil Loops (ISLs) represent a class of algorithms that are highly recurrent
in many HPC applications such as differential equation solving or scientific simula-
tions. The basic structure of ISLs is depicted in Algorithm 8.1; the outer loop iterates
for a given number of times, so-called time-steps, while, at each time-step, the inner

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ... 111

P —

SSTO SST SSTN1 SSTN I FIXED COMM. |
SUBSYSTEM |
Salic XN = e

Fig. 8.3 Architecture of an SST-based accelerator for ISL

loop updates each value of the n-dimensional input vector by means of the stencil
function, computing a weighted sum of the neighbor values in the vector.

Algorithm 8.1 Generic ISL Algorithm.
for 1t < TimeSteps do
for all points p in matrix M do
p < stencil(p)

The Streaming architectural template specifically targets stencil codes written in
C and leverages the SST architecture proposed by [3] for its implementation. The
architectural template of the SST-based accelerator [14] is depicted in Fig. 8.3. The
basic SST module performs the computation of a single time-step and is concep-
tually separated in a memory system, responsible for storage and data movement,
and a computing system, that performs the actual computation. The SST module is
designed in order to operate in a streaming mode on the various elements of the input
vector; this internal structure is derived by means of the polyhedral analysis that
allows refactoring the algorithm to optimize on-chip memory resource consumption
and implement a dataflow model of computation. Then, the complete SST-based
architecture is obtained by replicating N times the basic module to implement a
pipeline, where each module computes in streaming a single time-step of the outer
loop of the algorithm. Such a pipeline is finally connected with a fixed communica-
tion subsystem interfacing with the host machine. Within this context, CAOS offers
a design exploration algorithm [20] that jointly maximizes the number of SST pro-
cessors that can be instantiated on the target FPGA and identifies a floorplan of the
design that minimizes the inter-component wire-length in order to allow implement-
ing the system at high frequency. In the frontend, CAOS identifies those functions
having the ISL structure shown in Algorithm 8.1, while the CAOS function opti-
mization flow runs the design space exploration algorithm detailed in [20] on the
function to accelerate. The approach starts by generating an initial version of the
system consisting of a single SST [14] to obtain an initial resource estimate. Sub-
sequently, it solves a maximum independent set problem formulated as an Integer
Linear Programming (ILP) to identify the maximum number of SST as well as their
floorplan and solves a Traveling Salesman Problem (TSP) to identify the best routing
among SSTs. Finally, the CAOS backend generates the accelerator bitstream through
Xilinx Vivado while enforcing the identified floorplanning constraints.

112 M. Rabozzi

8.4 Experimental Results

Within this section we discuss the results achieved by CAOS on different case studies
targeting the discussed architectural templates. The first case study we consider is the
N-Body simulation, which is a well known problem in physics having applications in
a wide range of fields. In particular, we focused on the all-pair method: the algorithm
alternates a computationally intensive force computation step, in which the pairwise
forces between each pair of bodies are computed and a position update step, that
updates the velocities and positions of the bodies according to the current resulting
forces. CAOS, after profiling and analyzing the application in the frontend, properly
identified the force computation as the target function to accelerate and matched it
to the Master/Slave architectural template. As we can see from Table 8.1, the CAOS
implementation targeting an Amazon F1 instance greatly outperforms, both in terms
of performance and energy efficiency, the software implementation from [5] running
in parallel on 40 threads on an Intel Xeon E5-2680 v2 and the implementation from
[4] on a Xilinx VC707 board. Nevertheless, the bespoke implementation from [5]
targeting the same hardware provides 11% higher performance than the CAOS one.
However, the CAOS design was achieved semi-automatically in approximately a day
of work, while the design from [5] required several weeks of manual effort.

As a second test case, we consider the Curran approximation algorithm [16] for
calculating the pricing of Asian options. More specifically, we tested two flavors of
the algorithm using 30 and 780 averaging points. Within CAOS, we started from a
C implementation and we targeted a host machine featuring an Intel(R) Core(TM)
i7-6700 CPU @ 3.40 GHz connected via PCle genl x8 to a MAX4 Galava board
equipped with an Altera Stratix V FPGA. Since the algorithms operate on subse-
quent independent data items, the overall computations are easily expressed in C
using the structure in Listing 8.1. Hence CAOS identified and optimized the compu-
tations leveraging on the dataflow architectural template. As the initial designs did
not fit within the device, CAOS applied the rerolling optimization for both cases.
As shown in Table 8.2, both CAOS implementations achieve speedups over 100x
against the single thread execution on the host system only. Moreover, we compared

Table 8.1 Performance and energy efficiency of the all-pairs N-Body algorithm accelerated via
CAOS and the results achieved by bespoke designs proposed in [4, 5]

Reference | Platform Type | Frequency | Performance Performance/Power
(MHz) (MPairs/s) (MPairs/s/W)
[5] Intel Xeon CPU | - 2,642 22.98
E5-2680 v2
[4] Xilinx FPGA | 100 2,327 116.36
VC707
[5] Xilinx VU9P | FPGA | 154 13,441 672.06
CAOS Xilinx VU9P | FPGA | 126 12,072 603.61

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ...

113

Table 8.2 Results achieved by CAOS on the Curran approximation algorithm with 30 and 780
averaging points compared against CPU and the bespoke FPGA-based implementations from [15]

Averaging Rerolling Speedup w.r.t. | Speedup w.r.t. | Input Output
points factor CPU [15] bandwidth bandwidth
(MByte/s) (MByte/s)
30 4 118.4x 1.23x 1,767.64 196.40
780 98 101.0x 0.5x 75.11 8.35

Table 8.3 Results achieved by the CAOS streaming architectural template compared to [14]

Algorithm #SSTs Design frequency (MHz) Performance | Design time
improvement | reduction
w.r.t. [14] (%) | w.r.t. [14]
CAOS | [14] |CAOS [14]
Jacobi2D 90 88 228 206 13.20 15.84x
Heat3D 25 25 228 206 10.68 1.69x
Seidel2D 19 19 183 183 0 1.08x

the results against the DFE execution times reported from the designs in [15]. For the
version with 30 averaging points, we achieved a speedup of 1.23x. For the version
with 780 averaging points, our implementation shows a speed down of about 0.5x.
Nevertheless, it was obtained in less than a day of work.

As afinal test case, we evaluated the streaming architectural template on three rep-
resentative ISL computations (Jacobi2D, Heat3D and Seidel2D) targeting a Xilinx
Virtex XC7VX485T device [20]. Table 8.3 reports the performance improvement
and the design time reduction compared to the methodology in [14]. Thanks to
FPGA floorplanning we are able to increase the target frequency for the Jacobi2D
and Heat3D algorithms of approximately 11%. Additionally, for the Jacobi2D case,
the floorplanner is also able to allocate two additional SSTs improving the perfor-
mance up to 13%. Nevertheless, the Seidel2D algorithm does not provide the same
improvement figure. Indeed, since the total number of SSTs that can be placed into
the design is small, the floorplanning reduces its impact on the overall design by
leaving more room to the place and route algorithm. Regarding the design time, our
approach allows to greatly reduce the number of trial synthesis required, thus leading
to an execution time saving of 15.84x for Jacobi2D.

8.5 Conclusions

In this chapter we presented CAOS, a platform whose main objective is to improve
productivity and simplify the design of FPGA-based accelerated systems, starting
from pure high-level software implementations. Currently, the slowing rate at which

114 M. Rabozzi

general purpose processors improve performance is strongly pushing towards spe-
cialized hardware. We expect FPGAs to have a more prominent role in the upcoming
years as a technology to achieve efficient and high performance solutions both in
the HPC and cloud domains. Hence, by embracing this idea, we designed CAOS in
a modular fashion, providing well-defined APIs that allow external researchers to
integrate extensions or different implementations of the modules within the platform.
Indeed, the second, yet not less important, objective of CAOS, is to foster research
on tools and methods for accelerating software on FPGA-based architectures.

References

1. Bacon DF, Rabbah R, Shukla S (2013) FPGA programming for the masses. Commun ACM
56(4):56-63
2. Cardamone S, Kimmitt JR, Burton HG, Thom AJ (2018) Field-programmable gate arrays and
quantum Monte Carlo: power efficient co-processing for scalable high-performance computing.
arXiv:1808.02402
3. Cattaneo R, Natale G, Sicignano C, Sciuto D, Santambrogio MD (2016) On how to accelerate
iterative stencil loops: a scalable streaming-based approach. ACM Trans Archit Code Optim
(TACO) 12(4):53
4. Del Sozzo E, Di Tucci L, Santambrogio MD (2017) A highly scalable and efficient parallel
design of n-body simulation on FPGA. In: 2017 IEEE international parallel and distributed
processing symposium workshops (IPDPSW), pp 241-246. IEEE
5. Del Sozzo E, Rabozzi M, Di Tucci L, Sciuto D, Santambrogio MD (2018) A scalable FPGA
design for cloud n-body simulation. In: 2018 IEEE 29th international conference on application-
specific systems, architectures and processors (ASAP), pp 1-8. IEEE
6. DiTucci L, O’Brien K, Blott M, Santambrogio MD (2017) Architectural optimizations for high
performance and energy efficient Smith-Waterman implementation on FPGAs using OpenCL.
In: 2017 design, automation and test in Europe conference and exhibition (DATE), pp 716-721.
IEEE
7. Di Tucci L, Rabozzi M, Stornaiuolo L, Santambrogio MD (2017) The role of CAD frame-
works in heterogeneous FPGA-based cloud systems. In: 2017 IEEE international conference
on computer design (ICCD), pp 423-426. IEEE
8. Docker. https://www.docker.com
9. Fort B, Canis A, Choi J, Calagar N, Lian R, Hadjis S, Chen YT, Hall M, Syrowik B, Czajkowski
T et al (2014) Automating the design of processor/accelerator embedded systems with legup
high-level synthesis. In: 2014 12th IEEE international conference on embedded and ubiquitous
computing (EUC), pp 120-129. IEEE
10. Hegarty J, Brunhaver J, DeVito Z, Ragan-Kelley J, Cohen N, Bell S, Vasilyev A, Horowitz
M, Hanrahan P (2014) Darkroom: compiling high-level image processing code into hardware
pipelines. ACM Trans Graph 33(4):144:1-144:11. https://doi.org/10.1145/2601097.2601174
11. Hennessy JL, Patterson DA (2017) Computer architecture: a quantitative approach. Elsevier,
Amsterdam
12. Lattner C (2008) LLVM and Clang: next generation compiler technology. In: The BSD con-
ference, pp 1-2
13. Maxeler Technologies: MaxCompiler. https://www.maxeler.com
14. Natale G, Stramondo G, Bressana P, Cattaneo R, Sciuto D, Santambrogio MD (2016) A polyhe-
dral model-based framework for dataflow implementation on FPGA devices of iterative stencil
loops. In: Proceedings of the 35th international conference on computer-aided design, p 77.
ACM

http://arxiv.org/abs/1808.02402
https://www.docker.com
https://doi.org/10.1145/2601097.2601174
https://www.maxeler.com

8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance ... 115

15.

16.

17.

19.

20.

21.

22.

23.
24.

Nestorov AM, Reggiani E, Palikareva H, Burovskiy P, Becker T, Santambrogio MD (2017) A
scalable dataflow implementation of Curran’s approximation algorithm. In: 2017 IEEE inter-
national parallel and distributed processing symposium workshops (IPDPSW), pp 150-157.
IEEE

Novikov A, Alexander S, Kordzakhia N, Ling T (2016) Pricing of Asian-type and basket
options via upper and lower bounds. arXiv:1612.08767

Peverelli F, Rabozzi M, Cardamone S, Del Sozzo E, Thom AJ, Santambrogio MD, Di Tucci L
(2019) Automated acceleration of dataflow-oriented c applications on FPGA-based systems.
In: 2019 IEEE 27th annual international symposium on field-programmable custom computing
machines (FCCM), pp 313-313. IEEE

. Peverelli F, Rabozzi M, Del Sozzo E, Santambrogio MD (2018) OXiGen: a tool for automatic

acceleration of ¢ functions into dataflow FPGA-based kernels. In: 2018 IEEE international
parallel and distributed processing symposium workshops (IPDPSW), pp 91-98. IEEE
Rabozzi M, Brondolin R, Natale G, Del Sozzo E, Huebner M, Brokalakis A, Ciobanu C,
Stroobandt D, Santambrogio MD (2017) A CAD open platform for high performance recon-
figurable systems in the extra project. In: 2017 IEEE computer society annual symposium on
VLSI (ISVLSI), pp 368-373. IEEE

Rabozzi M, Natale G, Festa B, Miele A, Santambrogio MD (2017) Optimizing streaming
stencil time-step designs via FPGA floorplanning. In: 2017 27th international conference on
field programmable logic and applications (FPL), pp 1-4. IEEE

Taylor MB (2013) A landscape of the new dark silicon design regime. IEEE Micro 33(5):8-19
Wirbel L (2014) Xilinx SDAccel: a unified development environment for tomorrow’s data
center. Technical report, The Linley Group Inc.

Xilinx Inc.: Vivado design suite. http://www.xilinx.com/products/design-tools/vivado.html
Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing FPGA-based accelerator
design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, pp 161-170. ACM

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/1612.08767
http://www.xilinx.com/products/design-tools/vivado.html
http://creativecommons.org/licenses/by/4.0/

	8 CAOS: CAD as an Adaptive Open-Platform Service for High Performance Reconfigurable Systems
	8.1 Introduction
	8.2 The CAOS Platform
	8.2.1 CAOS Design Flow
	8.2.2 CAOS Infrastructure

	8.3 Architectural Templates
	8.3.1 Master/Slave Architectural Template
	8.3.2 Dataflow Architectural Template
	8.3.3 Streaming Architectural Template

	8.4 Experimental Results
	8.5 Conclusions
	References

