
Runtime Verification for Timed Event
Streams with Partial Information

Martin Leucker1(B), César Sánchez2(B), Torben Scheffel1(B),
Malte Schmitz1(B), and Daniel Thoma1(B)

1 University of Lübeck, Lübeck, Germany
{leucker,scheffel,schmitz,thoma}@isp.uni-luebeck.de

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. Runtime Verification (RV) studies how to analyze execu-
tion traces of a system under observation. Stream Runtime Verification
(SRV) applies stream transformations to obtain information fromobserved
traces. Incomplete traces with information missing in gaps pose a com-
mon challenge when applying RV and SRV techniques to real-world sys-
tems as RV approaches typically require the complete trace without miss-
ing parts. This paper presents a solution to perform SRV on incomplete
traces based on abstraction. We use TeSSLa as specification language for
non-synchronized timed event streams and define abstract event streams
representing the set of all possible traces that could have occurred during
gaps in the input trace. We show how to translate a TeSSLa specification
to its abstract counterpart that can propagate gaps through the transfor-
mation of the input streams and thus generate sound outputs even if the
input streams contain gaps and events with imprecise values. The solution
has been implemented as a set of macros for the original TeSSLa and an
empirical evaluation shows the feasibility of the approach.

1 Introduction

Runtime verification (RV) is a dynamic formal method for software system reli-
ability. RV studies how to analyze and evaluate traces against formal specifi-
cations and how to obtain program traces from the system under observation,
e.g., through software instrumentation or utilization of processors’ embedded
trace units. Since RV only inspects one execution trace of the system, it is often
regarded to be a readily applicable but incomplete approach, that combines for-
mal verification with testing and debugging.

Most early RV languages were based on logics common in static verification,
like LTL [21], past LTL adapted for finite paths [4,11,18], regular expressions [22]
or timed regular expressions [2]. For these logics, the monitoring problem con-
sists on computing a Boolean verdict indicating whether the trace fulfills the
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Fig. 1. Example trace for a typical SRV specification (left) with two input streams
values (with numeric values) and resets (with no internal value). The intention of the
specification is to accumulate in the output stream sum all values since the last reset.
The intermediate stream cond is derived from the input streams indicating if reset has
currently the most recent event, and thus the sum should be reset to 0. If the input
streams contain gaps (dotted regions on the right) some information can no longer be
computed, but after a reset event the computation recovers from the data loss during
the gap. � denotes events with unknown data.

specification. In contrast to static analysis, however, considering only a single
concrete trace enables the application of more complex analyses: Stream Run-
time Verification (SRV) [6,7,10] uses stream transformations to derive additional
streams as verdicts from the input streams. Using SRV one can still check if the
input stream is conformant with a specification, but additionally verify streams
in terms of their events’ data: streams in SRV can store data from richer domains
than Booleans, including numerical values or user defined data-types, so SRV
languages can extract quantitative values and express quantitative properties
like “compute the average retransmission time” or “compute the longest duration
of a function”. SRV cleanly separates the temporal dependencies that the stream
transformation algorithms follow from the concrete operations to be performed
on the data, which are specific to each data-type. As an example for SRV con-
sider the trace diagram on the left of Fig. 1. We consider non-synchronized event
streams, i.e., sequences of events with increasing timestamps and values from
a data domain. Using non-synchronized event streams one can represent events
arriving on different streams with different frequencies in a compact way with
little computation overhead because there is no need to process additional syn-
chronization events in the stream-transformation process. In this paper we use
the TeSSLa specification language [7], an SRV language for non-synchronized,
timed event streams. TeSSLa has been defined to be general enough to allow for
a natural translation from other common SRV formalisms, e.g., Lola [10] and
Striver [16]. Therefore, our results carry over to these languages as well.

Since RV is performed on traces obtained from the system under test in
the deployed environment, it is a common practical problem for RV techniques
that the traces do not cover the entire run of the system. However, most of the
previous RV approaches require the trace to be available without any interrup-
tions in order to obtain a verdict, because this knowledge is assumed in the
semantics of the specification logics. Especially in the case of interrupted traces
with some data losses applying previous RV techniques can be very challenging.
Unfortunately those traces occur very often in practical testing and debugging
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scenarios, e.g., due to interrupted experiments, buffer overflows, network errors
or any other temporary problem with the trace retrieval.

In this paper we present a solution to the problem of evaluating traces with
imprecise values and even interrupted traces. Our only assumption is that we
have exact knowledge of the imprecision of the trace in the following sense: (1)
for events with imprecise values we know the range of values and (2) for data
losses we know when we stop getting information and when the trace becomes
reliable again. We call such a sequence of uncertainty a gap in the trace. Our
solution automatically propagates gaps and imprecisions, and allows to obtain
sound verdicts even in the case of missing information in the input trace.

Figure 1 on the right displays a case where the input stream values has a
long gap in the middle. It is not possible to determine the events in the output
stream sum during that gap, because we do not even know if and how many
events might have happened during that gap. Thus, the intermediate stream
cond and the output stream sum simply copy that gap representing any possible
combination of events that might occur. The first event after the gap is the one
with the value 3 on values. Because no reset happened after the end of the gap,
we would add 3 to the latest event’s value on sum, but the gap is the latest on
sum. Thus, we only know that this input event on values causes an event on sum
independently of what might have happened during the gap, but the value of that
event completely depends on possible events occurring during the gap. After the
next event on reset the values of the following events on sum are independent of
any previous events. The monitor can fully recover from the missing information
during the gap and can again produce events with precise values.

In order to realize this propagation of gaps through all the steps of the
stream-transformation we need to represent all potentially infinitely many con-
crete traces (time is dense and values are for arbitrary domains) that might
have happened during gaps and imprecise events. An intuitive approach would
be a symbolic representation in terms of constraint formulas to describe the set
of all possible streams. These formulas would then be updated while evaluat-
ing the input trace. While such a symbolic execution might work for shorter
traces, the representation can grow quickly with each input event. Consequently
the computational cost could grow prohibitively with the trace length for many
input traces. Instead, in this paper we introduce a framework based on abstrac-
tion [8,9]. We use abstraction in two ways:

(1) Streams are lifted from concrete domains of data to abstract domains to
model possible sets of values. For example, in our solution a stream can
store intervals as abstract numerical values.

(2) We define the notion of abstract traces, which extend timed streams with
the capabilities of representing gaps. Intuitively, an abstract trace over-
approximates the sets of concrete traces that can be obtained by filling the
gaps with all possible concrete events.

Our approach allows for both gaps in the input streams as well as events carrying
imprecise values. Such imprecise values can be modelled by abstract domains,
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e.g., intervals of real numbers. Since we rely on abstraction, we can avoid false
negatives and false positives in the usual sense: concrete verdicts are guaranteed
to hold and imprecise verdicts are clearly distinguished from concrete verdicts.
The achievable precision depends on the specification and the input trace.

After reproducing the semantics of the basic TeSSLa operators in Sect. 2, we
introduce abstract semantics of the existing basic operators of TeSSLa in Sect. 3.
Using these abstract TeSSLa operators, we can take a TeSSLa specification on
streams and replace every TeSSLa operator with its abstract counterpart and
derive an abstraction of the specification on abstract event streams. We show
that the abstract specification is a sound abstraction of the concrete specifica-
tion, i.e., every concrete verdict generated by the original specification on a set
S of possible input traces is represented by the abstract verdict applied to an
abstraction of S. We further show that the abstract TeSSLa operators are a per-
fect abstraction of their concrete counterparts, i.e., that applying the concrete
operator on all individual elements of S doesn’t get you more accurate results.
Finally, we show that an abstract TeSSLa specification can be implemented using
the existing TeSSLa basic operators by representing an abstract event stream
as multiple concrete event streams carrying information about the events and
the gaps. Since the perfect accuracy of the individual abstract TeSSLa operators
does not guarantee perfect accuracy of their compositions, we discuss the accu-
racy of composed abstract TeSSLa specifications in Sect. 4. Next we present in
Sect. 5 an advanced use-case where we apply abstract TeSSLa to streams over a
complex data domain of unbounded queues, which are used to compute the aver-
age of all events that happened in the sliding window of the last five time units.
Section 6 evaluates the overhead and the accuracy of the presented abstractions
on representative example specifications and corresponding input traces with
gaps. An extended preprint version of this paper is available as [19].

Related Work. SRV was pioneered by LOLA [10,13,14]. TeSSLa [7] generalises
to asynchronous streams the original idea of LOLA of recursive equations over
stream transformations. Its design is influenced by formalisms like stream pro-
gramming languages [5,15,17] and functional reactive programming [12]. Other
approaches to handle data and time constraints include Quantitative Regular
Expressions QRE [1] and Signal Temporal Logic [20].

While ubiquitous in practice, the problem of gaps in an observation trace has
not been studied extensively. To the best of our knowledge, abstraction tech-
niques have not been applied to the evaluation of stream-based specifications.
However, approaches to handle the absence of events or ordering information
have been presented for MTL [3] and past-time LTL [24]. State estimation based
on Markov models has been applied to replace absent information by a proba-
bilistic estimation [23]. The concept of abstract interpretation used throughout
this paper has been introduced in [8].
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2 The TeSSLa Specification Language

A time domain is a totally ordered semi-ring (T, 0, 1,+, ·,≤) that is positive, i.e.,
∀t∈T 0 ≤ t. We extend the order on time domains to the set T∞ = T∪{∞} with
∀t∈T t < ∞. Given a time domain T, an event stream over a data domain D is a
finite or infinite sequence s = t0d0t1 · · · ∈ SD = (T ·D)ω ∪ (T ·D)∗ · (T∞ ∪T ·D⊥)
where D⊥ := D ∪ {⊥} and ti < ti+1 for all i with 0 < i + 1 < |s| (|s| is ∞ for
infinite sequences). An infinite event stream is an infinite sequence of timestamps
and data values representing the stream’s events. A finite event stream is a finite
sequence of timestamped events up to a certain timestamp that indicates the
progress of the stream. A stream can end with:

– a timestamp without a data value that denotes progress up to but not includ-
ing that timestamp,

– a timestamp followed by ⊥ (or a data value) which denotes progress up to
and including that timestamp (and an event at that timestamp),

– ∞, which indicates that no additional events will ever arrive on this stream.

We refer to these cases as exclusive, inclusive and infinite progress, resp.
Streams s ∈ SD can be seen as functions s : T → D ∪ {⊥, ?} such that s(t)

is a value d if s has an event with value d at time t or ⊥ if there is no event
at time t. For timestamps after the progress of the stream s(t) is ?. Formally,
s(t) = d if s contains td, s(t) = ⊥ if s does not contain t, but contains a
t′ > t or s ends in t⊥, and s(t) = ? otherwise. We use ticks(s) for the set
{t ∈ T | s(t) ∈ D} of timestamps where s has events. A stream s is a prefix
of stream r if ∀t∈Ts(t) ∈ {r(t), ?}. We use the unit type U = {�} for streams
carrying only the single value �. A TeSSLa specification consists of a collection
of stream variables and possibly recursive equations over these variables using
the operators nil, unit, time, lift, last and delay. The semantics of recursive
equations is given as the least fixed-point of the equations seen as a function of
the stream variables and fixed input streams. See [7] for more details.

� nil = ∞ ∈ S∅ is the stream without any events and infinite progress.
� unit = 0 � ∞ ∈ SU is the stream with a single unit event at timestamp zero

and infinite progress.
� time : SD → ST, time(s) := z maps the event’s values to their timestamps:

z(t) = t if t ∈ ticks(s) and z(t) = s(t) otherwise.
� lift : (D1⊥×. . .×Dn⊥ → D⊥) → (SD1×. . .×SDn

→ SD), lift(f)(s1, . . . , sn) := z
lifts a function f on values to a function on streams by applying f to the
stream’s values for every timestamp. The function f must not generate new
events, i.e., must fulfill f(⊥, . . . ,⊥) = ⊥.

z(t) =

{
f(s1(t), . . . , sn(t)) if s1(t) 	= ?, . . . , sn(t) 	= ?
? otherwise

� last : SD ×S
D

′ → SD, last(v, r) := z takes a stream v of values and a stream r
of triggers. It outputs an event with the previous value on v for every event
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on r.

z(t) =

⎧⎪⎨
⎪⎩

d t ∈ ticks(r) and ∃t′<tisLast(t, t′, v, d)
⊥ r(t) = ⊥ and defined(z, t), or ∀t′<tv(t′) = ⊥
? otherwise

isLast(t, t′, v, d) def= v(t′) = d ∧ ∀t′′|t′<t′′<tv(t′′) = ⊥ holds if t′d is the last

event on v until t, and defined(z, t) def= ∀t′<tz(t′) 	= ? holds if z is defined until
t (exclusive).

Using the basic operators we can now derive the following utility functions:

� const(c)(a) := lift(fc)(a) with fc(d) := c. This function maps the values of
all events of the input stream a to a constant value c. Using const we can
lift constants into streams representing a constant signal with this value, e.g.,
true := const(true)(unit) or zero := const(0)(unit).

� merge(x, y) := lift(f)(x, y) with f(a 	= ⊥, b) = a and f(⊥, b) = b, which
combines events from two streams, prioritizing the first stream.

Event streams in TeSSLa can also be interpreted as a continuous signals.
Using last one can query the last known value of an event stream s and
interpret the events on s as points where a piece-wise constant signal changes
its value. By combining the last and lift operators, we can realize:

� signal lift for total functions f : D×D
′ → D

′′ as slift(f)(x, y) := lift(gf )(x′, y′)
with x′ := merge(x, last(x, y)) and y′ := merge(y, last(y, x)), as well as
gf (a 	= ⊥, b 	= ⊥) := f(a, b), gf (⊥, b) := ⊥, and gf (a,⊥) := ⊥.

Example 1. We can now specify the stream transformations shown on the left
in Fig. 1 in TeSSLa. Let resets ∈ SU and values ∈ SZ be two external input event
streams. We then derive cond ∈ SB and lst, sum ∈ SZ as follows:

cond = slift(≤)(time(resets), time(values))
lst = merge(last(sum, values), zero)

sum = slift(f)(cond, lst, values)

f : B × Z × Z → Z with

f(c, l, v) =

{
0 if c = true
l + v otherwise

Using the operators described above one can only derive streams with times-
tamps that are already present in the input streams. To derive streams with
events at computed timestamps one can use the delay operator, which is
described in [7].

3 Abstract TeSSLa

Preliminaries. Given two partial orders (A,�) and (B,�), a Galois Connection
is a pair of monotone functions α : A → B and γ : B → A such that, for all
a ∈ A and b ∈ B, α(a) � b if and only if a � γ(b). Let (A,�) be a partial
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order, f : A → A a monotone function and γ : B → A a function. The function
f# : B → B is an abstraction of f whenever, for all b ∈ B, f(γ(b)) � γ(f#(b)).
If (α, γ) is a Galois Connection between A and B, the function f# : B → B
such that f#(b) := α(f(γ(b)) is a perfect abstraction of f .

In this section we define the abstract counterparts of the TeSSLa operators,
listed in Sect. 2. A data abstraction of a data domain D is an abstract domain D

#

with an element 
 ∈ D
# and an associated concretisation function γ : D# → 2D

with γ(
) = D. The abstract value 
 represents any possible value from the
data domain and can be used to model an event with known timestamp but
unknown value. A gap is a segment of an abstract event stream that represents
all combinations of events that could possibly occur in that segment (both in
terms of timestamps and values). Hence an abstract event stream consists of an
event stream over a data abstraction and an associated set of known timestamps:

Definition 1 (Abstract Event Stream). Given a time domain T, an
abstract event stream over a data domain D is a pair (s,Δ) with s ∈ S#

D
and

Δ ⊆ T such that Δ can be represented as union of intervals whose (inclusive
or exclusive) boundaries are indicated by events in an event stream. Further, we
require s(t) 	= ⊥ ⇒ t ∈ Δ. The set of all abstract event streams over D is denoted
as PD. The concretisation function γ : PD → 2SD is defined as

γ((s,Δ)) = {s′ | ∀t∈ticks(s)s(t) ∈ γ(s′(t)) ∧ ∀t∈Δ\ticks(s)s(t) = s′(t)}
If the data abstraction is defined in terms of a Galois Connection a refinement
ordering and abstraction function can be obtained.The refinement ordering (PD,�
) is defined as (s1,Δ1) � (s2,Δ2) iff Δ1 ⊇ Δ2 and ∀t∈ticks(s2)s1(t) � s2(t) ∧
∀t∈Δ2\ticks(s2)s1(t) = s2(t). The abstraction function α : 2SD → PD is defined
as α(S) = sup{(s,T)|s ∈ S}. Note, if the data abstraction is defined in terms of a
Galois Connection, (α, γ) is a Galois Connection between 2SD and PD.

An abstract event stream s = (s′,Δ) ∈ PD can also be seen as a function
s : T → D

# ∪ {?,⊥,�} with s(t) = s′(t) if t ∈ Δ and s(t) = � otherwise. A
particular point t of an abstract event stream s can be either (a) directly at an
event (s(t) ∈ D), (b) in a gap (s(t) = �), (c) in a gapless segment without an
event at t (s(t) = ⊥), or (d) after the known end of the stream (s(t) = ?).

We denote D
#
⊥

def= D
# ∪ {⊥,�}. If D# is a data abstraction of a data domain

D with an associated concretisation function γ, then D
#
⊥ is a data abstraction of

D⊥ with an associated concretisation function γ⊥ : D#
⊥ → 2D∪{⊥} with

γ⊥(d) =

⎧⎪⎨
⎪⎩

⊥ if d = ⊥
D ∪ {⊥} if d = �
γ(d) if d ∈ D

#

tt 
 ff � ⊥

tt ff ⊥
γ γ⊥

B
#
⊥B

#

B⊥B

The above diagram shows a possible data abstraction B
# of B and the cor-

responding data abstraction B
#
⊥. Using the functional representation of an

abstract event stream we can now define the abstract counterparts of the TeSSLa
operators:
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� nil# = (∞,T) ∈ P∅ is the empty abstract stream without any gaps.
� unit# = (0�∞,T) ∈ PU is the abstract stream without any gaps and a single

event at timestamp 0.
� time# : PD → PT, time#(s) := z is equivalent to its concrete counterpart;

only the data domain is extended: z(t) = t if t ∈ ticks(s) and z(t) = s(t)
otherwise.

� lift# : (D1
#
⊥ × · · · × Dn

#
⊥ → D

#
⊥) → (PD1 × · · · × PDn

→ PD),
lift#(f#)(s1, . . . , sn) := z can be defined similarly to its concrete counter-
part, because the abstract function f# takes care of the gaps:

z(t) =

{
f#(s1(t), . . . , sn(t)) if s1 	= ?, . . . , sn 	= ?
? otherwise

The operator lift# is restricted to those functions f# that are an abstraction
of functions f that can be used in lift, that is, f(⊥, . . . ,⊥) = ⊥. Using the
abstract lift we can derive the abstract counterparts of const and merge:

� const#(c)(a) := lift#(fc)(a) with fc(d) := c if d 	= � and fc(�) := �
otherwise maps all events’ values to a constant while preserving the gaps.
Using const# we can define constant signals without any gaps, e.g., true# :=
const#(true)(unit#) or zero# := const#(0)(unit#).

� merge#(x, y) := lift#(f)(x, y) with f(a 	∈ {�,⊥}, b) = a, f(⊥, b) = b, f(�, b ∈
{�,⊥}) = �, and f(�, b 	∈ {�,⊥}) = 
.

x

y

z

The diagram on the right shows an example trace
merging the events of the streams x and y. The sym-
bol ◦ indicates a point-wise gap. Note how an event
on the first stream takes precedence over a gap on the second stream, but not
the other way round, similarly to how events from the first stream are prioritized
if both streams have an event at the same timestamp.

� last# : PD1 × PD2 → PD1 , last
#(v, r) := z has three major extensions over its

concrete counterpart:

(1) 
 is added as an output in case an event on r occurs and there were events
on the stream v of values but all followed by a gap.

(2) � is outputted for all gaps on the stream r of trigger events if there have
been events on the stream v of values.

(3) � can also be output if an event occurs on r and no event occurred on v
before except for a gap.

The parts similar to the concrete operator are typeset in gray:

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d t ∈ ticks(r) ∧ ∃t′<tisLast(t, t′, v, d) ∧ ∀t′′|t′<t′′<tv(t′′) 	= �

 t ∈ ticks(r) ∧ ∃t′<tisLast(t, t′, v,�) ∧ ∃t′′|t′<t′′<tv(t′′) = � (1)
⊥ r(t) = ⊥ ∧ defined(z, t) ∨ ∀t′<tv(t′) = ⊥
� defined(z, t) ∧ r(t) = � ∧∃t′<tv(t′) 	= ⊥ (2)
� defined(z, t) ∧ t ∈ ticks(r) ∧ ∀t′<tt

′ /∈ ticks(v) ∧ ∃t′<tv(t′) = � (3)
? otherwise
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v

r

z

(3) (1) (d) (2)

The trace diagram on the right shows an exam-
ple trace covering most edge cases of the abstract
last. The output stream z is a point-wise gap if trig-
gered after initial gaps (3); z is 
 if triggered after
non-initial gaps (1); z is an event if triggered after a gapless sequence (d); and
z inherits all gaps from the stream of trigger events (2).

We can now combine the last# and the lift# operators to realize:

� abstract signal lift for total functions f : D × D
′ → D

′′ as
slift#(f)(x, y) := lift#(gf )(x′, y′) with x′ := merge#(x, last#(x, y)) and
y′ := merge#(y, last#(y, x)), as well as gf (a 	∈ {�,⊥}, b 	∈ {�,⊥}) = f(a, b),
gf (⊥, b) = gf (a,⊥) = ⊥, gf (�,�) = �, and gf (�, b 	∈ {�,⊥}) = gf (a 	∈
{�,⊥},�) = �.

Example 2. By replacing every TeSSLa
operator in Example 1 with their abstract
counterparts and applying it to the
abstract input streams values ∈ PZ and
resets ∈ PU, we derive the abstract
stream cond ∈ PB and the recursively
derived abstract stream sum ∈ PZ: After the large gap on values, the sum stream
eventually recovers completely. The first reset after the point-wise gap does not
lead to full recovery, because at that point the last event on values cannot be
accessed, because of the prior gap. The next reset falls into the gap, so again
cond cannot be evaluated. In a similar fashion one can define an abstract delay#

operator as counterpart of the concrete delay. See [19] for details.
Following from the definitions of the abstract TeSSLa operators we get:

Theorem 1. Every abstract TeSSLa operator is an abstraction of its concrete
counterpart.

Theorem 1 implies that abstract TeSSLa operators are sound in the following
way. Let o be a concrete TeSSLa operator with the abstract counterpart o#

and let s ∈ PD be an abstract event stream with a concretization function γ.
Then, o(γ(s)) � γ(o#(s)). Since abstract interpretation is compositional we can
directly follow from the above theorem:

Corollary 1. If a concrete TeSSLa specification ϕ is transformed into a specifi-
cation ψ by replacing every concrete operator in ϕ with its abstract counterpart,
then ψ is an abstraction of ϕ.

Theorem 1 guarantees that applying abstract TeSSLa operators to the
abstract event stream is still sound regarding the underlying set of possible
concrete event streams. However, we have established no result so far about the
accuracy of the abstract TeSSLa operators. The abstraction returning only the
completely unknown stream (Δ = ∅) is sound but useless. The following theo-
rem states, that our abstract TeSSLa operators are optimal in terms of accuracy.
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Using a perfect abstraction guarantees the abstract TeSSLa operators preserve
as much information as can possibly be encoded in the resulting abstract event
streams.

Theorem 2. Every abstract TeSSLa operator is a perfect abstraction of its con-
crete counterpart.

Given a concrete TeSSLa operator o and its abstract counterpart o#, and any
abstract event stream s ∈ PD with the Galois Connection (α, γ) between 2SD and
PD one can show that o#(s) = α(o(γ(s)). Applying the abstract operator on the
abstract event stream is as good as applying the concrete operator on every
possible event stream represented by the abstract event stream. Thus o# is a
perfect abstraction of o. (The detailed proof can be found in [19].) Note that
we assume that f# is a perfect abstraction of f to conclude that lift#(f#) is a
perfect abstraction of lift(f).

In Corollary 1 we have shown that a specification ψ (generated by replac-
ing the concrete TeSSLa operator in ϕ with their abstract counterparts) is an
abstraction of ϕ. Note that ψ is in general not a perfect abstraction of ϕ. We
study some special cases of perfect abstractions of compositional specifications
in Sect. 4.

The next result states that the abstract operators can be defined in terms
of concrete TeSSLa operators. Realizing the abstract operators in TeSSLa does
not require an enhancement in the expressivity of TeSSLa.

Theorem 3. The semantics of the abstract TeSSLa operators can be encoded in
TeSSLa using only the concrete operators.

Proof. One can observe that the abstract TeSSLa operators are monotone and
future independent (the output stream up to t only depends on the input streams
up to t.) As shown in [7], TeSSLa can express every such function. ��

3.1 Fixpoint Calculations Ensuring Well-Formedness

A concrete TeSSLa specification consists of stream variables and possibly recur-
sive equations applying concrete TeSSLa operators to the stream variables. The-
orem1 and Corollary 1 guarantee that a concrete TeSSLa specification can be
transformed into an abstract TeSSLa specification, which is able to handle gaps
in the input streams. Additionally, Theorem 3 states that the abstract TeSSLa
operators can be implemented using concrete TeSSLa operators. Combining
these two results, one can transform a given concrete specification ϕ into a
corresponding specification ψ, which realizes the abstract TeSSLa semantics of
the operators in ϕ, but only uses concrete TeSSLa operators.

However, using the realization of the abstractTeSSLaoperators inTeSSLaadds
additional cyclic dependencies in ψ between the stream variables. A TeSSLa spec-
ification is well-formed if every cycle of its dependency graph contains at least one
edge guarded by a last (or a delay) operator, which is required to guarantee the
existence of a unique fixed-point and hence computability (see [7]).
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v
r

last#(v, r)

Consider the trace diagram on the right showing
last#(v, r). If v is used in a recursive manner, i.e., v
is defined in terms of last#(v, r), then the first event
on v could start a gap on last#(v, r) that could start a gap on v at the same
timestamp. As a result v has an unguarded cyclic dependency and hence the
specification is not well-formed. To overcome this issue one can split up the value
and gap calculation sequentially, reintroducing guards in the cyclic dependency:

Definition 2 (Unrolled Abstract Last). We define two variants of the
abstract last, last#⊥ and last#� as follows. Let z = last#(v, r), then last#⊥(v, r) :=
z⊥ and last#�(v, r, d) := z�.

z⊥(t) =

{
z(t) if z(t) 	= �
⊥ otherwise

z�(t) =

⎧⎪⎨
⎪⎩

d(t) if t ∈ ticks(d)
� if t /∈ ticks(d) ∧ z(t) = �
⊥ otherwise

Function last#⊥ executes a normal calculation of the events, in the same way an
abstract last would do, but neglecting gaps and outputting ⊥ as long as there
is no event. Function last#� takes a third input stream and outputs its events
directly, but calculates gaps correctly as last# would do.

Since the trigger input of a last operator cannot be recursive in a well-formed
specification, a recursive equation using one last has the form x = last#(v, r)
and v = f(x, c), where c is a vector of streams not involved in the recursion
and f does not introduce further last (or delay) operators. Now, this equation
system can be rewritten in the following equivalent form:

x′ = last#⊥(v, r) v′ = f(x′, c) x = last#�(v′, r, x′) v = f(x, c)

This pattern can be repeated if multiple recursive abstract lasts are used and
can also be applied in a similar fashion to mutually recursive equations and the
delay operator.

4 Perfection of Compositional Specifications

A concrete TeSSLa specification ϕ can be transformed into an abstract TeSSLa
specification ψ by replacing the concrete operators with their abstract counter-
parts. For two functions f and g with corresponding abstractions f# and g# the
function composition f# ◦ g# is an abstraction of f ◦ g. Unfortunately, even if
f# and g# are perfect abstractions, f# ◦ g# is not necessarily a perfect abstrac-
tion. Hence, ψ needs not be a perfect abstraction of ϕ. In this section we discuss
the perfection of two common compositional TeSSLa operators: (1) the slift#

defined in Sect. 3 is a composition of last# in lift#, which realizes signal seman-
tics; (2) last#(time#(v), r), which is a common pattern used when comparing
timestamps.
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The slift# is defined as the lift# applied to the synchronized versions x′ and
y′ of the input streams x and y. The input stream x is synchronized with y by
keeping the original events of x and reproducing the last known value of x for
every timestamp with an event on y, but not on x.

Theorem 4. If f# is a perfect abstraction of f then slift(f#)# is a perfect
abstraction of slift(f).

Proof. Since slift# is defined on abstract event streams we need to consider gaps.
The stream x′ does not have any gap or event until the first gap or event on x.
After the first gap or event on x the synchronized stream x′ contains a gap or
event at every timestamp where x or y contain a gap or event. Because slift#

is symmetric in terms of the event pattern the same holds for y′. By definition,
slift#(f#)(x, y) = z contains an event or gap iff x′ and y′ contain an event or
gap, because f is a total function. The output stream z contains an event iff x′

and y′ contain events. The events values are ensured to be as precise as possible,
because f# is a perfect abstraction of f . ��

a b

v

r

last#(time#(v), r)

lastTime#(v, r)
[a, b]

TeSSLa allows arbitrary computa-
tions on the timestamps of events using
the time operator. The specification z =
time(v) derives a stream z from v by
replacing all event’s values in v with
the event’s timestamps. The stream vari-
able z can now be used in any computation expressible in TeSSLa. Hence,
TeSSLa does not distinguish between timestamps and other values, and con-
sequently abstract TeSSLa specifications cannot make use of the monotonicity
of time. As an example consider the trace diagram on the right. The stream
last#(time#(v), r) is derived from v by composing time# and last#. Since
time# changes the events values with their timestamps, the last# does not
know any longer that we are interested in the last timestamp of v and can only
produce an event with the value 
 representing all possible values. To overcome
this issue we define lastTime(v, r) := last(time(v), r) and provide a direct
abstraction, which allows a special treatment of timestamps.

Definition 3 (Time Aware Abstract Last). Let y = last#(time#(v), r),
we define lastTime# : PD × PD′ → P2T , lastTime#(v, r) := z as z(t) = [a, b]
if y(t) = 
 with a = inf{t′ < t | ∀t′<t′′<tv(t′′) 	= �} and b = max{t′ < t | t′ ∈
ticks(v)} and z(t) = y(t) otherwise.

Now the following result holds (the proof can be found in [19]).

Theorem 5. lastTime# is a perfect abstraction of lastTime.

A similar problem occurs if slift# is used to compare event’s timestamps. In
Example 2 the stream cond derived by comparing the timestamps of values
and resets has two events with the unknown data value 
 because of prior
gaps on values. Since the slift# is defined in terms of lift# and last# we can
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define the function sliftTime#(f#)(x, y) as an abstraction for the special case
sliftTime(f)(x, y) = slift(f)(time(x), time(y)) by using lastTime# instead of
last# and ensuring that f# uses interval arithmetics to abstract f . Note that
sliftTime#(f#) is a perfect abstraction of sliftTime(f).

Example 3. To illustrate the perfect
abstraction sliftTime# we update the def-
inition of cond in Example 2 as follows:
cond = sliftTime(≤)(resets, values). The
events drawn in red now have concrete
values instead of 
 as in Example 2.

5 Abstractions for Sliding Windows

In this section we demonstrate how to apply the techniques presented in this
paper to specifications with richer data domains. In particular, we show now a
TeSSLa specification that uses a queue to compute the average load of a processor
in the last five time units. The moving window is realized using a queue storing
all events that happened in the time window. The stream load ∈ SR contains an
event every time the input load changes:

stripped = slift(remOlder5)(time(load),merge(last(queue, load), 〈〉)))
queue = lift(enq)(time(load), load, stripped)
avg = lift(int)(queue, time(load))

int(q, u) = fold(f, q, 0, u) f(a, b, v, acc) = acc + v · (b − a)/5

The queue operation enq adds elements to the queue, while remOlder5 removes
elements with a timestamp older than five time units. The function int accumu-
lates all values in the queue weighted by the length of the corresponding signal
piece. The queue operation fold is used to fold the function f over all elements
from the queue with the initial accumulator 0 until the timestamp u. Hence f is
called for every element in the queue with the timestamps a and b, the element’s
value v and the accumulator. Consequently, the specification adds elements to
the queue, removes the expired elements and accumulates the remaining val-
ues. Using our approach we replace every operator with its abstract counterpart
and represent abstract queues appropriately such that also queues with partly
unknown entries can be modeled. By doing this we obtain a specification that is
able to handle gaps in the input stream, as illustrated in Fig. 2.

We can extend the example such that the queue only holds a predefined
maximum number of events (to guarantee a finite state implementation). When
removing events we represent these as unknown entries in the abstract queues.
The abstract fold# is capable of computing the interval of possible average loads
for queues with unknown elements anyhow.

Note that the average load is only updated for every event on the input
stream. Using a delay operator, we can set a timeout whenever an element leaves
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Fig. 2. Example trace of the abstract queue specification.

the sliding window in the abstract setting. The element is removed from the
queue at that timeout and the new value of the queue is updated with the
remaining elements. Formal definitions of the queue functions as well as the
complete specifications are available online1.

6 Implementation and Empirical Evaluation

As discussed in Sect. 3.1 the abstract TeSSLa operators can be implemented
using only the existing concrete TeSSLa operators. We implemented the abstract
TeSSLa operators as macros specified in the TeSSLa language itself such that
the existing TeSSLa engine presented in [7] can handle abstract TeSSLa spec-
ifications. An abstract event stream (s,Δ) ∈ PD can be represented as two
TeSSLa streams s ∈ SD# and sd ∈ SX , where X contains the following six pos-
sible changes of Δ: inclusive start, exclusive start, inclusive end, exclusive end,
point-wise gap and point-wise event in a gap. Using this encoding it is sufficient
to look up the latest sd(t′) with t′ ≤ t to decide whether t ∈ Δ. While this
encoding already allows a decent implementation of abstract TeSSLa we go one
step further and assume a finite time domain with a limited precision, e.g., 64
bit integers or floats. Under this assumption there is always a known smallest
relative timestamp ε. Hence, we can use the encoding sd ∈ SB where an event
sd(t) = true encodes a start inclusive and sd(t) = false an end exclusive. This
encoding captures the most common cases and simplifies the implementation of
union and intersection on Δ enormously since they can now be realized as slift(∨)
and slift(∧), resp. The other possible switches at timestamp t can be represented
as follows: sd(t + ε) = true encodes an exclusive start, sd(t + ε) = false encodes
an inclusive end, sd(t) = true and sd(t+ ε) = false encodes a point-wise event in
a gap, and sd(t) = false and sd(t+ε) = true encodes a point-wise gap. Using this
encoding the abstract TeSSLa operators do not need to handle these additional
cases explicitly.

Furthermore, assuming the smallest relative timestamp ε, we can avoid the
need to perform the unrolling defined in Definition 2 by delaying the second part
of the computation to the next possible timestamp t + ε.
1 http://tessla-a.isp.uni-luebeck.de/.

http://tessla-a.isp.uni-luebeck.de/
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As a final efficiency improvement we simplified last# before the first event
on the stream of values, which are not relevant in practice. The abstract oper-
ator and hence abstract specifications are of course still a sound abstraction of
their concrete counterparts, but due to over-abstractions no longer a perfect one
during this initial event-less phase of the stream of values.

The implementation in form of a macro library for the existing TeSSLa engine is
available together with all the examples and scripts used in the following empirical
evaluation and can be experimented with in a web IDE (see Footnote 1).

In the following empirical evaluation we measure the accuracy of the abstrac-
tions presented in this paper. An abstract event stream represents input data
with some sequences of data loss, where we do not know if any events might have
been occurred or what their values have been. Applying an abstract TeSSLa
specification to such an input stream takes these gaps into account and provides
output streams that in turn contain sequences of gaps and sequences contain-
ing concrete events. To evaluate the accuracy of this procedure we compare the
output of an abstract TeSSLa specification with the best possible output.

PD PD

2SD

2SD

2SD

I

I

ϕ#

γ γ

ϕ
ι

ι

Let r ∈ PD be an abstract event stream. We
obtain the set R of all possible input streams con-
taining all possible variants that might have hap-
pened during gaps in r by applying the concretiza-
tion function γ on the abstract input stream. Now
we can apply the concrete TeSSLa specification ϕ
to all streams in R and get the set S of concrete
output streams. On the other hand we apply the abstract TeSSLa specification
ϕ# directly to r and get the abstract output stream s. Now S is the set of
all possible output streams and γ(s) is the set of output streams defined by the
abstract TeSSLa specification. The diagram on the right depicts this comparison
process.

a
0 2 1

b
0 2 0 1

c
0 2 1

ignor.

To compare γ(s) and S in a quantitative way
we define the ignorance measure ι : 2SD → I = [0, 1]
scoring the ambiguity of such a set of streams, i.e.,
how similar the different streams in the set are.
Events in non-synchronized streams might not have
corresponding events at the same timestamp on the
other streams. Hence we refer to the signal seman-
tics of event streams where the events represent the changes of a piece-wise con-
stant signal. As depicted on the right with three event streams over the finite data
domain {0, 1, 2}, we score timestamps based on how many event streams have
the same value with respect to the signal semantics at that timestamp. These
scores are then integrated and normalized throughout the length of the streams.
See [19] for the technical details. Using this ignorance measure we can now com-
pute the optimal ignorance i := ι(S) ∈ I and the ignorance k := ι(γ(s)) ∈ I of
the streams produced by the abstract TeSSLa specification.

For the evaluation we took several example specifications and corresponding
input traces representing different use-cases of TeSSLa and compared the opti-
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mal ignorance with the ignorance of abstract TeSSLa. Note that computing the
optimal ignorance requires to derive all possible variants of events that might
have happened during gaps, which are in general infinitely many and in the spe-
cial case of only point-wise gaps still exponentially many. Hence this can only be
done on rather short traces with only a few point-wise gaps. As a measure for
the overhead imposed by using the abstraction compared to the concrete TeSSLa
specification we use the computation depth, i.e., the depth of the dependency
graph of the computation nodes of the specifications. While runtimes are highly
depending on implementation details of the used TeSSLa engines, the compu-
tation depth is a good indicator for the computational overhead in terms of
how many concrete TeSSLa operators are needed to realize the abstract TeSSLa
specification. Figure 3 shows the empirical results.

Fig. 3. Empirical results.

The first three examples represent the class of common, simple TeSSLa spec-
ifications without complex interdependencies and no generation of additional
events with delay: Reset-count counts between reset events; reset-sum sums up
events between reset events; and filter-example filters events occurring in a cer-
tain timing-pattern. For these common specifications the overhead is small and
the abstraction is perfectly accurate. The burst example checks if events appear
according to a complex pattern. In the abstraction we loose accuracy because the
starting point of a burst is not accessible by last# after a gap. A similar problem
occurs in the queue example where we use a complex data domain to develop
a queue along an event stream. If last# produces 
 after a gap all information
about the queue before the gap is lost. For variable-period the abstraction is
not perfectly accurate, because the delay is used to generate events periodically
depending on an external input. This gets even worse for the self-updating queue
where complex computations are performed depending on events generated by a
delay. Surprisingly, the finite-queue is again perfectly accurate, because the size
of the queue is limited in a way that eliminates the inaccuracy of the abstraction
in this particular example.
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7 Conclusion

By replacing the basic operators of TeSSLa with abstract counterparts, we
obtained a framework where properties and analyses can be specified with respect
to complete traces and automatically evaluated for partially known traces. We
have shown that these abstract operators can be encoded in TeSSLa, allowing
existing evaluation engines to be reused. This is particularly useful as TeSSLa
comprises a very small core language suitable for implementation in soft- as well
as hardware. Using the example of sliding windows, we demonstrated how com-
plex data structures like queues can be abstracted. Using finite abstractions, our
approach even facilitates using complex data structures when only limited mem-
ory is available. Evaluating the abstract specification typically only increases the
computational cost by a constant factor. In particular, if a concrete specification
can be monitored in linear time (in the size of the trace) its abstract counterpart
can be as well. Finally, we illustrated the practical feasibility of our approach by
an empirical evaluation using the freely available TeSSLa engine.
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The images or other third party material in this chapter are included in the
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