
Assumption-Based Runtime Verification
with Partial Observability and Resets

Alessandro Cimatti, Chun Tian(B) , and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,ctian,tonettas}@fbk.eu

Abstract. We consider Runtime Verification (RV) based on Proposi-
tional Linear Temporal Logic (LTL) with both future and past temporal
operators. We generalize the framework to monitor partially observable
systems using models of the system under scrutiny (SUS) as assumptions
for reasoning on the non-observable or future behaviors of the SUS. The
observations are general predicates over the SUS, thus both static and
dynamic sets of observables are supported. Furthermore, the monitors are
resettable, i.e. able to evaluate any LTL property at arbitrary positions of
the input trace (roughly speaking, [[u, i |= ϕ]] can be evaluated for any u
and i with the underlying assumptions taken into account). We present a
symbolic monitoring algorithm that can be efficiently implemented using
BDD. It is proven correct and the monitor can be double-checked by
model checking. As a by-product, we give the first automata-based mon-
itoring algorithm for Past-Time LTL. Beside feasibility and effectiveness
of our approach, we also demonstrate that, under certain assumptions
the monitors of some properties are predictive.

1 Introduction

Runtime Verification (RV) [15,26] as a lightweight verification technique, aims at
checking whether a run of a system under scrutiny (SUS) satisfies or violates a
given correctness specification (or monitoring property). Given any monitoring
property, the corresponding runtime monitor takes as input an execution (i.e. finite
prefix of a run, or finite word) and outputs a verdict for each input letter (or state).

The applicability of RV techniques on black box systems for which no system
model is at hand, is usually considered as an advantage over other verification
techniques like model checking. However, as systems are often partially observ-
able, this forces one to specify the monitoring property in terms of the external
interface of the SUS and diagnosis condition on its internals must be reflected
in input/output sequence with an implicit knowledge about the SUS behavior.
For example, the sequence to verify that an embedded system does not fail dur-
ing the booting phase may involve observing that an activity LED blinks until
it becomes steady within a certain amount of time; the booting failure is not

This work has received funding from European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No. 700665 (Project CITADEL).

c© The Author(s) 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 165–184, 2019.
https://doi.org/10.1007/978-3-030-32079-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_10&domain=pdf
http://orcid.org/0000-0002-2777-9443
https://doi.org/10.1007/978-3-030-32079-9_10

166 A. Cimatti et al.

Fig. 1. Traditional RV (left) v.s. ABRV with partial observability & resets (right)

directly observable and the sequence assumes that the LEDs are not broken. In
practice, one almost always knows something about the SUS. This information
can be derived, for example, from models produced during the system design, or
from the interaction with operators (person) of the system. Such information can
be leveraged to monitor properties on unobservable parts of the SUS, assuming
it behaves the same as specified by its model.

In this paper, we consider the RV problem for Propositional Linear Temporal
Logic (PLTL or LTL) with both future and past temporal operators [28]. We
extend a traditional RV approach where the monitor synthesis is based on a
black-box specification of the system (Fig. 1, on the left) to the practical case
where the property to monitor refers to some internal unobservable part of the
SUS (Fig. 1, on the right). In order to cope with the partial observability of
the SUS, we rely on certain assumption on its behavior, which is expressed
in (symbolic) fair transition systems in our framework. Essentially the monitor
output in our RV framework can be: the specification is satisfied (�a) or violated
(⊥a) under the assumption; the SUS violates its assumption (×); or unknown
(?) otherwise. The output of the monitor depends on the knowledge that can
be derived from the partial observations of the system and the semantics of RV
is extended to consider all infinite runs of the SUS having the same observed
finite execution as prefixes. As for predictive semantics [25,36], by considering
the assumption during the synthesis of runtime monitors, the resulting monitors
may obtain more precise results: (1) conclusive verdicts could be given on shorter
execution prefixes; (2) conclusive verdicts may be obtained from properties that
are in general non-monitorable (without assumption).

We also generalize the RV framework to encompass resettable monitors. In
addition to the observations from SUS, a resettable monitor also takes as input
reset signals that can change the reference time for the evaluation of the spec-
ification without losing the observation history. Consider the case where the
monitor is currently evaluating a property ϕ from the initial position (as done
in the traditional case and denoted by [[u, 0 |= ϕ]]). Upon a sequence u of obser-
vations, receiving as next input a reset, together with a new observation a, the
monitor will evaluate ϕ from the last position. Taking one more observation b
but without reset, the monitor will evaluate ϕ still in the previous position. In
general, the monitor can evaluate ϕ at any position i (denoted by [[u, i |= ϕ]]) as

Assumption-Based RV with Partial Observability and Resets 167

long as a reset is sent to the monitor with the observation at position i in the
sequence u. We remark that in this framework if the properties are evaluated
under assumptions or contain past operators, the observations before the reset
may contribute to the evaluation of the property in the new position.

The motivation for introducing resettable monitors is twofold. First, most
monitors based on LTL3-related semantics are monotonic: once the monitor has
reached conclusive true (�) or false (⊥), the verdict will remain unchanged for all
future inputs, rendering them useless from now on. However, when a condition
being monitored occurs (e.g. a fault is detected), and necessary countermeasures
(e.g. reconfiguration) have been taken, we want the monitoring process to provide
fresh information. Given that the SUS (and maybe also other monitors) is still
running, it would be desirable to retain the beliefs of the current system state.
The monitor after reset will be evaluating the property at the current reference
time, without losing the knowledge of the past. Hence, our reset is different from
the simple monitor restart mechanisms found in most RV tools: our monitors
keep in track the underlying assumptions and memorize all notable events ever
happened in the past, whilst the monitor restart is too coarse in that it wipes out
the history, and may thus lose fundamental information. Second, the concept of
reset significantly enhances the generality of the formal framework. For example,
by issuing the reset signal at every cycle, we capture the semantics of Past-Time
LTL, i.e. we monitor [[u, |u| − 1 |= ϕ]] where ϕ is evaluated with reference to the
time point of the most recent observation. As a by-product, this results in the
first automata-based monitoring algorithm for Past-Time LTL.

As an example, consider a property ϕ = G¬p, which means that p never
occurs, with an assumption K stating that “p occurs at most once.” For every
sequence u that contains p, the monitor should report a violation of the property
(independently of the assumption). After a violation, if the monitor is reset, given
the assumption K on the occurrence of p, the monitor should predict that the
property is satisfied by any continuation. However, this requires that the reset
does not forget that a violation already occurred in the past. Should the SUS
produce a trace violating the assumption, where p occurs twice at i and at j > i,
the assumption-based monitor will output “×” at j.

We propose a new algorithm for assumption-based monitor synthesis with
partial observability and resets. It naturally extends the LTL3 RV approach [4].
Our work is based on a symbolic translation from LTL to ω-automata, used
also by nuXmv model checker. Using symbolic algorithms, assumptions can
be easily supported by (symbolically) composing the ω-automata with a system
model representing the assumptions. The algorithm explores the space of beliefs,
i.e. the sets of SUS states compatible with the observed signals (traces). The
symbolic computation of forward images naturally supports partially observed
inputs. Finally, the support of resettable monitors exploits some properties of
the symbolic translation from LTL to ω-automata.

The new RV approach has been implemented on top of the nuXmv model
checker [8]. We have evaluated our approach on a number of benchmarks showing
its feasibility and applicability and the usefulness of assumptions. Beside the

168 A. Cimatti et al.

correctness proof, we have also used the nuXmv model checker to verify the
correctness and the effectiveness of the synthesized monitors.

The rest of this paper is organized as follows. Preliminaries are presented
in Sect. 2. In Sect. 3 our extended RV framework is presented. The symbolic
monitoring algorithm and its correctness proof are given in Sect. 4. In Sect. 5 we
describe implementation details and the experimental evaluation. Some related
work is discussed in Sect. 6. Finally, in Sect. 7, we make conclusions and discuss
future directions.

2 Preliminaries

Let Σ be a finite alphabet. A finite word u (or infinite word w) over Σ is a finite
(or countably infinite) sequence of letters in Σ, i.e. u ∈ Σ∗ and w ∈ Σω. Empty
words are denoted by ε. ui denotes the zero-indexed ith letter in u (i ∈ N here
and after), while ui denotes the sub-word of u starting from ui. |u| is the length
of u. Finally, u · v is the concatenation of a finite word u with another finite (or
infinite) word v.

Linear Temporal Logic. Let AP be a set of Boolean variables, the set of
Propositional Linear Temporal Logic (LTL) [28] formulae, LTL(AP), is induc-
tively defined as

ϕ ::= true
∣
∣ p

∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ Yϕ

∣
∣ ϕSϕ

with p ∈ AP . Here X stands for next, U for until, Y for previous, and S for since.
Other logical constants and operators like false, ∧, → and ↔ are used as syntac-
tic sugars with the standard meaning. The following abbreviations for tempo-
ral operators are also used: Fϕ =̇ trueUϕ (eventually), Gϕ =̇ ¬F¬ϕ (globally),
Oϕ =̇ true Sϕ (once), Hϕ =̇ ¬O¬ϕ (historically). Additionally, Xn p denotes a
sequence of n nested unary operators: XX · · ·X p; similar for Yn p.

The semantics of LTL formulae over an infinite word w ∈ (2AP)ω is given
below:

w, i |= true
w, i |= p ⇔ p ∈ wi

w, i |= ¬ϕ ⇔ w, i
|= ϕ

w, i |= ϕ ∨ ψ ⇔ w, i |= ϕ ∨ w, i |= ψ

w, i |= Xϕ ⇔ w, i + 1 |= ϕ

w, i |= ϕUψ ⇔ ∃k. i � k ∧ w, k |= ψ ∧ ∀j. i � j < k ⇒ w, j |= ϕ

w, i |= Yϕ ⇔ 0 < i ∧ w, i − 1 |= ϕ

w, i |= ϕSψ ⇔ ∃k. k � i ∧ w, k |= ψ ∧ ∀j. k < j � i ⇒ w, j |= ϕ

We write w |= ϕ for w, 0 |= ϕ and L(ϕ) =̇ {w ∈ (2AP)ω | w |= ϕ} for the language
(or the set of models) of ϕ. Two formulae φ and ψ are equivalent, φ ≡ ψ, iff
L(φ) = L(ψ).

Assumption-Based RV with Partial Observability and Resets 169

Boolean Formulae. Let B = {�,⊥} denote the type of Boolean values, a set
of Boolean formulae Ψ(V) over a set of propositional variables V = {v1, . . . , vn},
is the set of all well-formed formulae (wff) [1] built from variables in V , propo-
sitional logical operators like ¬ and ∧, and parenthesis. Henceforth, as usual in
symbolic model checking, any Boolean formula ψ(V) ∈ Ψ(V) is used to denote
the set of truth assignments that make ψ(V) true. More formally, following
McMillan [30], a Boolean formula ψ(V) as a set of truth assignments, is the same
thing as a λ-function of type B

|V | → B, which takes a vector of these variables
and returns a Boolean value, i.e. λ(v1, . . . , vn). ψ(v1, . . . , vn) or λV. ψ(V), assum-
ing a fixed order of variables in V . Thus Ψ(V) itself has the type (B|V | → B) → B.
Whenever V is clear from the context, we omit the whole λ prefix. Therefore,
set-theoretic operations such as intersection and union are interchangeable with
logical connectives on sets of Boolean formulae.

Fair Kripke Structures. The system models, assumptions and ω-automata
used in our RV framework are expressed in a symbolic presentation of Kripke
structures called Fair Kripke Structure (fks) [23] (or Fair Transition Sys-
tem [29]):

Definition 1. Let V be a set of Boolean variables, and V ′ =̇ {v′ | v ∈ V } be the
set of next state variables (thus V ∩V ′ = ∅). An fks K = 〈V,Θ, ρ,J 〉 is given by
V , a set of initial states Θ(V) ∈ Ψ(V), a transition relation ρ(V, V ′) ∈ Ψ(V ∪V ′),
and a set of Boolean formulae J = {J1(V), . . . , Jk(V)} ⊆ Ψ(V) called justice
requirements.

Given any fks K =̇ 〈V,Θ, ρ,J 〉, a state s(V) of K is an element in 2V rep-
resenting a full truth assignment over V , i.e., for every v ∈ V , v ∈ s if and only
if s(v) = �. For example, if V = {p, q}, a state {p} means p = � and q = ⊥.
Whenever V is clear from the context, we write s instead of s(V). The transition
relation ρ(V, V ′) relates a state s ∈ 2V to its successor s′ ∈ 2V ′

. We say that s′

is a successor of s (and that s is a predecessor of s′) iff s(V)∪ s′(V ′) |= ρ(V, V ′).
For instance, if ρ(V, V ′) = (p ↔ q′), s′(V ′) = {q′} is a successor of s(V) = {p},
since s(V) ∪ s′(V ′) = {p, q′} and {p, q′} |= (p ↔ q′). A path in K is an
infinite sequence of states s0, s1, . . . where s0(V) |= Θ and, for all i ∈ N,
si(V) ∪ si+1(V ′) |= ρ(V, V ′). The forward image of a set of states ψ(V) on
ρ(V, V ′) is a Boolean formula fwd(ψ, ρ)(V) =̇ (∃V. ρ(V, V ′)∧ψ(V))[V/V ′], where
[V/V ′] substitutes all (free) variables from V ′ to V .

A fair path of K is a path s0s1 . . . ∈ Σω of K such that, for all i we have
si ∪ s′

i+1 |= ρ, and, for all J ∈ J , for infinitely many i, we have that si |= J .
We denote by FP ρ

J (ψ) the set of fair paths starting from ψ (i.e., such that
s0 |= ψ). The language L(K) is the set of initial fair paths, i.e. FP ρ

J (Θ) and
L(K) is the set of finite prefixes of paths in L(K). A state s is fair iff it occurs
in a fair path. The set of all fair states, denoted by FK , can be computed by
standard algorithms like Emerson-Lei [14]. Finally, let K1 = 〈V1, Θ1, ρ1,J1〉
and K2 = 〈V2, Θ2, ρ2,J2〉, the synchronous product of K1 and K2 is defined as
K1 ⊗ K2 =̇ 〈V1 ∪ V2, Θ1 ∧ Θ2, ρ1 ∧ ρ2,J1 ∪ J2〉.

170 A. Cimatti et al.

Translating LTL to ω-Automata. Our work relies on a linear-time symbolic
translation from LTL to ω-automata. The algorithm traces its roots back to
[7,10] where only future operators are supported, with additional support of
past operators [17]. A set of propositional elementary variables of ϕ, denoted by
el(ϕ), is used for converting any LTL formula into an equivalent propositional
formula. It can be defined recursively as follows (where p ∈ V , φ and ψ are
sub-formulae of ϕ):

el(true) = ∅, el(Xφ) = {xφ} ∪ el(φ),
el(p) = {p}, el(φUψ) = {xφUψ} ∪ el(φ) ∪ el(ψ),

el(¬φ) = el(φ), el(Yφ) = {yφ} ∪ el(φ),
el(φ ∨ ψ) = el(φ) ∪ el(ψ), el(φSψ) = {yφSψ} ∪ el(φ) ∪ el(ψ).

For any LTL formula ϕ, el(ϕ) = el(¬ϕ), and ϕ can be rewritten into a Boolean
formula χ(ϕ) using only variables in el(ϕ). Below is the full definition of χ(·):

χ(ϕ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ forϕ an elementary variable in el(·),
¬χ(φ) forϕ = ¬φ,

χ(φ) ∨ χ(ψ) forϕ = φ ∨ ψ,

xφ (orxφUψ) forϕ in forms of Xφ(orX (φUψ), resp.),
yφ (oryφSψ) forϕ in forms of Yφ(orY(φSψ), resp.) .

(1)

To apply (1), all sub-formulae of ϕ leading by U and S must be wrapped within
X and Y, respectively. This can be done (if needed) by using the following
Expansion Laws :

ψUφ ≡ φ ∨ (ψ ∧ X(ψUφ)), ψ Sφ ≡ φ ∨ (ψ ∧ Y(ψ Sφ)). (2)

For instance, χ(pUq) = q ∨ (p ∧ xpUq), and χ′(pUq) = q′ ∨ (p′ ∧ x′
pUq).

The fks translated from ϕ is given by Tϕ =̇ 〈Vϕ, Θϕ, ρϕ,Jϕ〉, where
Vϕ =̇ el(ϕ).

The initial condition Θϕ is given by Θϕ =̇χ(ϕ) ∧
∧

yψ∈ el(ϕ)

¬yψ. Here each yψ ∈

el(ϕ) has an initial false assignment in Θϕ. This is essentially a consequence of
LTL semantics for past operators, i.e. for any word w and formula ψ, w, 0
|= Yψ.

The transition relation ρϕ (as a formula of variables in el(ϕ)∪el′(ϕ)) is given
by

ρϕ =̇
∧

xψ∈ el(ϕ)

(

xψ ↔ χ′(ψ)
) ∧

∧

yψ∈ el(ϕ)

(

χ(ψ) ↔ y′
ψ

)

. (3)

Intuitively, the purpose of ρϕ is to relate the values of elementary variables to
the future/past values: for any ψ ∈ el(ϕ), the current value of ψ is memorized by
the value of yψ in next state; and the next value of ψ is guessed by the current
value of xψ.

The justice set Jϕ is given by Jϕ =̇ {χ(ψ U φ) → χ(φ) | xψUφ ∈ el(ϕ)}.
It guarantees that, whenever a sub-formula ψ U φ is satisfied, eventually φ is

Assumption-Based RV with Partial Observability and Resets 171

satisfied. Thus an infinite sequence of ψ cannot be accepted by the fks translated
from ψUφ.

Notice that Tϕ and T¬ϕ only differ at their initial conditions Θϕ and Θ¬ϕ.

3 The Generalized RV Framework

Now we formally present the generalized RV framework which extends the tradi-
tional RV with three new features: assumptions, partial observability and resets.

Let ϕ ∈ LTL(AP) be a monitoring property1, K =̇ 〈VK , ΘK , ρK ,JK〉 be an
fks representing the assumptions under which ϕ is monitored. Note that K can
be a detailed model of the SUS or just a simple constraint over the variables in
AP . In general, we do not have any specific assumption on the sets AP and VK ;
although it is quite common that AP ⊆ VK , VK can be even empty if there is
no assumption at all. Let V =̇ VK ∪ AP .

We say that the SUS is partially observable when the monitor can observe
only a subset O ⊆ V of variables (O is called the observables). Thus, the input
trace of the monitor contains only variables from O. However, it is not required
that all variables in O must be observable in each input state of the input trace.
For instance, if O = {p, q}, it could be imagined that an observation reads the
value of p holds but do not know anything about q, or vice versa. It is even
possible that an observation does not know anything about p and q, except
for knowing that the SUS has moved to its next state. Thus, in general, an
observation is a set of assignments to O. If O = V and the observation contains
a single assignment to V , then we speak of full observability.

As recalled in Sect. 2, this can be represented by a Boolean formula over
O. Thus, in our framework, the monitor takes as input a sequence of formulas
over O. For example, if the input trace is μ = p · q · �, then μ represents the
following sequence of assignments: {{p}, {p, q}}·{{q}, {p, q}}·{∅, {p}, {q}, {p, q}}
(recall that, knowing nothing about p and q actually means all 4 possible value
assignments are possible, just the monitor does not know which one actually
happened in the SUS).

Now we present the ABRV-LTL semantics as an extension of Leucker’s LTL3:

Definition 2 (ABRV-LTL). Let K =̇ 〈VK , ΘK , ρK ,JK〉 be an fks, ϕ ∈
LTL(AP), μ ∈ Ψ(O)∗ be a finite sequence of Boolean formulae over O ⊆
VK ∪ AP , and

LK(μ) =̇
{

w ∈ L(K)
∣
∣ ∀i < |μ|. wi(VK ∪ AP) |= μi(O)

}

(4)

be the set of runs in K which are compatible with μ. The ABRV-LTL semantics
of ϕ over μ under the assumption K, denoted by [[·]]K4 ∈ B4 =̇ {�a,⊥a, ?,×}, is
defined as

[[μ, i |= ϕ]]K4 =̇

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

×, if LK(μ) = ∅
�a, if LK(μ)
= ∅ ∧ ∀w ∈ LK(μ). w, i |= ϕ

⊥a, if LK(μ)
= ∅ ∧ ∀w ∈ LK(μ). w, i |= ¬ϕ

?, otherwise.

(5)

1 Here AP ⊆ Vϕ (the set of variables in Tϕ).

172 A. Cimatti et al.

ABRV-LTL has four verdicts: conclusive true (�a), conclusive false (⊥a),
inconclusive (?) and out-of-model (×). Due to partial observability, the finite
trace μ is actually a set of finite traces over O, where each ui of each u ∈ μ is
a full assignment of truths over O. When LK(μ) = ∅, K is unable to “follow”
the behaviour shown from the SUS, hence the fourth verdict out-of-model (×)
comes.

The sequence of observations is paired with a sequence of Boolean reset
signals. Intuitively, if the monitor receives a reset at cycle i, then it starts to
evaluate the truth of ϕ at i (and does so until the next reset). Formally, the
monitor receives inputs in Ψ(O)×B, the cross-product between formulas over the
observables and the reset values. Thus u = (μ0, res0), (μ1, res1), . . . , (μn, resn).
We denote by res(u) and obs(u) the projection of u respectively on the reset
and observation components, i.e. res(u) = res0, res1, . . . , resn and obs(u) =
μ0, μ1, . . . , μn.

Definition 3 (ABRV with Partial Observability and Resets). Let K, ϕ and
O have the same meaning as in Definition 2, Let u ∈ (Ψ(O) × B)∗ be a finite
sequence of observations paired with resets. The problem of Assumption-based
Runtime Verification (ABRV) w.r.t. K, ϕ and O is to construct a function
MK

ϕ : (Ψ(O) × B)∗ → B4 such that

(6)

where (the most recent reset) is the maximal i such that .

Fig. 2. LTL3 lattice (left) v.s. ABRV-LTL lattice (right)

Here are some basic properties of the monitor defined in Definition 3. Let
(B4,�) be a lattice with the partial order ? � �a/⊥a � ×, shown in Fig. 2
(with a comparison to the LTL3 lattice). It is not hard to see that, if there is no
reset in the inputs, the monitor MK

ϕ is always mono-increasing, i.e. MK
ϕ (u) �

MK
ϕ (u · (ψ,⊥)). On the other hand, the monitor is anti-monotonic w.r.t. the

assumption, i.e. if L(K2) ⊆ L(K1), then MK1
ϕ (u) � MK2

ϕ (u). We omit the
proofs of above properties due to page limits, instead the related experiments
that use model checkers to prove them on the generated monitors are briefly
reported in Sect. 5 with two samples of K2.

If K1 is taken as an empty fks, i.e. L(K1) = (2O)ω, we say that the assump-
tion K2 is valuable for ϕ if there exists u ∈ (Ψ(O)×{⊥})∗ such that MK1

ϕ (u) = ?

Assumption-Based RV with Partial Observability and Resets 173

and MK2
ϕ (u) = �a or ⊥a. This can happen when the monitor MK2

ϕ is diagnos-
tic, deducing some non-observable values from the assumption and observations,
or when the monitor MK2

ϕ is predictive, deducing some future facts from the
assumption and observations.

Monitoring Past-time LTL. If the monitor is reset on each input state, i.e.
∀i.res(ui) = �, then MK

ϕ (u) = [[obs(u), |u| − 1]]K4 . Furthermore, if ϕ has only
past operators (Y and S), this monitor actually follows the (finite-trace) seman-
tics (|=p) of Past-Time LTL [22], where [[u |=p ϕ]] =̇ [[u, |u|−1 |= ϕ]]K4 (for |u| > 0).
The corresponding RV problem (under full observability, without assumptions) is
usually handled by rewriting-based approaches or dynamic programming. Using
our BDD-based algorithm now it is possible to generate an automaton monitor-
ing Past-Time LTL.

4 The Symbolic Algorithm

Now we present Algorithm 1 for the RV problem given in Definition 3. This
algorithm leverages Boolean formulae and can be effectively implemented in
Binary Decision Diagrams (BDD) [6]. A monitor is built from an assumption
K =̇ 〈VK , ΘK , ρK ,JK〉 and an LTL property ϕ ∈ LTL(AP). Then it can be used
to monitor any finite trace u ∈ (Ψ(O) × B)∗, where O ⊆ VK ∪ AP is the set of
observables.

In the monitor building phase (L2–5), the LTL to ω-automata translation
algorithm (c.f. Sect. 2) is called on ϕ and ¬ϕ for the constructions of fks Tϕ

and T¬ϕ. The set of fair states of K ⊗ Tϕ and of K ⊗ T¬ϕ are computed as FK
ϕ

and FK
¬ϕ. Starting from L6, the purpose is to update two belief states rϕ and

r¬ϕ according to the input trace u. If we imagine K ⊗ Tϕ and K ⊗ T¬ϕ as two
NFAs, then rϕ and r¬ϕ are the sets of current states in them. They are initialized
with the initial conditions of K ⊗ Tϕ and K ⊗ T¬ϕ (restricted to fair states).
Indeed, their initial values are given by a chain of conjunctions (L6–7). They
are then intersected with the first input state u0 (L9–10). For the remaining
inputs (if they exist), when there is no reset (L13–14), the purpose is to walk
simultaneously in K ⊗ Tϕ and K ⊗ T¬ϕ by computing the forward images of rϕ

and r¬ϕ with respect to the current input state and the set of fair states.
If any input state comes in with a reset signal, now the monitor needs to

be reset (L16–18). Our most important discovery in this paper is that, a simple
rϕ ∨ r¬ϕ at L16 just did the work. The resulting Boolean formula r actually
contains the history of the current input trace and the current “position” in the
assumption. (c.f. the correctness proof below for more details.) Then the forward
image computed in 17–18 is for shifting the current values of all elementary
variables by one step into the past, then the conjunction of χ(ϕ) (or χ(¬ϕ), resp.)
makes sure that from now on the “new” automata will accept ϕ (or ¬ϕ, resp.)
from the beginning, just like in L9–10. We cannot use Θϕ or Θ¬ϕ here, because
they contain the initial all-false assignments of the past elementary variables,
which may wrongly overwrite the history stored in r, as some of these variables

174 A. Cimatti et al.

Algorithm 1: The symbolic (offline) monitor
1 function symbolic monitor(K =̇ 〈VK , ΘK , ρK , JK〉, ϕ(AP), u ∈ (Ψ(O) × B)∗)
2 Tϕ =̇ 〈Vϕ, Θϕ, ρϕ, Jϕ〉 ←− ltl translation(ϕ);
3 T¬ϕ =̇ 〈Vϕ, Θ¬ϕ, ρϕ, Jϕ〉 ←− ltl translation(¬ϕ);

4 FK
ϕ ←− fair states(K ⊗ Tϕ);

5 FK
¬ϕ ←− fair states(K ⊗ T¬ϕ);

6 rϕ ←− ΘK ∧ Θϕ ∧ FK
ϕ ; /* no observation */

7 r¬ϕ ←− ΘK ∧ Θ¬ϕ ∧ FK
¬ϕ;

8 if |u| > 0 then /* first observation */

9 rϕ ←− rϕ ∧ obs(u0);
10 r¬ϕ ←− r¬ϕ ∧ obs(u0);

11 for 1 � i < |u| do /* more observations */

12 if res(ui) = ⊥ then /* no reset */

13 rϕ ←− fwd(rϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
ϕ ;

14 r¬ϕ ←− fwd(r¬ϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
¬ϕ;

15 else /* with reset */

16 r ←− rϕ ∨ r¬ϕ;

17 rϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(ϕ) ∧ obs(ui) ∧ FK
ϕ ;

18 r¬ϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(¬ϕ) ∧ obs(ui) ∧ FK
¬ϕ;

19 if rϕ = r¬ϕ = ⊥ then return ×;
20 else if rϕ = ⊥ then return ⊥a;
21 else if r¬ϕ = ⊥ then return �a;
22 else return ?;

may not be false any more. The whole reset process completes here, then the
current input observation obs(ui) is finally considered and the new belief states
must be restrict in fair states. Finally (L19–22) the monitor outputs a verdict in
B4, depending on four possible cases on the emptiness of rϕ and r¬ϕ. This is in
line with ABRV-LTL given in Definition 2.

Sample Run. Suppose we monitor ϕ = pU q (fully observable) assuming p
= q.
Here O = {p, q}, Vϕ = {p, q, x =̇xpUq}, Θϕ = q ∨ (p ∧ x), Θ¬ϕ = ¬(q ∨ (p ∧ x)),
ρϕ = x ↔ (q′ ∨(p′ ∧x′)), and K = 〈O,�, p′
= q′, ∅〉. (Jϕ and J¬ϕ can be ignored
since all states are fair, i.e. FK

ϕ = FK
¬ϕ = �.) Let u = {p}{p} · · · {q}{q} · · · (no

reset). Initially (L6–7) rϕ = Θϕ, r¬ϕ = Θ¬ϕ, taking the initial state {p} they
become (L9–10) rϕ = Θϕ ∧ (p ∧ ¬q) ≡ p ∧ ¬q ∧ x, and r¬ϕ = Θ¬ϕ ∧ (p ∧
¬q) ≡ p ∧ ¬q ∧ ¬x. Since both rϕ and r¬ϕ are not empty, the monitor outputs
? (if ends here.) If the next state is still {p}, the values of rϕ and r¬ϕ actually
remain the same, because ρϕ ∧ (p′ ∧ ¬q′) ≡ x ↔ x′ and L13–14 does not change
anything. Thus the monitor still outputs ?, until it received {q}: in this case
ρϕ ∧ (¬p′ ∧ q′) ≡ x ↔ �, and fwd(r¬ϕ, ρϕ)(Vϕ)∧ (¬p′ ∧ q′) (L14) is unsatisfiable,
i.e. r¬ϕ = ⊥, while rϕ is still not empty, thus the output is �a. Taking more
{q} does not change the output, unless the assumption p
= q is broken (then
rϕ = r¬ϕ = ⊥, the output is × and remains there, unless the monitor were
reset).

Assumption-Based RV with Partial Observability and Resets 175

Online Monitoring. Algorithm 1 returns a single verdict after processing the
entire input trace. This fits into Definition 3. However, runtime monitors are
usually required to return verdicts for each input state and “should be designed
to consider executions in an incremental fashion” [26]. Our algorithm can be
easily modified for online monitoring, it outputs one verdict for each input state.
It is indeed incremental since rϕ and r¬ϕ are updated on each input state, and
the time complexity of processing one input state is only in terms of the size of
K and ϕ, thus trace-length independent [12]. Space complexity is also important,
as a monitor may eventually blow up after storing enough inputs. Our algorithm
is trace non-storing [31] with bounded memory consumption.

Fig. 3. The monitor of G¬p under
assumption G(p → ¬XF p)

Example. Let us consider again the exam-
ple proposed in Sect. 1: the LTL property
ϕ = G¬p (p never occurs) under the assump-
tion K stating that “p occurs at most once”
(expressed in LTL: G(p → XG¬p)). Figure 3
shows the automaton that results from pre-
computing the states that Algorithm 1 can
reach, given ϕ and K. Each state reports the
monitor output (N stands for ⊥a, Y for �a

and X for ×), while inputs are represented
on the edges (R stands for reset). Starting
from state 1, the monitors goes and remains
in state 2 with the output ? as long as it
reads ¬p independently of the reset; it goes
to state 3 with output ⊥ as soon as it reads
p (again independently of the reset); then,
either it goes to state 4 with output ⊥ while
still reading ¬p without reset; as soon as a
reset is received it goes to state 5 with output
� where it remains while reading ¬p; from
states 3–5, whenever the monitor receives p
(which would be the second occurrence vio-
lating the assumption), it goes to the sink
state 0 with output ×.

Now we show the correctness of
Algorithm 1:

Theorem 1. The function symbolic monitor given in Algorithm1 correctly
implements the monitor function MK

ϕ (·) given in Definition 3.

Proof (sketch). Fix a trace u ∈ (2O ×B)∗, we define the following abbreviations:

u � w ⇔ ∀i. i < |u| ⇒ wi(Vk ∪ AP) |= obs(ui)(O), (7)
LK

ϕ (u) =̇
{

w ∈ L(K) | (w,mrr(u) |= ϕ) ∧ u � w
}

, (8)

LK
ϕ (u) =̇

{

v | ∃w. v · w ∈ LK
ϕ (u) ∧ |v| = |u|}. (9)

176 A. Cimatti et al.

Intuitively, if u � w holds, w is an (infinite) run of the fks K compatible with the
input trace u; LK

ϕ (u) is the set of (infinite) u-compatible runs of K which satisfies
ϕ w.r.t. the last reset position; And LK

ϕ (u) is the set of |u|-length prefixes from
LK

ϕ (u).
It is not hard to see that, Definition 3 can be rewritten in terms of LK

ϕ (u)
and LK

¬ϕ(u):

MK
ϕ (u) = [[obs(u),mrr(u) |= ϕ]]K4 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

×, if LK
ϕ (u) = ∅ ∧ LK

¬ϕ(u) = ∅,

�a, if LK
ϕ (u)
= ∅ ∧ LK

¬ϕ(u) = ∅,

⊥a, if LK
ϕ (u) = ∅ ∧ LK

¬ϕ(u)
= ∅,

?, if LK
ϕ (u)
= ∅ ∧ LK

¬ϕ(u)
= ∅.

Now the proof of Theorem1 can be reduced to the following sub-goals:

LK
ϕ (u) = ∅ ⇒ rϕ(u) = ∅ and LK

¬ϕ(u) = ∅ ⇒ r¬ϕ(u) = ∅. (10)

Equation (10) trivially holds when u = ε, i.e. |u| = 0. Below we assume
|u| > 0. We first prove the invariant properties of rϕ and r¬ϕ: (c.f. L12–18 of
Algorithm 1)

rϕ(u) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(u) |= ϕ) ∧ u � w ∧ w|u|−1 = s},

r¬ϕ(u) = {s | ∃w ∈ L(K ⊗ T¬ϕ). (w,mrr(u) |= ¬ϕ) ∧ u � w ∧ w|u|−1 = s}
(11)

Intuitively, rϕ(u) is the set of last states of u-compatible runs in K⊗Tϕ, satisfying
ϕ w.r.t. the last reset position. Now we prove (11) by induction:

If |u| = 1, then rϕ = ΘK ∧Θϕ ∧FK,ϕ ∧obs(u0). (mrr(u) is not used.) Thus,
rϕ contains all states s such that ∃w ∈ L(K ⊗ Tϕ), (w, 0 |= ϕ), u0 � w0 and
w0 = s.

If |u| > 1 and res(un) = ⊥, let |u| = n + 1 and u = v · un with |v| > 0.
Here mrr(u) = mrr(v). By induction hypothesis, rϕ(v) = {s | ∃w ∈ L(K ⊗
Tϕ). (w,mrr(v) |= ϕ)∧ v � w ∧wn−1 = s}. Thus rϕ(u) = fwd(rϕ(v), ρK ∧ ρϕ)∧
obs(un) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(v) |= ϕ) ∧ v · un � w ∧ wn = s}. Same
arguments for r¬ϕ(u).

If |u| > 1 and res(un) = �, let |u| = n + 1 and u = v · un with |v| > 0. Here
mrr(u) = n. By induction hypothesis, we have

rϕ(v) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(v) |= ϕ) ∧ v � w ∧ wn−1 = s},

r¬ϕ(v) = {s | ∃w ∈ L(K ⊗ T¬ϕ). (w,mrr(v) |= ¬ϕ) ∧ v � w ∧ wn−1 = s}.

Here, if we take the union of rϕ(v) and r¬ϕ(v), the two conjugated terms
(w,mrr(v) |= ϕ) and (w,mrr(v) |= ¬ϕ) will be just neutralized, i.e., rϕ(v) ∨
r¬ϕ(v) = {s | ∃w ∈ L(K ⊗T 0

ϕ). v � w ∧wn−1 = s}, where T 0
ϕ = 〈Vϕ, Θ0

ϕ, ρϕ,Jϕ〉
and Θ0

ϕ =
∧

yp∈ el(ϕ)

¬yp. It can be seen that ∀w ∈ L(K ⊗ T 0
ϕ), n. (w, n |= ϕ) ⇔ (wn |=

Θ0
ϕ). Thus rϕ(u) = fwd(rϕ(v) ∨ r¬ϕ(v), ρK ∧ ρϕ) ∧ obs(un) ∧ χ(ϕ) = {s | ∃w ∈

Assumption-Based RV with Partial Observability and Resets 177

L(K ⊗ Tϕ). (w, n |= ϕ) ∧ (v · un � w) ∧ wn = s}. Same procedure for r¬ϕ(u),
thus (11) is proven.

To finally prove (10), we first unfold (8) into (9) and get LK
ϕ (u) = {v | ∃w. v ·

w ∈ L(K) ∧ (v · w,mrr(u) |= ϕ) ∧ u � v ∧ |v| = |u|}. If LK
ϕ (u) is empty, then by

(11) rϕ(u) must be also empty, simply because L(K ⊗ Tϕ) ⊆ L(K). This proves
the first part of (10), the second part follows in the same manner. ��

5 Experimental Evaluation

The RV approach presented in this paper has been implemented as an extension
of nuXmv [8] in which the BDD library is based on CUDD 2.4.1.1. Besides
the offline monitoring in nuXmv, it is also possible to synthesize the symbolic
monitors into explicit-state monitors as independent code in various languages
as online monitors without dependencies on nuXmv and BDD. The correctness
of generated explicit-state monitor code has been extensively tested by compar-
ing the outputs with those from the symbolic monitors, on a large set of LTL
properties and random traces.

The comparison of the baseline implementation (no assumption, no reset)
with other RV tools is not in the scope of this paper. However, a comparison
with the RV-Monitor [27] has been reported in our companion tool paper [9],
where our Java-based monitors are shown to be about 200x faster than RV-
Monitor at generation-time and 2-5x faster at runtime, besides the capacity of
generating monitors from long LTL formulae. As no other tool supports all our
extended RV features, here we only focus on experimental evaluations on the
usefulness and correctness of our ABRV approach.2

Tests on LTL Patterns. To show the feasibility and effectiveness of our
RV approach, we have generated monitors from a wide coverage of practical
specifications, i.e. Dwyer’s LTL patterns [13]3. To show the impact of assump-
tions, we generated two groups of monitors, with and without assumption. The
chosen assumption says that the transitions to s-states occur at most 2 times,
which can be expressed in LTL as ((¬s)W (sW ((¬s)W (sW (G¬s))))), where
W denotes weak until : ϕWψ =̇ (Gϕ) ∨ (ϕUψ) = ϕU (ψ ∨ Gϕ). Under this
assumption we found that, non-monitorable properties like G(p → Fs) now
become monitorable, i.e. the monitor may output conclusive verdicts on certain
inputs. This is because, if the transitions to s-state have already occurred 2
times, there should be no s any more in the remaining inputs. Thus whenever p
occurs, for whatever future inputs it is impossible to satisfy Fs, thus the prop-
erty is violated conclusively. Eight monitors (Pattern 25, 27, 40, 42, 43, 44, 45,
50) are found to be monitorable under this fairness assumption.
2 All test data, models and other artifacts for reproducing all experiments here are

available at https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz.
3 The latest version (55 in total) is available at http://patterns.projects.cs.ksu.edu/

documentation/patterns/ltl.shtml. We call them Pattern 0, 1, . . . , 54 in the same
order.

https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

178 A. Cimatti et al.

Fig. 4. The number of observations before a conclusive verdict with and w/o assump-
tion

On the other hand, under this assumption some patterns result in predictive
monitors, which output conclusive verdicts earlier than those without assump-
tions. For showing it, we generated 500 random traces (uniformly distributed),
each with 50 states, under the assumption (thus the monitor outputs cannot
be out-of-model). For each pair of monitors (with and without assumption), we
record two numbers of states before reaching a conclusive verdict. Whenever
the two numbers are the same, the related plot is omitted. In summary, fifteen
monitors (Pattern 25, 27, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 54) are
predictive, and five of them (Pattern 29, 37, 41, 49, 54) have more than 50 traces
showing the difference. Figure 4 shows, for example, the tests of Pattern 29 (s
responds to p after q until r) and 49 (s, t responds to p after q until r). The time
needed to run the tests on all traces is almost negligible (less than one second)
for each pattern.

The interesting traces (which show predictive verdicts) can be also obtained
by model checking on monitors generated into SMV models. Suppose we have
two monitors M1 (with assumption) and M2 (w/o assumption), and AV :=
(M1. concl ∧ ¬ M2. concl) (the assumption is valuable iff M1 has reached con-
clusive verdicts (�a, ⊥a or ×) while M2 has not), then the counterexample of
model-checking ¬F AV (AV cannot eventually be true) will be a trace show-
ing that the monitor M1 is predictive: ∅, {p, s}, ∅, s, p, ∅, Furthermore, it is
possible to find a trace such that the distance of conclusive outputs from the
two monitors is arbitrary large. For this purpose, we can setup a bounded
counter c, whose value only increases when AV is true and then verify if c
can reach a given maximum value, say, 10. By checking the invariance spec-
ification c < 10, the counterexample will be the desired trace. Similarly,
the monotonicity (G M. unknown ∨ (M. unknownU M. concl)), the correctness
((F M. true) → ϕ and (F M. false) → ¬ϕ), and the correctness of resets
(Xn(M. reset ∧ X(¬ M. resetU M. true)) → Xnϕ) of any monitor M gener-
ated from ϕ can also be checked in nuXmv. Details are omitted due to page
limits.

Assumption-Based RV with Partial Observability and Resets 179

Fig. 5. The factory

Tests on a Factory Model. The assumption used in previous tests may look
too artificial, so we present a real-world example taken from [16] and shown in
Fig. 5. It models a (simplified) assembly line in a factory, in which some empty
bottles need to pass three positions in the assembly line to have two ingredients
filled. The red ingredient is filled at position 0, while the green ingredient is filled
at position 1. In case of faults, either ingredient may not be correctly filled. The
goal is to make sure that all bottles at position 2 have both ingredients filled
successfully. There is a belt (the grey bottom line) moving all bottles to their
next positions, and the filling operations can only be done when the belt is not
moving. All variables in the model are Boolean: bottle present[] (with index
0–2) denotes the existence of a bottle at a position. Similarly, bottle ingr1[]
denotes the existence of the red ingredient in the bottle at a position, and
bottle ingr2[] for the green ingredient. Besides, move belt denotes if the belt
is moving, and new bottle denotes if there is a new bottle coming at position 0
before the belt starts to move. Finally, an unobservable variable fault denotes
the fault: whenever it happens, the current filling operations (if any) fail and the
corresponding ingredients are not filled into the bottle. (The related model files
are part of the downloadable artifacts.)

The basic requirement is that all bottles at position 2 have both ingre-
dients filled, if the belt is not moving. It can be expressed by safety
property G ((bottle present[2] ∧ ¬ move belt) → (bottle ingr1[2] ∧
bottle ingr2[2])) (whenever the belt is not moving and there is a bottle at posi-
tion 2, both ingredients are filled in that bottle). We found that, the monitor of
the same property, generated with the factory model as assumption, is predictive:
it outputs ⊥a almost immediately after the first fault happens, before the bottle
arrived at position 2. To see such a possible trace, again we used model checking.
By checking LTL specification ¬F AV where AV := (M1. concl ∧ ¬ M2. concl)
and M1 (M2) are monitors of the above safety property built with (without)
assumption, respectively. The counterexample shows one such trace: the fault
happens at state 4, and the filling of the red ingredient at position 0 failed at
position 1; the monitor with assumption outputs ⊥a at state 6, before the bottle
is moved to position 1, while the monitor without assumption can only output
⊥a at state 10, after the bottle is moved to position 2. This is because, any
unfilled bottle at position 0 or 1 will remain unfilled at position 2 under the
model, thus the monitor with assumption should have known the faults before
any unfilled bottle arrived at position 2, even if the fault itself is not directly

180 A. Cimatti et al.

observable. In practice, there may be more positions (and more ingredients) in
the assembly line, reporting the faults as early as possible may skip the rest of
filling operations of the faulty bottle (e.g. the bottle can be removed from the
assembly line by a separate recovery process) and potentially reduce the costs.

6 Related Work

The idea of leveraging partial knowledge of a system to improve monitorablity is
not altogether new. Leucker [25] considers an LTL3-based predictive semantics
LTLP , where, given a finite trace u, an LTL formula ϕ is evaluated on every
extension of u that are paths of a model P̂ of the SUS P. Our proposal is a
proper conservative extension of this work: in case of full observability, no reset,
if the system always satisfies the assumption, i.e. L(P) ⊆ L(P̂), our definition
coincides with [25]. As L(P) ⊆ L(P̂) is a strong assumption there, if it is violated,
the monitor output will be undefined, while we explicitly take that possibility
into account. On the other hand, partial observability is essential for extending
traditional RV approaches such that assumptions are really needed to evaluate
the property (not only for prediction). In fact, under full observability, if the
model P̂ is expressed in LTL, the monitor of [25] coincides with the monitor
for P̂ → φ given in [26]. Due to the partial observability, ABRV-LTL monitors
cannot be expressed in traditional RV approach (quantifiers over traces would
be necessary).

In another three-valued predictive LTL semantics [36], the assumption is
based on predictive words. Given a sequence u, a predictive word v of subse-
quent inputs is computed with static analysis of the monitored program and the
monitor output evaluates [[u · v |= ϕ]]3. The assumption used in our framework
can be also used to predict the future inputs, but can associate to each u an infi-
nite number of words. Thus our assumption-based RV framework is more general
than [36], even without partial observability and resets. On the other side, while
our assumptions can be violated by the system execution, the predictive word
of [36] is assured by static analysis.

The research of partial observability in Discrete-Event Systems is usually con-
nected with diagnosability [32] and predicability [18,19]. The presence of system
models plays a crucial role here, although technically speaking the support of
partial observation is orthogonal with the use of system models (or assumptions)
in the monitoring algorithm. Given a model of the system which includes faults
(eventually leading the system to a failure) and which is partially-observable
(observable only with a limited number of events or data variables), diagnosabil-
ity studies the problem of checking if the faults can be detected within a finite
amount of time. On the other hand, if we take an empty specification (true)
and use the system model as assumptions, then our monitors will be checking
if the system implementation is always consistent with its model—the monitor
only outputs �a and × in this case. This is in spirit of Model-based Runtime
Verification [2,38], sometimes also combined with extra temporal specifications
[34,35,37].

Assumption-Based RV with Partial Observability and Resets 181

Other work with partial observability appears in decentralised monitoring of
distributed systems [3,11], where an LTL formula describing the system’s global
behavior may be decomposed into a list (or tree) of sub-formulae according to
the system components, whose local behaviours are fully observable.

To the best of our knowledge, the concept of resettable monitors was never
published before. In general, if we do not consider assumptions or past operators,
restarting monitors for LTL is not an issue. For example, in [33], the authors
extend a runtime monitor for regular expressions with recovery. Comparing with
our work, it is specific to the given pattern and considers neither past operators,
nor the system model.

7 Conclusion

In this paper, we proposed an extended RV framework where assumptions, par-
tial observability and resets are considered. We proposed a new four-valued LTL
semantics called ABRV-LTL and have shown its necessity in RV monitors under
assumptions. As the solution, we gave a simple symbolic LTL monitoring algo-
rithm and demonstrated that, under certain assumptions the resulting monitors
are predictive, while some non-monitorable properties becomes monitorable.

Future work includes: (1) analyzing monitorability, fixing the assumption and
in the presence of resets; (2) characterizing monitors with partial observability
and resets in terms of epistemic operators [21] and forgettable past [24]; (3)
synthesizing the minimal assumption and/or the minimal number of observables
to make a property monitorable or to detect every violation (this is related
to [5,20]).

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing
Company (1954). https://doi.org/10.2307/2964059

2. Azzopardi, S., Colombo, C., Pace, G.: A model-based approach to combining static
and dynamic verification techniques. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 416–430. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 29

3. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14–64 (2011). https://doi.org/10.1145/
2000799.2000800

5. Bittner, B., Bozzano, M., Cimatti, A., Olive, X.: Symbolic synthesis of observ-
ability requirements for diagnosability. In: Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, Ontario, Canada, 22–26 July 2012.
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056

6. Bryant, R.E.: Binary decision diagrams. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8 7

https://doi.org/10.2307/2964059
https://doi.org/10.1007/978-3-319-47166-2_29
https://doi.org/10.1007/978-3-319-47166-2_29
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056
https://doi.org/10.1007/978-3-319-10575-8_7

182 A. Cimatti et al.

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.
org/10.1016/0890-5401(92)90017-A

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Cimatti, A., Tian, C., Tonetta, S.: NuRV: a nuXmv extension for runtime ver-
ification. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
382–392. Springer, Cham (2019)

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model check-
ing. Formal Methods Syst. Des. 10(1), 47–71 (1997). https://doi.org/10.1023/A:
1008615614281

11. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1), 109–158 (2016). https://doi.org/
10.1007/s10703-016-0251-x

12. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 231–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 15

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420. ACM Press, New York (1999). https://doi.
org/10.1145/302405.302672

14. Emerson, E.A., Lei, C.-L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210,
pp. 21–36. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16078-7 62

15. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 34, 141–175 (2013). https://doi.org/10.3233/978-1-
61499-207-3-141

16. Fauri, D., dos Santos, D.R., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.:
From system specification to anomaly detection (and back). In: Proceedings of the
2017 Workshop on Cyber-Physical Systems Security and PrivaCy, pp. 13–24. ACM
Press, New York, November 2017. https://doi.org/10.1145/3140241.3140250

17. Fuxman, A.D.: Formal analysis of early requirements specifications. Ph.D. thesis,
University of Toronto (2001). http://dit.unitn.it/∼ft/papers/afthesis.ps.gz

18. Genc, S., Lafortune, S.: Predictability of event occurrences in partially-observed
discrete-event systems. Automatica 45(2), 301–311 (2009). https://doi.org/10.
1016/j.automatica.2008.06.022

19. Genc, S., Lafortune, S.: Predictability in discrete-event systems under partial
observation. IFAC Proc. Vol. 39(13), 1461–1466 (2006). https://doi.org/10.3182/
20060829-4-CN-2909.00243

20. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge.
In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp.
183–197. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5 12

21. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. I. Lower bounds. Journal of Computer and System Sciences 38(1), 195–237
(1989). https://doi.org/10.1016/0022-0000(89)90039-1

22. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1145/3140241.3140250
http://dit.unitn.it/~ft/papers/afthesis.ps.gz
https://doi.org/10.1016/j.automatica.2008.06.022
https://doi.org/10.1016/j.automatica.2008.06.022
https://doi.org/10.3182/20060829-4-CN-2909.00243
https://doi.org/10.3182/20060829-4-CN-2909.00243
https://doi.org/10.1007/978-3-642-21461-5_12
https://doi.org/10.1007/978-3-642-21461-5_12
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1007/3-540-46002-0_24

Assumption-Based RV with Partial Observability and Resets 183

23. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal
logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055036

24. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002), pp. 383–392. IEEE Comput. Soc., July 2002. https://doi.org/10.
1109/LICS.2002.1029846

25. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2 10

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

27. Luo, Q., et al.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 24

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

29. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

30. McMillan, K.L.: Symbolic Model Checking. Springer, Boston (1993). https://doi.
org/10.1007/978-1-4615-3190-6

31. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

32. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–
1575 (1995). https://doi.org/10.1109/9.412626

33. Selyunin, K., et al.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol.
10426, pp. 336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 17

34. Tan, L.: Model-based self-monitoring embedded programs with temporal logic
specifications. Autom. Softw. Eng. 380–383 (2005). https://doi.org/10.1145/
1101908.1101975

35. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for
hybrid embedded systems. In: IEEE International Conference on Information
Reuse and Integration, pp. 487–492. IEEE, November 2004. https://doi.org/10.
1109/IRI.2004.1431508

36. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

37. Zhao, Y., Oberthür, S., Kardos, M., Rammig, F.J.: Model-based runtime verifica-
tion framework for self-optimizing systems. Electron. Notes Theor. Comput. Sci.
144(4), 125–145 (2006). https://doi.org/10.1016/j.entcs.2006.02.008

38. Zhao, Y., Rammig, F.: Model-based runtime verification framework. Electron.
Notes Theor. Comput. Sci. 253(1), 179–193 (2009). https://doi.org/10.1016/j.
entcs.2009.09.035

https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1109/9.412626
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1145/1101908.1101975
https://doi.org/10.1145/1101908.1101975
https://doi.org/10.1109/IRI.2004.1431508
https://doi.org/10.1109/IRI.2004.1431508
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1016/j.entcs.2006.02.008
https://doi.org/10.1016/j.entcs.2009.09.035
https://doi.org/10.1016/j.entcs.2009.09.035

184 A. Cimatti et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Assumption-Based Runtime Verification with Partial Observability and Resets
	1 Introduction
	2 Preliminaries
	3 The Generalized RV Framework
	4 The Symbolic Algorithm
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

