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Abstract. Active automata learning allows to learn software in the form
of an automaton representing its behavior. The algorithm SL*, as imple-
mented in RALib, is one of few algorithms today that allows learning
automata with data parameters. In this paper we investigate the suit-
ability of SL* to learn software in an industrial environment.

For this purpose we learned a number of industrial systems, with and
without data. Our conclusion is that SL* appears to be very suitable
for learning systems of limited size with data parameters in an indus-
trial environment. However, as it stands, SL* is not scalable enough to
deal with more complex systems. Moreover, having more data theories
available will increase practical usability.
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1 Introduction

For large and complex software systems, tasks like optimization and re-design
tend to be time-consuming as they require an in-depth knowledge of the behavior
of the system. Though such behavior ought to be properly documented, reality
shows such documentation to often be incomplete, outdated or inconsistent. To
be able to more efficiently execute said tasks, one would ideally, be able to obtain
a good understanding of the behavior of a software system with minimum effort
and within a limited time period.

Automata learning offers a solution to this problem, allowing one to learn
the behavior of a system by sending commands to the system and observing its
response. It allows for the automatic generation of formal models by applying
this technique to either known systems (white-box) or unknown systems (black-
box). This can be done in a passive sense by collecting and studying traces or
in an active sense by firing input at the system and waiting for a response. All
approaches have their pros and cons. While this research field is active in all
these directions, this paper focuses only on black-box active automata learning.
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A lot of the black-box active automata learning techniques ignore data
parameters as they concentrate on the control flow avoiding the intricacies of
data. Such techniques offer some insight into the behavior of the system but
they do not show the effect that data parameters may have on this behavior,
while in reality such knowledge can be crucial to effectively optimize or re-design
a system.

One of the few algorithms that allow learning with data is SL*, an extension
of the famous L* algorithm of [4], presented by [8] and implemented in RALib
(by H.M. Falk and P.F. Brostean, available at bitbucket.org/learnlib/ralib/).
In contrast with the finite state machines that L* infers, SL* infers register
automata, a type of extended finite state machine (EFSM) which holds registers
and transition guards that compare registers with data parameters.

The research question this paper is concerned with is how suitable SL* is for
learning software behavior including data parameters through active automata
learning in an industrial environment. In particular we want to know what its
shortcomings are and how complex the systems are that it can cope with.

For this purpose we learn a number of systems at ASML, which is a company
in Veldhoven, The Netherlands, making wafer scanners. Wafer scanners repeat-
edly project images on silicium wafers to produce integrated circuits at a nano
meter scale. The challenge is to project each image exactly on top of each other.
These scanners consist of highly advanced hardware controlled by 50Mline of
code. ASML wants to replace parts of the existing code base by model based
software. Therefore, ASML explores whether such models can be learned auto-
matically from the code. We symbolically learned both standalone components,
and combinations of them. We compare this with learning the system without
data parameters by instantiating data parameters with a few concrete values.

Modulo some effort to adapt the tools to the industrial environment and
struggling with implementations errors, we can conclude that SL* is suitable
for learning software behavior with data parameters in an industrial environ-
ment for systems with limited complexity. For more complex systems learned
partial results may also provide useful insights into the behavior of the system
and potentially indicate errors in the implementation. However, as it stands,
learning full industrial systems, constellations of components, and even complex
individual components is not within reach.

In order to make learning more applicable in an industrial context, it is
very useful that SL* is extended with additional theories, especially those that
allow the use of constants, lists and queues. Furthermore, scalability needs to be
addressed, for instance by dividing the learning process into steps, containing
subsets of the input alphabet or subsets of the data parameters and combining
the results somehow.

Related Work. Looking at the field of black-box active automata learning
we see that many efficient algorithms produced over time are based on Dana
Angluin’s approach as presented in [4].

Angluin presented an algorithm L* that is capable of inferring determinis-
tic finite state machines from an unknown system, also referred to as a system
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under learning (SUL). Her technique uses the concepts of a learner and a teacher,
where the teacher knows the SUL and the learner initially only knows the input
alphabet and the output alphabet of the SUL. By firing two types of queries,
namely (1) membership queries asking if a provided sequence of inputs and out-
puts is accepted by the SUL or not, and (2) equivalence queries asking whether
or not the model learned so far is equivalent to the SUL, the learner is able to
eventually learn the SUL.

Over time, improvements and adaptations of this algorithm have been
designed, of which a short summary is given in [18]. Such improvements include
research on how to perform membership queries [10,16] as well as equivalence
queries [14], but also data structure improvements [11-13,17], and research to
improve scalability [3,5,9].

However, it is not until recently that effort has been put into the design of
learning techniques that also consider the data flow of a system when learning
its behavior [1,8]. Previous algorithms can only learn behavior depending on
data when data is encoded into control by instantiating data to a few concrete
data values. We make use of the SL* algorithm of [8] where data is assumed
to stem from data domains with very specific properties, such as (N, {=}), i.e.,
the natural numbers with only equality, or (R, {=, <, >}), i.e., the real numbers
with an ordering.

So far, besides SL* there is only one other major method, namely Tomte [1,2],
that can deal with data. Tomte uses a similar technique but a different framework
architecture where a separate mapper component maps abstract data to concrete
values. This makes the learning algorithm independent from handling the data.
In SL* data is completely integrated into the learning algorithm. This is why we
chose to use SL* in our investigation.

Outline. We first provide some preliminaries in Sect. 2 after which we summarize
how SL* works in Sect. 3. Section4 reports on the suitability of the adapted
version of SL* in an industrial environment after which Sect.5 follows with a
discussion and conclusion.

2 Preliminaries

The SL* algorithm uses several important concepts [7,8] that are summarized
in this section before the algorithm itself is explained in the next section.

2.1 Theories and Data Languages

The automata learning algorithm SL* learns automata with data registers and
data input and output. The data ranges over specific theories that have the
following shape.

Definition 2.1. A theory is a pair (D, R) where

1. D is a possibly unbounded domain of data values.
2. R is a set of relations on D.
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We say that two sequences of data values (di,...,d,) and (d,...,d.), with
di,...,dn, d},...,d,, €D, cannot be distinguished by the relations in R iff for
all R € R, we have that R(d;,,...,di;) <= R(d;,...,d; ) withiy,... i; being
indices between 1 and n.

We assume that all elements of any D in this paper are denotable. The cur-
rent implementation of SL* comes with two theories, namely the IntegerEquality
theory (N, {=}) and the Doublelnequality theory (R, {=, <,>}).

An alphabet £ is a set of actions which can be split into an input alphabet
&in and an output alphabet &,,;, with & = &, U Epue and &y N Epur = 0. A
parameterized symbol a(p) is an action a € £ with a formal parameter p. For
some fixed theory (D, R), a data word is a concatenation of data symbols a(d)
with a € € and d € D, i.e., ai(dy) - as(da) - - - an(dy) with aq,,...,a, € €
and di,ds,...,d, € D. Similarly, a parameterized word is a concatenation of
parameterized symbols «(p) with « € £ and a formal parameter p.

Two data words w and w’ are said to be R-indistinguishable, denoted by
w ~gr w', iff their action sequences are the same and their data parameters
cannot be distinguished by the relations in R. For example, for some action
a €&, D=17Zand R = {<}, we have that data words «(2) - a(1) and «(3) - a(2)
are R-indistinguishable, since their action sequences « -« are the same and since
we have 2<2 & 3<3, 1<1 & 2<2, 2<1 & 3<2 and 1<2 & 2<3.

Definition 2.2. Given a theory (D, R) and k € N, we say that a data word u
is k-extendable iff either

—k=0,o0r

— for any data word « with u ~% ' and any data symbol a(d’) with a € £
and d’ € D, we have that there is a data symbol a(d) with d € D such that
u-a(d) =g v - a(d), and such that u - a(d) is (k—1)-extendable.

For example consider some theory (N, {<}) and a data word u = (1) - a(2). We
have that u is not 1-extendable, because for v’ = a(2)-a(4) we have u ~¢ u’ but
for a(d") = a(3) there is no a(d) such that (1) a(2) - a(d) ~g a(2)-a(4)-a(3).

A theory is said to be strongly extendable iff all data words are co-extendable
and a theory is said to be weakly extendable iff for all data words u and for all
k € N, there is a data word ' with u’ ~% u that is k-extendable.

Note. SL* requires a theory to be either weakly extendable or strongly extend-
able. The two theories currently implemented in RALib, namely (N, {=}) and
(R,{=, <,>}) are both strongly extendable.

A data language L is a set of data words, such that for all two words w and
w’ that are R-indistinguishable, we have that w € £ <= w’ € £. A word w is
said to be accepted by L iff w € L, and rejected otherwise.

Furthermore, we make the following assumptions about any data language
L (w.r.t. a theory (D, R))

— L is prefix-closed, i.e., for any two words w, w’ we have that if w-w’ € £ then
also w € L.
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— L is input/output alternating, i.e., all data words in £ contain alternating
input and output data symbols and start with an input data symbol.

— L is output-deterministic, i.e., for any word w ending in an input symbol, we
have, for all a(d), a(d’) with a € &y and d,d’ € D, that if both w - a(d) and
w - a(d") are in L then words w - a(d) and w - a(d’) are R-indistinguishable.

A system under learning (SUL) as used in this paper is an implementation
of a data language.

2.2 Register Automata

Register automata (RA) are a type of extended finite state machines that can
be used to model data languages.

We assume a theory (D,R), an alphabet £ and a set of registers G =
{z1,...,z,}. A guard is a conjunction of negated or unnegated relations from
R over registers and formal parameters p used in parameterized symbols a(p).
A register automaton is then defined as follows.

Definition 2.3. A register automaton is a tuple A = (S, sg, X, [, \) where

— S is a finite set partitioned in input states S;, and output states S,y;.
— 89 € S is the initial state.
— X :§ — G is a mapping that maps each state to a finite set of registers.
— I’ is a finite set of transitions, each of the form (s, a(p), g, T, s’) where
e s is the source state.
e a(p) is a parameterized symbol. If s is an input state, « € &;, and s’ is
an output state. Otherwise, i.e., if s is an output state, then o € &£,,; and
s’ is an input state.
e g is a guard over p and X (s).
e 7 is an assignment that updates registers in X'(s’) with values of p and
registers in X'(s).
e s’ is the target state.
- A: S — {4+, —} is a mapping that maps each state to either + or —, indicating
whether a state is accepting.
We write s oEgm, s iff (s, a(p),g,m,s") € I'. We write s omgr, iff there
is an s’ € § such that s <17, o,
We assume that the RAs in this paper are deterministic, i.e., there are no data
words that lead to both accepting and rejecting states and we say that a reg-
ister automaton has runs over all data words iff every input state has outgoing
transitions for all actions in &;,, and every output state has outgoing transitions
for all actions in &,,;. In this case unwanted actions lead to rejected states.
In general the initial state so is an input state, i.e., so € S;,. However, we
employ symbolic decision trees that are instances of register automata where the
initial state can also be an output state.
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We use SRASs to represent a SUL:

Definition 2.4. A simple register automaton (SRA) is a register automaton
A= (8,50,X,IA\) with X(sg) = 0 that has runs over all data words.

Note. When visualizing RAs in this paper, input states are indicated by solid
lines and output states by dotted lines. Accepted states are indicated by double
lines and rejected states by singular lines. Furthermore, input actions are typi-
cally prepended with a question mark and output actions are typically prepended
with an exclamation mark.

2.3 Symbolic Decision Trees

One of the most distinguishing differences between SL* and its predecessor L*
is that SL* uses symbolic decision trees to represent sets of data words.

Definition 2.5. A symbolic decision tree (SDT) is a register automaton 7 =
(8,50, X, T, \) where S and I" form a tree with root sg. We write X'(7) to denote
X(So) .

An SDT models (part of) the data language based on the valuation of X' (7).
For example, consider the theory (R, {=, <,>}). There are two registers x; and
2o of which only the latter is used. A symbolic decision tree can express that
traces € and «(p) can be accepted provided p > xo. This SDT with a depth 1
is depicted in Fig. 1. For any sequence of actions o, an SDT of depth |o| can be
constructed.

v
ap) [p<wz2 7\ alp) [p>a:
J

Fig. 1. SDT created for the prefix and suffix as shown in Table 1

Equivalence. To test the equivalence of two SDTs, the following notion of
isomorphism is used.

Definition 2.6. Let 7 = (S,s0, X, [, \) and 7' = (&', s, X', I, X) be two
SDTs with sets of registers G and G’ respectively. Let v : G — G’ be a bijection.
We say that 7 and 7’ are isomorphic under v, denoted 7 =~, 77, iff there is a
bijection ¢ : S — S’ such that:

= ¢(s0) = 50,

— y(X(s)) = X'(¢(s)) for all s € S,

— A(s) = N(¢4(s)) for all s € S, and

= (s1,0(p), g, 52) € I' <= (¢(s1), alp), g7, 77, p(s2)) € I

where g7 and w7 are respectively a guard and an update with the registers
replaced according to ~.

Definition 2.7. Let 7 and 7’ be two SDTs with 7 ~, 7’. We say that 7 and
T’ are isomorphic, denoted 7 ~ 7", iff v is a bijection.
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2.4 Observation Table

An observation table is a data structure used to store results on which data
words are accepted by the SUL and which are not.

Definition 2.8. Let F represent the set of all SDTs. Given an alphabet £ and
a theory (D, R), an observation table is a tuple O = (U, UT,V, Z) where

— U is a prefix-closed set of data words, referred to as short prefixes.

~UT ={u-a(d) |u €U and « € £} (adhering to the input/output alternating
assumption (Sect.2.1)) and for some d € D, is a set of extended prefixes.

— V is a set of parameterized words, referred to as symbolic suffixes.

— Z:UUUT) — F,is a mapping that maps each prefix to an SDT.

An observation table is considered closed iff for every u' € Ut there is a u € U
and a y such that Z(u') ~, Z(u). Intuitively this means that for every extended
prefix there should be a short prefix such that their SDTs are isomorphic under
some 7. In this way, the number of states required to represent £ is limited
to |U].

An observation table is considered register-consistent iff for every u - a(d) €
Ut that requires an initial register, i.e., z; € X(Z(u - a(d))), we also have
x; € X(Z(u)). Intuitively this means that if some SDT requires an initial register,
this register should have been stored previously.

Intuitively, an SDT Z(u) indicates in a generic way how a SUL responds after
it is requested to perform a data word u. This response matches the actions from
a suffix, and it is formulated abstractly in terms of registers and conditions, where
the respective data values in u correspond to the registers in Z(u).

Creating SDTs. Given a theory (D, R), a prefix u € (Y UUT) and a set of
symbolic suffixes V, let D’ represent the set of (instantiated) data values in the
prefix and let P’ represent the set of (uninstantiated) formal parameters in V.
A set of test cases R(p’,d') U R(d’,p') is then created for all R € R, d’ € D’ and
p’ € P’. For each such test case, all p’ € P’ are instantiated with appropriate
data values d € D.

For example, consider a SUL that disallows decreasing numbers and consider
the theory (R,{=,<,>}), a data word u = «(1)-0k-a(3)-0k for which the data
values 1 and 3 are stored in registers z; and zy respectively, and V = {a(p)}.
We then have D' = {1,3} and P’ = p.

Table 1. Test cases for a specific prefix and symbolic suffix

Prefix Symbolic suffix | Test cases | Instantiated suffix | Accepted
a(l)-ok-a(3)-ok | a(p) p<l1 a(0) no
1<p<3|a2 no
p=1 (1) no
p=3 a(3) yes
3<p a(4) yes
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Table 1 shows the test cases generated for this example. For each test case an
instantiation is created formed by the concatenation of the prefix and the instan-
tiated suffix that satisfies the test case. The instantiated suffix is also depicted
in Table 1. The instantiation is sent to the SUL which either accepts or rejects
it (also indicated in Table 1). From these results an SDT can then be created as
is shown in Fig. 1. This SDT indicates that all data words a(1)-0k-a(3)-ok-a(p)
with p > xo are accepted by the SUL and all data words «(1)-ok-«(3)-ok-a(p)
with p < x4 are rejected by the SUL.

3 The Algorithm SL*

3.1 Algorithm

The algorithm SL* presented by Cassel et al. is an extension of Dana Angluin’s
algorithm L*. For a more detailed description of either algorithm we refer to the
original papers [4,8]. In this section we provide a brief summary of SL* which
should contain sufficient information for the purpose of this paper.

The main idea of SL* is similar to that of L*, where concepts of a learner
and teacher are used. The learner attempts to learn a black-box system under
learning (SUL) that models a data language £ with alphabet £. The SUL is
represented as a register automaton (RA, Sect.2.2) and £ is inferred by asking
the teacher so-called membership queries and equivalence queries.

The learner makes use of an observation table (Sect. 2.4) to create, and store
the results of membership queries and to build a hypothesis automaton based on
this table. The rows of an observation table consist of a set of prefixes, contain-
ing specific data values, and the columns consist of a set of symbolic suffixes,
which are abstracted from specific data values. Every cell represents a member-
ship query, which is a data word w (Sect.2.1), where w is the concatenation of
the prefix and suffix of the cell. The answers from the teacher to each member-
ship query are transformed into a symbolic decision tree (SDT, Sect. 2.3), which
represents, for a given prefix, for which instantiations of parameters in the suffix
the SUL accepts the query (Sect.2.3).

The learner continues to update the observation table by asking the teacher
membership queries until the observation table is both closed and register-
consistent (Sect.2.4), at which point it creates a hypothesis automaton from
the table, represented as an RA, and sends it to the teacher in the form of an
equivalence query. Should the hypothesis automaton be equivalent to the SUL
the reply will be positive. Otherwise the teacher will provide a counterexample in
the form of a query that is accepted by the hypothesis but not by the SUL or vice
versa, after which the learner will continue with an updated observation table
and another set of membership queries until it creates the correct hypothesis
automaton.

Given an RA with ¢ transitions and at most r registers per state, that models
a data language £, SL* infers £ with O(tr) equivalence queries and O(t?r +trm)
membership queries, where m is the length of the longest counterexample [8].



Active Learning of Industrial Software with Data 103

3.2 Example

In this section, we demonstrate the algorithm SL* by means of an example over
the data theory (R, {=,<,>}).

Consider the SUL as presented in Fig.2, with input alphabet &, =
{enter(p)} with p € N, and output alphabet £, = {0k, nok}. Any transitions
not shown in the figure lead to sink states which are omitted from the figure.

Tenter(p) | p < x1

! .
?enter(p) | true tok | true =p
@ T1:=p .::;...:,.’ :;.'.-.:.::‘
—( So = S1 # 3 S3 3
?enter(p) | p > x1 Inok | true
Tr1 =P

Fig. 2. Example SUL as described above

The observation table is initialized with U = {e} and V = {e} U Epue, as is
shown in Table 2. True guards are omitted. Transitions that do not follow the
assumption of alternating input and output symbols are not processed.

Table 2. Observation table after the first round

H ‘V = {¢, ok, nok}

UT ||enter(1) @ lok S Inok O

The top SDT shown in the table indicates that the empty data word is
accepted by the SUL (indicated by the doubly lined state) but it does not show
the results for data words ok and nok as they do not follow the assumption of
alternating input and output symbols.

The bottom SDT shown in the table indicates with its initial, doubly dotted
state that the data word enter(1) leads to an accepting output state, i.e., a
state that requires the next action to be from the output alphabet (Sect.2.2).
Furthermore, the SDT indicates that the data word enter(1) - ok is accepted by
the SUL and the data word enter(1) - nok is rejected by the SUL (indicated by
the singly lined state). Since V only contains the data symbols ¢, ok and nok, no
other transitions are processed for this SDT.
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Table 3. Observation table after the fourth round

I |V = {¢, ok, nok}

U e »@

=
TN
enter(1) !Ok/ \iwk

enter(1) - nok —>©

—i
TN |
enter(1) - nok - enter(2) !Ok/ \:Lok;

UT enter(1) - ok same as €
enter(1) - nok - enter(2) - ok |same as enter(1l) - nok
enter(1) - nok - enter(2) - nok |[same as enter(1) - nok

.
o
o

?enter(p) | true

IALLER
X ,.
o .
. R
Ca o
Srast

lok | true

Fig. 3. The hypothesis automaton based on the observation table shown in Table 3

Table 2 is not closed however, since for row enter(1) in U™ there is no equiva-
lent row in U, hence row enter(1) is added to U and U™ is adapted appropriately.
Table 3 shows the observation table that is eventually obtained, which is both
closed and register-consistent.

A hypothesis automaton is created based on this table (Fig.3).
This results in the following counterexample from the SUL: enter(1)-ok-
enter(2)-ok-enter(0)-nok, which is accepted by the SUL but not by the hypoth-
esis automaton.

Eventually, the algorithm obtains another closed and register-consistent
table, for which a new hypothesis automaton H is created (Fig. 4) and sent to the
teacher, resulting in a positive reply, meaning the learning process is complete
and the learner has learned the SUL. Looking past some syntactic differences we
can see that the automata in Figs.2 and 4 are isomorphic under x; — ry.
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4 Industrial Setting

4.1 Experimental Setup

As the main purpose of this paper is to investigate the suitability of SL* in an
industrial environment, the algorithm has been applied to several case studies
extracted from the coding environment of ASML. In this section we elaborate on
the case studies themselves and on applying the algorithm to these case studies.

Tenterfint] | viint == rq
V  ?enterfint] | true .
r1 = v_int _;.“"""i:‘m
?enterfint] | v_int > Tenterfint] | viint < rq
r1 = vant ry = vant

Fig. 4. Result of SL* after learning the SUL of Fig. 2

Case Studies. In some departments within ASML, a modelling environment
called ASD:Suite [6] (see also [15] in this proceedings for a compact explanation
of ASD) is used to model the behavior of software from which the source code is
generated. Using ASD:Suite, a major component can be decomposed into many
smaller components. In particular there is a very large component within the
code base of ASML that is decomposed into 200-300 smaller components. For
the purpose of this paper, several of these smaller components are considered as
case studies.

It is important to note that components modeled in the ASD:Suite use guards
to make control flow decisions based on state variables, i.e., variables used to
describe the state of a system, as the use of such state variables provides a
more compact model of the behavior of the component. Any component using
state variables however, can also be modeled as a component without state
variables, resulting in a more extensive behavioral model with more explicit
states. Visually, this means that the second model has a layered structure, where
different layers of states represent the different values of an otherwise present
state variable. Models learned by SL* do not contain state variables and thus
contain such a layered structure when inferring ASD:Suite components that do
contain state variables.

The case studies we use in this paper are components referred to as ¢y, co
and cg, of which only the last one contains behavior that is influenced by its
data parameters. These components communicate with each other as shown in
Fig. 5. For confidentiality reasons the names of these components are omitted in
this section, but we provide a short summary of their behavior.

Component c3 constitutes a rather typical list implementation, with behav-
ior that allows adding items to the list, removing items from the list, adapting
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Fig. 5. Communication between the three components ci, c2 and c3

items on the list and viewing items on the list. The behavior of this component is
influenced by data parameters passed to the component and is therefore chosen
for this case study. Component c3 communicates only with co, which receives
calls from c¢; concerning the list and forwards them to c¢3 whilst also communi-
cating with two other components, indicated in gray in Fig. 5. Component ¢; is
the simplest component of these three, as it only functions as a communicator
between other components and cs.

Each component is learned separately, observing the running times and
studying the results, as well as a combination of ¢; and cs, and a combina-
tion of all three components, to observe the learning results and running times
when dealing with increased complexity.

To illustrate the strength of SL* when it comes to learning software behav-
ior with (abstract) data parameters, the same set of test cases is learned with
concrete data parameters. For this purpose, the input alphabet of each test case
is extended such that for each parameterized input i, five concrete but arbitrary
inputs are created instead, with concrete values vy, va,...,vs.

Preparation. In preparation of applying the algorithm, code is generated for all
components in the SUL and for the direct environment of the SUL, i.e., the
components in the wrapper. The input and output alphabet are provided, as is
allowed in the black-box model, and a wrapper component is created.

Furthermore, due to the restrictions of theories (D, R), each parameter in
both the SUL and the stub code is transformed into a parameter d € D. Should
there be no access to the code of the SUL, then the wrapper has to map param-
eters d € D to the appropriate parameter types as they are in the SUL. For the
purpose of this paper, this extension is omitted, however. The IntegerEquali-
tyTheory is used in all cases.

Environment. The experiments are conducted on a machine with the following
properties:

— System: Windows 7, 64 bit, 8 GB RAM, 2.4 GHz CPU.
— JVM: Eclipse Neon 4.6.3, 64 bit, -Xms512m, -Xmx7144m.
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4.2 Results
The results are shown below in Table 4, which contains the following information:

— #E&;n: the number of inputs in &;,.

— #&E,utt the number of outputs in &, prior to the final round of the algorithm,
i.e., when no new outputs are added to &,,; anymore.

— sv: the number of state variables used in the implementation.

— time: the total running time of the algorithm averaged over 10 runs. The
word ‘om’ indicates that the learning process was interrupted due to an out
of memory error. For these cases the last obtained results are listed.

— states: the number of states in the resulting model.

— transitions: the number of transitions in the resulting model.

— mq: the number of membership queries performed, averaged over 10 runs.

— eq: the number of equivalence queries performed, averaged over 10 runs.

— correct: whether or not the learned result is correct. This correctness is
evaluated by visual inspection. Notations ‘N.A’. and ‘??’ denote cases that
do not have a final model to inspect or cases that are too big to evaluate by
visual inspection, respectively.

For each test case, two values are listed to indicate the result for the test case
with abstract and with concrete data parameters. The absence of two values
indicates a similar result for both cases. In the test cases that resulted in an
out of memory, the DoublelnequalityTheory has also been tried, resulting in the
same outcome.

For two out of five test cases the experiments with data parameters led to
out of memory. In both cases one parameterized input (the same input in both
cases) was removed from the input alphabet in order to be able to obtain a
partial result. This input dealt with obtaining the next item from an iterator.
These adapted test cases are indicated by the use of asterisks and their results
are shown in Table 5.

All in all, the results mostly indicate a problem with scalability as increased
complexity quickly leads to out of memory when including data parameters. For
those cases that were successfully learned though, the success of SL* becomes
apparent. For components that do not contain behavior based on data param-
eters, learning with SL* uses much less membership queries to learn the same
number of states with fewer transitions, resulting in more visual models. For com-
ponents that do contain behavior based on data parameters, an even more distin-
guishing result becomes visible. Note that the test cases without data parameters
contain only 5 hard-coded values, where the cases with data parameters allow
for values in an infinite domain, thereby attesting to the strength of SL* when
it comes to learning software behavior with data parameters.
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Table 4. Results of applying SL* to several case studies from an industrial environment

#Ein | #Eour | sV | Time (sec) | States Transitions | mq eq Correct
c1 18 25 2 19/6 31/31 114/254 3984/9307 |11/10 |yes
ca 22 39 |5 [12K/6.9K |660/660 | 4.9K/12.2K|1.4M/3.3M |135/117 yes/??
cs 12 (15 |1 lom/8.3K |127/2.7K |350/18K | 19K/4.9M | 38/245 N.A./7?
ci,e2 20 33 |6 |137/66 | 108/108 |752/1.7K | 58k/132k | 34/36 | yes
c1,c2,¢3/10 |17 |6 |om/32K | 328/2.4K|1.3K/30K | 177K/11.5M|77/239 N.A./??

Table 5. Results of applying SL* to several simplified case studies from an industrial
environment

Time (sec) | States | Transitions | mq eq Correct
cs * 136/3.2K | 87/842 | 227/5.4k | 10k/895k | 13/145 | yes/??
c1, ca, c3 * | 490/3835 | 109/838 | 383/9.1K | 26k/2.2M | 36/147 | yes/??

5 Conclusion

Learning well known software with data parameters using SL* that fit the avail-
able theories is quite impressive. Applying SL* in an industrial environment can
be of use, but there are quite some limitations to consider.

First of all, two direct shortcomings were found that prevented SL* from
learning the correct results. Industrial systems do not have a strict alternation
of input and output. Furthermore, there are too many software flaws in the
available implementation of SL*. Both had to be dealt with in order to allow
SL* to correctly learn the results of the industrial case studies. Especially, the
latter is not only very time consuming, but it also obfuscates conclusions about
the quality of SL*.

While applying SL* to said industrial cases, another weakness became appar-
ent, namely the limited availability of data theories, forcing the use of integers
and doubles and limiting the operators usable in guards to equality, < and >.
In general other data types such as lists and sets are used in SULs but cannot
be learned. More importantly, the source code of a SUL may not be accessible,
and in such a case it is generally not known which data types are used; one can
only hope that they match the available theories.

Another problem is the scalability of the algorithm. Where smaller sized sys-
tems can be learned quite fast, an increased complexity quickly results in out of
memory errors. Unfortunately, it is not always clear in such cases whether the
problems find their origin in the size of the SUL, the quality of the implementa-
tion or in the data types that must be learned.

Despite these weaknesses, the strength of SL* has become apparent when
applying the algorithm to industrial case studies in comparison to learning these
case studies without data parameters. Under the right circumstances, SL* can
learn the behavior of a component with data much more efficiently and with
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a much more compact result, thereby providing valuable insights to engineers
requiring to gain knowledge of this behavior. Even when using SL* to learn the
behavior of a component that only employs trivial, finite data, the results can
be gained more efficiently and are in such a case more compact, by representing
this finite data using an infinite data domain.

It is clear that learning industrial software with data still has a long way to
go. But under the right circumstances, it can certainly work. And in such cases
the learned result generally offers a great amount of insight into the behavior
of a system, reducing the amount of time and effort required to gain knowledge
about the behavior of the system manually.
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