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Abstract. Complex systems are ubiquitous. Their components, agents,
live in an environment perceiving its changes and reacting with appro-
priate actions; they also interact with each other causing changes in the
environment itself. Modelling an environment that shows this feedback
loop with agents is still a big issue because the model must take into
account the emerging behaviour of the whole system. In this paper, fol-
lowing the S[B] paradigm, we exploit topological data analysis and the
information power of persistent entropy for deriving a persistent entropy
automaton to model a global emerging behaviour of the Dow Jones stock
market index. We devise early warning states of the automaton that sig-
nal a possible evolution of the system towards a financial crisis.
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1 Introduction

A complex system is any system consisting of a great number of heterogeneous
entities interacting with each other within an environment to shape an emerging
behavior. Such emerging behaviour depends on a non-trivial space of correla-
tions that derive from the interplay of agents entangled in loops of non-linear
interactions. In the metaphor of the flock of starlings, any environmental change
perceived by the starlings during their flight is visible in the formation of the
flock shape due to their reaction. This implies that there is an underlying feed-
back loop between the agents and the global system.

Mastering the complexity of these systems has always been a challenge in
almost every branch of science. In computer science, process-, actor- and agent-
based models and languages have been developed for describing the behaviour
of complex software systems [1,2,6,11]. All these approaches require an a priori
knowledge of the basic rules governing the dynamic of the system in order to
define the behaviour of the components and of the environment. Unfortunately,
for natural or social phenomena, it is quite impossible to have enough knowledge
about the real interaction rules. However, global information about the system
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is hidden inside phenomenological data produced by the individual components.
Thus, we need suitable methods to extract a specific model of interest.

Topological Data Analysis (TDA) is a relatively new field of study in which
topology driven methods are used to analyse big collections of data [4,5,8]. The
S[B] paradigm is a general framework of modelling in which a complex system
is described as a pair of entangled systems: S, the global environment, and B,
a set of interactive agents [13,14]. Persistent Entropy (PE) is a Shannon-like
entropic measure able to describe the global dynamics of a complex system [16].
PE has been used for studying complex phenomena in different fields [15–17].
As shown in [16], by analysing the trajectories of PE and its derived quantities,
an automaton, called Persistent Entropy Automaton (PEA), which models the
global dynamics of the system under study, can be manually devised.

The global financial system is one of the most important, human-made, com-
plex systems. This system is composed of multiple interacting autonomous com-
ponents or “selfish” agents, who - very often - act for their own benefit, and of
complex interactions among those components. Each component behaves accord-
ing to his/its own strategies, under the influence of the environment and inter-
acting with other heterogeneous components. Classical tools for analysing and
modelling such systems operate under a range of rather unrealistic assumptions.
For example, interactions are normally abstracted with equations: this implies
that the system reaches the equilibrium through non-linear optimisation meth-
ods rather than emerging from the agents interactions [12].

In this paper we use TDA to construct a data space from the components of
the Dow Jones stock market index. The considered data set is the time series of
the daily log-returns of Dow Jones’ components from 1987 to 2017. From the data
space, we calculate the PE and we devise a PEA whose locations model global
states of the stock market. We show that early warnings about the emergence
of the already occurred financial crisis can be identified by the PEA.

2 Methods

TDA employs concepts and principles of the field of computational topology to
reveal higher dimensional patterns hidden in big data sets [5,8]. Computational
topology studies invariants of shapes among which the so called Betti numbers,
or barcodes, that characterise the existence of n-dimensional holes in the topo-
logical data space. TDA builds a discrete topological space, a simplicial complex,
following a filtration procedure. In this work we use the Vietoris-Rips complex
filtration that works on point clouds [8]. At each step of the filtration the persis-
tent homology is computed yielding a collection of barcodes that indicate the life
span of the topological invariants. PE is then computed from the barcodes [15].

The 24 time series of the considered Dow Jones components were mapped
into a point cloud using a sliding window of 50 days and scrolling one point at a
time with superposition of 49 points. Each window then produced 50 points in
R

24. This technique has been demonstrate suitable for studying the time-varying
properties of systems similar to the one we are studying [9,15].



A Persistent Entropy Automaton for the Dow Jones Stock Market 39

The mechanism driving critical transitions in complex systems is called tip-
ping point, which is an abrupt qualitative change in the behaviour of a dynamical
system when one or more control parameters change. In approaching a tipping
point, a complex system shows a phenomenon called Critical Slowing Down
(CSD), which can be considered an Early Warnings Signal (EWS) for the criti-
cal transition [3,18]. Since PE describes a system globally, it contains a summary
of the knowledge about the system. Moreover, it can be considered a time series
itself and can be calculated for all the dimensions. Thus, we study the total PE
time series (PEtot) - calculated as the sum of PEs for all the dimensions - with
an analytical approach. The goal is to identify EWSs about a crisis by detecting
the occurrence of tipping points. The obtained PEtot is shown in Fig. 1.

To delimit the CSD areas we used an adaptation of the W2 index, i.e. a
combination of statistical indices (coefficient of variation, 1-lag autocorrelation,
and kurtosis), described in [7]. W2 is computed from PEtot with the R package
“earlywarnings” using another sliding window of size 450. Thus, W2 is another
time series and it is plotted along with its running average and 2σ confidence
bands in Fig. 1. Potential areas of CSD are identified by finding points where
W2 > W2+2σ [7]. These areas are shown in Fig. 1 with black bands and represent
the EWSs in our system.

Identified CSD areas can be used to define PEA states. A PEA monitors the
PE and derived functions w. r. t. equilibrium conditions that define its states [16].
It remains in a state s as long as the associated equilibrium condition ec(s) is
satisfied. When it is violated, the PEA exits s and starts a non-instantaneous
transition, which can be seen as an adaptation phase. This adaptation may end
into an adjacent PEA state s′ as soon as ec(s′) is satisfied or may not termi-
nate. This definition is based on the fact that PEA states are devised from the
observed trajectories of PE and derived functions. Indeed, it may happen that
the monitored functions exhibit evolutions that were not identified as equilibrium
conditions. This is expected for natural complex systems for which “complete”
models can not be established. The main difference between a PEA and a hybrid
automaton, which is a top-down defined model not considering unknown evolu-
tions [10], is essentially in this different perspective.

3 Persistent Entropy Automaton of Dow Jones

In the S[B] paradigm the structural level S is a model of the global dynamics
of the system and the behavioural level B is a model of the local interactions
among the entities of the system [13]. In this study, the behavioural level B
is represented by real human agents that produced the data that we use. The
structural level S is defined as a PEA in the following.

We consider two financial crises, dot-Com and Lehman Brothers Crash, both
represented with coloured bands in Fig. 1. We devise the PEA by monitoring the
functions PEtot(t), W2(t), their running average PEtot(t), W2(t) together with
their derivatives indicated with a dot over the symbol. Each discrete instant
t corresponds to one day observation. The derived PEA is called PEAW2 , is
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Fig. 1. Plot of PEtot and its running average (above). Plot of W2 and its running
average with confidence bands (below). The grey and black vertical bands correspond
to the relative states of the automaton in Fig. 2. The thin coloured vertical bands
correspond to financial crises. (Color figure online)

depicted in Fig. 2 and its states are described in the following. A stable state is
characterised by the equilibrium condition |W2 − W2| < 2σ, that is W2 does not
exceed the confidence bands. The state called Stable is the initial one and holds
this condition. As soon as the functions violate the stable condition, PEAW2 exits
state Stable and starts an adaptation. The only state in which the adaptation
can end is the one called Grey, a state indicating that there was in the past at
least one violation of the stable state condition. The equilibrium condition of
Grey is Ẇ2 ≈ 0 ∧ ˙PEtot < 0 ∧ W2 < W2 − 2σ, which means that the running
average of W2 has minimal oscillations, the running average of the total PE
is decreasing and W2 exits the confidence band −2σ. Visually, the periods in
which PEAW2 stays in this state are represented by the grey bands in Fig. 1.
State White corresponds visually to the period after a grey band, it has the
stable equilibrium condition and records the fact that the system entered at
least once state Grey. After White, another grey band can occur (in this case
the PEA goes back to Grey) or a black band occurs. A black band corresponds
to state Black. This is the early warning state because from Black the system
can only evolve to state Tipping that represents a tipping point. In Tipping a
crisis, represented by the dashed transition towards state Stable, can occur or
the system can return to state Grey. The dashed transition can be interpreted
as the occurrence of a phase transition of the system.

PEAW2 is then able to give a warning, in state Black, that a crisis may occur,
without giving a prediction. However, if the current state is different from Black,
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the model says that a crisis cannot occur immediately: there must be at least
one (or more) adaptations before the tipping point state is reached.

Stable
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start
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Fig. 2. PEAW2 , describing the transitions among the global states of the system.

4 Conclusions

In this work we have modelled the global dynamics of a complex system by
manually devising a PEA. TDA has been used for analysing the phenomeno-
logical data of the system and PE has been calculated from a topological space
derived from a data set. The application domain is the Dow Jones stock market.
The derived automaton models the global behaviour of the market and is able to
recognise a tipping point state in which a financial crisis may occur and previous
states in which there is some degree of warning but there is not an immediate
alarm because some other adaptations are required to reach the tipping point
state. The transition that goes from the tipping point state to the stable state
can be interpreted as a phase transition of the system.

Despite the encouraging result we are aware that the proposed analysis
presents some limitations: one is about the peculiarity of the data set that does
not allow one to set up a statistical validation of the results because of the
unicity of the phenomenon under study, for which other instances do not exist.
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Another regards the computation of the indices for deriving the W2, for which
it is necessary to try different lengths of the sliding windows.
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