
Verification of Smart Contract Business Logic
Exploiting a Java Source Code Verifier

Wolfgang Ahrendt1(B), Richard Bubel2, Joshua Ellul3, Gordon J. Pace3, Raúl Pardo4,
Vincent Rebiscoul5, and Gerardo Schneider6

1 Chalmers University of Technology, Gothenburg, Sweden
ahrendt@chalmers.se

2 Technische Universität Darmstadt, Darmstadt, Germany
bubel@cs.tu-darmstadt.de

3 University of Malta, Msida, Malta
{joshua.ellul,gordon.pace}@um.edu.mt

4 Inria, Lyon, France
raul.pardo-jimenez@inria.fr

5 Ècole Normale Supèrieure de Lyon, Lyon, France
vincent.rebiscoul@ens-lyon.fr

6 University of Gothenburg, Gothenburg, Sweden
gerardo@cse.gu.se

Abstract. Smart contracts have been argued to be a means of building trust
between parties by providing a self-executing equivalent of legal contracts. And
yet, code does not always perform what it was originally intended to do, which
resulted in losses of millions of dollars. Static verification of smart contracts is
thus a pressing need. This paper presents an approach to verifying smart con-
tracts written in Solidity by automatically translating Solidity into Java and using
KeY, a deductive Java verification tool. In particular, we solve the problem of
rolling back the effects of aborted transactions by exploiting KeY’s native sup-
port of JavaCard transactions. We apply our approach to a smart contract which
automates a casino system, and discuss how the approach addresses a number of
known shortcomings of smart contract development in Solidity.

1 Introduction

Blockchain is a distributed ledger running in a decentralised manner on a network of
devices that allows for the exchange of data in a trusted manner. Such values may be
stored and modified without the need for a centralised trusted authority; trust is estab-
lished through distributed collaboration following specific protocols. Cryptocurrencies,
particularly Bitcoin [15], was the first proposed application of blockchain. A smart con-
tract platform built on top of blockchain, as proposed and built by Ethereum1, enables
for blockchain to be used for many other applications besides cryptocurrencies.

Smart contracts are software programs that are openly stored on the blockchain
(they can be read and used by anyone), and—as everything else on blockchains—are

1 https://www.ethereum.org.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Hojjat and M. Massink (Eds.): FSEN 2019, LNCS 11761, pp. 228–243, 2019.
https://doi.org/10.1007/978-3-030-31517-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31517-7_16&domain=pdf
https://www.ethereum.org
https://doi.org/10.1007/978-3-030-31517-7_16

Verification of Smart Contract Business Logic Properties 229

1. The casino owner may deposit or withdraw money from the casino’s bank as long as the
bank’s balance never falls below zero.

2. As long as no game is in progress, the owner of the casino may make available a new game
by tossing a coin and hiding its outcome. The owner must also set a participation cost of
choice for the game.

3. Clauses 1 and 2 are constrained in that as long as a game is in progress, the bank balance
may never be less than the sum of the participation cost of the game and its win-out.

4. The win-out for a game is set to be 80% of the participating cost.

Fig. 1. Excerpt from a legal contract regulating a coin-tossing casino.

permanent and cannot be altered. Their execution is typically performed by “workers”
(commonly known as miners) that earn some cryptocurrency in return for their work. A
smart contract typically offers means of invoking its functionality so end users can inter-
act with it to transfer data and cryptocurrency to the contract. The contract is effectively
the logic to manage these invocations and execute the corresponding instructions that
manipulate the local bookkeeping of data (including the cryptocurrency). Underlying
a smart contract lies a description, and prescription, of an agreement between different
parties in order to automate the regulated exchange of value and information over the
internet.

The promise of smart contract technology is to diminish the costs of contracting,
enforcing contractual agreements, and making payments, while at the same time ensur-
ing trust and compliance, all in the absence of a central trusted authority. Such exe-
cutable legal contractual agreements suffer from some drawbacks: (i) it is not easy to
ensure that the smart contract complies with the legal contractual obligations that the
program is intended to implement; and (ii) it is not easy to ensure the correctness of
smart contracts. In this paper we focus only on the latter aspect. Consider the legal con-
tract shown in Fig. 1 regulating how a simple casino should make a coin-tossing game
available to players. A smart contract implementing this legal contract would carry out
concrete actions to ensure that the legal contract is never violated. For instance, clause 3
requires that while a game is in progress, there is always enough money available to pay
in case the player wins. This could be achieved by allowing a game to start only if there
is enough money to pay for a win, and then to disallow withdrawals which result in
not enough money left to pay. Or more radically by preventing the casino from with-
drawing any money during a game. Either way, we should be able to prove that our
implementation satisfies the invariant required by such clauses.

Smart contracts are programs, and as such they are vulnerable to bugs just as
any other software. Errors may have many causes, like out of range numbers, unintu-
itive language feature semantics, or intricate mismatches between internal bookkeeping
(in the local data) and external bookkeeping (in the blockchain), to name a few. Erro-
neous behaviour may be intended, explicitly provoked by malicious contract creators,
or exploited by opportunists. Bugs in smart contracts may result in massive losses in
an irreversible way (as blockchain transactions are permanent, and no authority has the

230 W. Ahrendt et al.

power to undo them). Recent multi-million Ethereum bugs2 have shown that this is
indeed an issue researchers and practitioners should take seriously [3].

In this paper we focus on the verification of smart contracts written in Solidity3, by
translating them automatically into Java. By targeting Java, our translation can exploit
the similarities between the contract-oriented and the object-oriented paradigms, and
make use of existing verification tools. We use the deductive source code verifier KeY
[2] to verify the translated program since it is among the most powerful verification
tools for object-oriented languages, and specifically, it has native verification support for
transactions and their abortion, allowing to model the rolling back of program effects.
We apply our approach to a case study consisting of a Casino smart contract.

The paper is organised as follows. Section 2 gives some background on smart con-
tracts and the deductive verification tool KeY. In Sect. 3 we present our Solidity to Java
translation. Section 4 is concerned with the verification of the translated Java programs
using KeY. Section 5 introduces our case study. We discuss scope and limitations of our
approach in Sect. 6, followed by related work and a conclusion.

2 Preliminaries

2.1 Smart Contracts in Solidity

Since smart contracts are deployed on a blockchain (or some other form of distributed
ledger technology) which typically enforces immutability of deployed smart contract
code and also due to the critical nature of applications they are often employed for, a dif-
ferent mind set to traditional programming is required [6]. Ethereum’s virtual machine
provides a ‘one world computer’ abstraction: the Ethereum Virtual Machine (EVM)
[16] is an abstract machine that executes transactions atomically whereby a transaction
is an action initiated by a smart contract user. The predominant language used to write
Ethereum smart contract code is Solidity.

A deployed Ethereum smart contract has an associated unique address, can own
Ether (Ethereum’s native cryptocurrency), and transfer Ether to other addresses which
may be other contracts or user accounts. Being Turing complete, the EVM needs to cater
for code which may not terminate or takes an unacceptably long time to execute. To get
around this, the EVM implements a notion of gas—a cost (in Ether) for the execution
of each EVM bytecode instruction. If the amount of gas associated with a particular
transaction is not fully paid for, then execution of the smart contract stops and the altered
state within the transaction is reverted to the original state as it was upon initiation. This
ensures that all transactions terminate, and that computationally expensive functionality
is financially prohibitive, avoiding attempts to overload the Ethereum execution engine.

Listing 1.1 shows an excerpt of a Solidity contract4 we have built to model the
casino contract from Fig. 1. In particular, the listing shows the implementation of

2 https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-
bug-ether.

3 https://solidity.readthedocs.io.
4 See https://git.io/fx6cn.

https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://solidity.readthedocs.io
https://git.io/fx6cn

Verification of Smart Contract Business Logic Properties 231

function removeFromPot which allows the casino to withdraw money from the casino’s
bank when invoked. The logic within the function is simple—it reduces the internal state
variable pot which keeps track of how much money lies in the casino’s bank (using
an unsigned 256 bit integer) and transfers the requested amount using the transfer
method to the caller of the function—msg is a variable representing the message invok-
ing the transaction and msg.sender is the transaction initiator’s address. It is worth
noting that on Ethereum, function calls are atomic (though still reentrant), in that they
execute to completion (whether successful or not) before another function call can be
invoked.

1 contract Casino {
2 private uint256 pot = 0;
3 private address operator;
4 ...
5 function removeFromPot(uint256 value) public byOperator noActiveBet {
6 pot = pot - value;
7 msg.sender.transfer(value);
8 }
9

10 modifier byOperator() {
11 require (msg.sender == operator);
12 _;
13 }
14 ...
15 }

Listing 1.1. Solidity code to withdraw money from the casino pot and definition of a modifier to
ensure that a function can only be invoked by the owner of the casino.

To ensure that the function can only be invoked by the casino owner and not during
an active game, the code uses two modifiers byOperator and noActiveBet, which add
in-line checks accordingly. The definition of the byOperator modifier is also shown
in Listing 1.1. It modifies any function it is applied to (here it has been applied to
removeFromPot) such that it executes the original function code where the placeholder
_; is specified. The modifier byOperator will thus ensure that the transaction initiator
is indeed the casino operator, using a require statement (one type of exception raising
convenience function provided which checks if a condition holds, or otherwise raises an
exception), and then executes the original function code. Internally, the require state-
ment triggers the Solidity command revert which raises an exception if the condition
does not hold.

It is worth noting that if the transfer function fails (for example due to insuffi-
cient available funds being available in the contract) then it will also raise an exception
and abort the transaction reverting the state (including variable values) back to their
original values as at the beginning of the invocation. Solidity also provides a send func-
tion which, in case of failure, will not raise an exception but returns a boolean success
response.

Functions are tagged by annotations indicating their visibility in Solidity—defining
from where calls can be made: private only from functions within the contract;
internal from functions within the contract or from deriving contracts; external only

232 W. Ahrendt et al.

from external contracts (or using a contract interface transaction rather than a function
call); or public from anywhere.

2.2 Deductive Verification with KeY

We use the KeY system [2] to verify the Java programs (obtained from the original
Solidity contracts) to be correct with respect to their specification. The Java Modeling
Language (JML) [12], is used to write class invariants and method specifications.

JML specifications are embedded into Java source code as Java comments. Any
comment starting with //@ or /*@ marks the start of a JML specification. Consequently,
standard Java tools like compilers, simply ignore JML specifications, while JML aware
tools can distinguish Java comments from JML specifications and make use of them.

1 public class Account {
2 /*@ public invariant accountNr >= 0 &&
3 (\forall Account a; a != this; a.accountNr != this.accountNr); *@/
4 private /*@ spec_public @*/ int accountNr;
5
6 //@ public invariant balance >= 0;
7 private /*@ spec_public @*/ int balance;
8
9 /*@ public normal_behaviour

10 @ requires amount >= 0 && to != this;
11 @ requires this.balance >= amount;
12 @ assignable this.balance, to.balance;
13 @ ensures this.balance == \old(this.balance) - amount;
14 @ ensures to.balance == \old(to.balance) + amount;
15 @ ensures \result == true;
16 @*/
17 public boolean transfer(Account to, int amount) {...}
18 }

Listing 1.2. Java source code annotated with JML specifications.

Listing 1.2 shows a class Account, which implements a bank account. It consists
of two integer fields accountNr and balance as well as the method transfer, which
takes as arguments the target account (parameter to) and the amount to be transferred.

The class is annotated with two JML invariants. JML invariants specify proper-
ties of objects that have to be established by the constructor and to be preserved by
all methods. They are marked by the keyword invariant and followed by the actual
property written as boolean typed JML expression. JML expressions are a superset of
side-effect free Java expressions with additional operators like quantifiers \exists and
\forall. The first invariant (lines 2–3) states that account numbers are unique, while
the second (line 6) restricts the value of field balance to be non-negative.

Lines 9–16 contain transfer’s JML method specification. The method’s precon-
ditions are marked by requires, which is followed by a boolean JML expression. If
the caller ensures that the preconditions evaluate to true at invocation time, then the
method guarantees that (i) it terminates normally, i.e., without throwing an exception
(line 9), (ii) in its final state the postcondition (keyword ensures) holds (line 13–15)
and (iii) that at most the values of the fields listed in the assignable clause (line 12)

Verification of Smart Contract Business Logic Properties 233

have been changed. Multiple requires and ensures clauses are conjunctively com-
bined, and many method specifications can be connected using also. Complementary
to normal_behavior there are exceptional_behavior specifications stating which
exceptions are thrown under which conditions as well as assertions about the post state.

For convenience, JML defines a few defaults. For instance, by default all fields,
parameters and return values of reference type are not null. Further, there is an implicit
pre- and postcondition \invariant_for(this) for each method specification stating
that the method has to preserve the invariant of the this object.

To verify that a Java program satisfies its JML specification, KeY translates Java and
JML into a program logic called Java Dynamic Logic [2]. The formula is then proven
using a sequent calculus and symbolic execution. Symbolic execution is seamlessly
integrated as sequent calculus rules. KeY supports modular reasoning by using a method
specification to symbolically execute a method invocation statement, instead of inlining
the method’s body. A program in KeY is thus proven to be correct by verifying one
method at a time. The use of method specifications makes the approach modular.

Finally, in the context of the current work, it is important to note that KeY not
only supports full sequential Java, but also JavaCard, a Java derivative which features a
transaction mechanism including rollback of interrupted transactions [2]. The fact that
KeY natively supports transaction verification enables us to deal with rollback, which
is the mechanism used by the EVM to deal with failure in transactions.

3 Translation to Java

We describe here our translation of Solidity contracts into Java. First, we describe the
challenges in realising a semantics preserving translation from Solidity to Java. Then
we explain our translation in detail. Some challenges (e.g., challenge 1) are common to
all smart contract languages, whereas others (e.g., challenge 4) are Solidity specific.

1. Distributed ledger. Solidity contracts execute on the blockchain where all transac-
tions are recorded and the balance of all contracts is maintained. Functions such
as transfer use the blockchain to record exchanges of money between contracts.
Neither the distributed ledger nor the functions operating over it exist in the Java
runtime and are thus to be implemented separately if the specification refers to it.

2. Message passing. Solidity contracts may trigger the execution of functions in other
contracts through external calls using message passing. The message not only trig-
gers the right functionality (by naming the function to be executed), it also carries
further information such as the address of the message sender and funds sent with
the message. So, simply encoding Solidity function calls as Java method calls does
not work as the extra information has to be passed within the method calls.

3. Revertible transactions. Handling of messages in smart contracts takes the form of
a transaction, and failures throughout its execution result in a rollback, reverting the
state to what it was at the beginning of the call. Unless explicitly handled, such fail-
ures propagate even when they happen in further function calls within the same con-
tract or external ones. Such failures can occur indirectly due to attempts to transfer
unavailable funds, or directly through the revert command, possibly encapsulated

234 W. Ahrendt et al.

within other instructions such as require. Java has no built-in notion of such revert-
ible transactions, and their interaction with the underlying ledger further complicates
their encoding.

4. Bounded datatypes. Although the EVM uses a 256-bit stack, Solidity provides a
family of bounded datatypes, such as the unsigned 256-bit integers uint256 and
signed 24-bit integers int24, none of which have direct equivalents in Java. These
datatypes have over- and underflow semantics, e.g. using a uint256, subtracting
5 from 4 would result in 2256 − 1. These datatypes are common sources of errors
and many smart contract vulnerabilities are due to insufficient checks for exceeding
bounds, hence, these are to be carefully modelled in the translation.

5. Function annotations and modifiers. Solidity allows functions to be tagged by visi-
bility and other built-in annotations, but also with user-defined modifiers. Visibility
annotations define access to contract functions, while built-in annotations include
pure and view (indicating that a function will and may not change the contract’s
state) and payable (indicating that messages invoking the function may include
transfer of funds with the smart contract as beneficiary together with the message).
Furthermore, as discussed earlier, functions can also be annotated by user-defined
modifiers, effectively code transformations, which are normally used to include
recurring snippets of code into functions. Java only supports visibility modifiers and
even these do not have a direct correspondence with their Solidity counterpart—the
rest remain to be encoded in the translation.

6. Fallback function. The message-passing invocation model used by Solidity allows
for the handling of messages invoking functions which are not defined in the contract
using a fallback function. A contract tries to match the message function name with
the functions defined in the contract to which the message is sent, but if none match,
the contract’s fallback function is invoked. For instance, if a contract at address addr
does not define a function f, then any call to addr.f will result in the invocation

of the fallback function at address addr. A common instance of this is that unless
a smart contract explicitly defines a transfer function (to receive funds), when-
ever another contract tries to send it funds through addr.transfer, the fallback is
invoked. This means that, in such a case, unless the fallback function is annotated
as payable, the contract cannot receive funds. This message handling mechanism is
completely absent in Java, and requires to be explicitly modelled at different points
of the translation.

We explain now how our automated translation addresses the above challenges in
order to preserve the semantics of the original Solidity contract.

(i) The distributed ledger’s functionality is abstracted as a public Java class.
To be able to model the environment of the smart contract—the blockchain sys-
tem on which it runs—we abstract it as a public class, Address, providing the
functionality of the distributed ledger on which the Solidity contracts operate
(challenge 1). Thus, the distributed ledger is modelled as several Address objects
that interact using the same functionality as in Solidity’s blockchain. The class
manages the balance of the corresponding Solidity contract and supports methods
to send and transfer modelling what happens at the back of the scenes when the

Verification of Smart Contract Business Logic Properties 235

corresponding Solidity functions are invoked. Through this class, the functionality
of the payable annotation, is also handled, transferring the requested amount from
the caller to the callee.

(ii) Built-in datatypes become public Java classes. To address challenge 4, the func-
tionality of the Solidity datatypes not available in Java has been replicated in Java
interfaces and classes. We end up having multiple classes implementing an inter-
face to support different ways of data handling, e.g., should an over- or underflow
trigger an exception (used when we want to verify the absence of over- or under-
flows), or should it replicate the semantics of Solidity bounded integers (used in
the rare cases when the smart contract may use over- and underflow in its func-
tionality). For instance, the interface Uint256 comes with the Uint256int and
Uint256BigInteger classes to model Solidity’s datatype uint256 (see Sect. 4 for
more details). Apart from providing the Solidity operators on these types (e.g. addi-
tion and multiplication for integers), the interface is also used to specify generic
JML class invariants and method specifications.

We also provide Java implementations that model information about a trans-
action, a message and a block which are provided by Solidity as global variables
accessible from within any function call. This behaviour is replicated by making
the transaction, message and block information available as attributes (respectively
tx, msg and block) in every contract class and which are updated upon every exter-
nal function call.

(iii) Solidity contracts are modelled as Java classes. Every Solidity contract is trans-
lated into a Java class extending the Address class in order to have the Ethereum
specific features (address where it resides, its balance), includes method definitions
to handle require throwing an exception to deal with rollback, and includes the
state variables of the Solidity contract as class attributes.

(iv) Contract functions are modelled as methods in the contract class. In order to
translate Solidity function definitions into Java, we must address: (i) annotations;
(ii) modifiers; (iii) transaction information and (iv) exception (revert) handling.
Listing 1.3 shows the Java template generated from a definition of a function f
with parameters p1, p2, etc., the content of which is explained below. Note that
from Solidity function f, two Java functions are created: one also called f, which
performs all required checks and then executes the original body of the function;
and another function call f, which is the function to be accessed and which adds
the necessary machinery to handle exceptions, transaction information, etc.

Visibility annotations public, private and internal are mapped to Java vis-
ibility annotations, but external (which allows only external calls to the function)
has no corresponding annotation in Java and is omitted. Internal uses of such func-
tions would fail at the compilation stage, thus the translation is no less safe. The
annotation payable is implemented by using the functionality provided by the Java
Ethereum model. The visibility annotation in Listing 1.3 is derived from that used
in the Solidity contract.

As for user-defined modifiers, we limit our automated translator to deal with
modifiers which just inject code before the function’s body. Each such modifier is
transformed into a method which just executes the code to be injected, and which
is invoked at the beginning of the main function call (see Listing 1.3).

236 W. Ahrendt et al.

Transaction, message and block information is available in Solidity as global
variables whenever a function is called. We address this in the Java translation by
encoding them as additional parameters to the call f function. To handle failing
transactions, Java exceptions are used (since catching exceptions is not possible in
Solidity yet, there is no contract code in catch). Upon catching an exception, we
use the JavaCard transaction rollback mechanism (supported by KeY) to undo the
effects of the transaction so far (see the JCSystem.* calls appearing in lines 4, 6
and 9 in Listing 1.3).

(v) Fallback function. If a Solidity contract has a fallback function defined, then it is
translated as described above. If not, we emulate the Solidity compiler and define
an empty payable fallback method.

(vi) Function calls. Function calls are handled differently depending on whether they
are internal or external, as determined at translation time. External calls performed
as A.f(); (or using the Solidity call mechanism) are translated as calls to A.
call_f(..., msg, block, tx) in the corresponding contract class, defaulting
to the fallback function if no such function is defined. In contrast, internal calls are
simply translated as direct calls to method f(...) in the contract class.

1 visibility annotation return type call_f(p1, p2, ..., Message _msg, Block _block, Transaction
_tx) {

2 msg = _msg; block = _block; tx = _tx;
3 try {
4 JCSystem.beginTransaction(); // Only for verification purposes
5 return this.f(p1, p2, ...);
6 JCSystem.commitTransaction(); // Only for verification purposes
7 } catch (Exception e) {
8 System.out.println(e);
9 JCSystem.abortTransaction(); // Only for verification purposes

10 }
11 }
12
13 visibility annotation return type f(p1, p2, ...) {
14 this.user defined modifier1();
15 this.user defined modifier2();
16 ...
17 this.payable();
18 // Translated Solidity function code
19 }

Listing 1.3. Methods in contract class for each function in Solidity contract.

We implemented our translation in the tool JAVADITY5: it takes a Solidity contract
and gives a Java file that can be enriched with JML specifications to be verified with
KeY.

Example 1. Consider the Solidity function removeFromPot (shown in Listing 1.1). We
define, a specification that uses the following three preconditions: (i) only the operator
can remove from the pot, (ii) the value to be removed may not exceed the current value
of the pot, and (iii) no game may be in progress (the game state must be either idle

5 See https://github.com/rebiscov/Javadity.

https://github.com/rebiscov/Javadity

Verification of Smart Contract Business Logic Properties 237

or available); and three postconditions: (i) the variable pot is reduced by the amount
withdrawn, (ii) the caller’s balance is increased by this amount, and (iii) the contract’s
balance is reduced by the withdrawn amount. Furthermore, only the variable pot and the
balances of the caller and the casino smart contract may change as a result of calling
this function.

Upon applying the translation defined in this section (which is automatically carried
out by JAVADITY), we obtain the Java implementation shown in Listing 1.4. We (man-
ually) enrich the implementation with the JML specification (lines 2–9 in Listing 1.4)
corresponding with the requirements above. Lines 2–4 correspond to the preconditions,
lines 6–8 correspond to the postconditions and line 5 includes an assignable clause
indicating the variables that may be modified during the execution of the function.

4 Verification with KeY

In this section we outline the idea and principal approach for two aspects of the speci-
fication and deductive verification of the Java translations of Solidity contracts.

1 /*@ private behaviour
2 @ requires operator.eq(msg.sender);
3 @ requires \invariant_for(value) && value.gr(Uint256.ZERO) && value.leq(pot);
4 @ requires state == State.IDLE || state == State.GAME_AVAILABLE;
5 @ assignable pot, msg.sender.balance, this.balance;
6 @ ensures pot.eq(\old(pot.sub(value)));
7 @ ensures msg.sender.balance.eq(\old(msg.sender.balance.sum(value)));
8 @ ensures this.balance.eq(\old(this.balance.sub(value)));
9 @ ...

10 @*/
11 private void removeFromPot(Uint256 value) throws Exception {
12 // Modifiers
13 this.byOperator();
14 this.noActiveBet();
15 // Requires
16 this.require(value.gr(Uint256.ZERO) && value.leq(pot));
17 //Function code
18 this.pot = this.pot.sub(value);
19 msg.sender.transfer(this, value);
20 }
21
22 /*@ ... @*/
23 public void call_removeFromPot(Uint256 value, Message _msg, Block _block, Transaction _tx)

throws Exception {
24 msg = _msg; block = _block; tx = _tx;
25 try {
26 JCSystem.beginTransaction();
27 this.removeFromPot(value);
28 JCSystem.commitTransaction();
29 } catch (Exception e) {
30 JCSystem.abortTransaction();
31 }
32 }

Listing 1.4. Java translation of the removeFromPot function.

238 W. Ahrendt et al.

Unsigned Integer of 256 Bit Length. As explained in Sect. 3, Solidity’s scalar uint256
datatype is mapped to the interface type Uint256 in Java. The interface provides all
the arithmetic operations and comparisons needed which we specified accordingly in
JML. To specify the interface in an efficient manner, we used JML’s ghost fields, i.e.,
fields that only exist on the specification level and not on the implementation level. The
advantage of ghost fields is that they can be declared for interfaces as instance fields to
be implicitly present in any implementing class. Using a ghost field allows us to relate
the interface type to an abstraction and to use the abstraction in other specifications.

We use a ghost field called _value of the JML type \bigint to model the value as
integer. JML’s bigint datatype represents the mathematical whole numbers. An addi-
tional invariant restricts the range of the ghost field to the range of Solidity’s uint256
datatype. The method specifications can then describe their effect with respect to the
ghost field _value. Listing 1.5 shows an excerpt of the specification. The expression
\dl_MAXUINT256() refers to the maximal value of the uint256 datatype. The speci-
fication for the addition (method sum) specifies the result in relation to the ghost field
value and takes care of overflow issues.

To allow the reasoning about Uint256 to be efficient and to a large degree automatic,
the classes using this interface had to be enabled to treat it more similar to a primitive
type than a reference type. To achieve this the immutability of the instances of this type
needs to be exploited. This is until now not directly supported by KeY and will be added
in a future release as additional contribution of our work.

To clarify the issue and solution, assume a class C has a field f of type Uint256.
The invariant of class C will include the boolean expression \invariant_for(this.
f) to assert the range restrictions. During verification of each method of class C we
have in particular to show that its invariant is preserved. This can become tedious as
it involves unpacking the invariant of this.f even though the method did not reassign
any value to f and thus because of the immutability could not possibly have changed the
validity of \invariant_for(this.f). Exploiting the knowledge about immutability
allows the prover to quickly determine that no operations are able to invalidate the
respective invariants. In our proof of concept we simulated this feature by specifying
the dependencies of the invariants accordingly via so called accessible clauses. Due
to the not yet implemented support for immutability in KeY, we are currently not able to
prove the correctness of our accessible clauses, but can make use of them when proving.

Support for Solidity’s State Rollback. To provide support for the Solidity’s rollback in
case of exceptions, the translation makes use of JavaCard’s transaction mechanism with
explicit commit and abort calls. Note again that KeY supports verification of code using
revertible JavaCard transactions [2].

In order to model unexpected failures (by external events and not visible by program
semantics), we generalise the JML specifications of the methods such that they allow
normal as well as exceptional termination. For these methods a wrapper method call_m
(..) is created (see Sect. 3) which wraps the call to m(..) using JavaCard transactions.
For the JML specification of the wrapper method, we need to distinguish between the
commit and abort case. For this we use a boolean ghost field (specification only field)
that is true if the abort case has been triggered and false otherwise.

Verification of Smart Contract Business Logic Properties 239

1 public interface Uint256 {
2 /*@ private instance invariant _value >= 0 && _value <= \dl_MAXUINT256();
3 @ private final instance ghost \bigint _value; @*/
4
5 /*@ private normal_behavior
6 @ requires \invariant_for(value);
7 @ ensures \result._value == (this._value+value._value > \dl_MAXUINT256() ?
8 @ ((\bigint)-1)*\dl_MAXUINT256() - 1 : (\bigint) 0) + this._value + value._value;
9 @ ensures \invariant_for(\result);

10 @ accessible _value, value._value;
11 @ assignable \strictly_nothing;
12 @ ...
13 @*/
14 Uint256 sum(Uint256 value) throws Exception;
15 }

Listing 1.5. Excerpt from the Uint256 interface specification.

JavaCard’s transaction mechanism is API based. JCSystem.beginTransaction
() starts a transaction and any code until a JCSystem.commitTransaction() or
JCSystem.aboutTransaction() is symbolically executed on a copy of the original
heap. In case of a commit the copy replaces the original heap; otherwise, the copy is
discarded and the original heap is used instead, thus rolling back the changes in case of
an abort.

5 Case Study: Casino Contract

As a case study, we use a Solidity contract modelling a casino whose legal contract is
given in Fig. 1. The casino manages a pot represented as a uint256 value representing
the amount of ether that can be won in a game consisting of a coin toss: A player places
a bet on the outcome, transfers her stake to the contract and records the amount. If the
prediction of the player is correct, the pot is transferred to her wallet, otherwise the
money the player has bet is added to the pot.

The Solidity contract is translated to a Java program by our tool, and annotated
with JML specifications, which describe the full functional behaviour of the contract6.
In particular, an invariant which states that the balance of the contract is equal to the
amount in the pot if no bet is currently placed; otherwise, the contract’s balance equals
the sum of the ether in the pot and the player’s wager.

We verified that a representative selection of methods (i.e. all supported features
occur) satisfy their contract and preserve the stated invariant. In particular, we veri-
fied for the methods call_closeCasino and call_removeFromPot that they behave
correctly w.r.t. the rollback semantics in case of exceptions. For instance, the proof
of call_removeFromPot required around 22,000 rule applications of which 207 were
interactive. The most critical rule applications were target unpacking of parts of the
class invariant. The rationale is to only unpack those parts whose property is required
to prove a property, e.g., if the fields occurring in a conjunct of an invariant have been
changed by the method and the conjunct has to be shown to be reestablished. For the

6 See https://github.com/raulpardo/casino-contract-java-solidity.

https://github.com/raulpardo/casino-contract-java-solidity

240 W. Ahrendt et al.

unchanged parts, dependency contracts are used which exploit the fact that if a formula
does not depend on changed parts of the heap then it cannot be invalidated.

The verification effort is rather straightforward. It requires some tedious but trivial
interactions due to the Uint256 datatype being modelled as interface. The necessary
rule interactions are less than 1.5% of all rule applications. Thereof the vast majority
of interactive rule applications consist of unpacking of class invariants. This could be
easily automated by enforcing the unpacking of invariants before method contracts are
used. A small minority require proving or making use of framing properties, which can
be easily avoided if KeY were to make use of the fact that instances implementing the
Uint256 interface are immutable, and by tweaking the proof search strategies taking
advantage of the specifics of the Solidity translation.

6 Limitations and Challenges

One of the most difficult issues to be handled by our approach is the undefined evalua-
tion order of nested expressions in Solidity. This means the semantics of contracts with
nested expressions is dependent on the compiler being used (similar to the situation in
C). There are several alternatives to address this issue in our approach: (i) forbid nested
expressions to be used in a Solidity contract, and to reject such contracts early on; (ii)
provide compiler specific calculus rules to be chosen prior to a verification attempt, at
the cost of rendering the verification result compiler specific; (iii) split the proof into one
subproof for each possible evaluation order when encountering a nested expression. As
all possible orders are considered, a successful verification would be meaningful inde-
pendent of the used compiler. However, this can lead to rather large (number of) proofs
in the presence of nested expressions; (iv) and when reaching a nested expression dur-
ing symbolic execution, prove that the result is independent of the evaluation order and
continue with the uniquely determined result. In our current experiment we used the
first alternative, but we plan to adopt alternative (iii) or (iv) in the future.

One of the major challenges which static verification of smart contracts faces is
that of modelling the blockchain environment within which the smart contract is exe-
cuted. For instance, in Solidity, one may access the current block number, timestamp
of the block, and other parameters which may only be known at runtime. Our approach
is to make no assumption on these values, and thus proofs must go through with the
values being completely non-deterministic. In this manner, we ensure soundness but
we may lose completeness when an algorithm may have been designed to use implicit
constraints on these values e.g. that block numbers are strictly increasing. From our
experience, few smart contracts make such assumptions, and when one wants to verify
a property of such a smart contract, one can still add such assumptions explicitly.

Many of the bugs and security flaws of Solidity are due to specific decisions taken
when designing the language. In the white paper [7, Chapter 4.4] Everts and Muller
provide a comprehensive overview of these issues. In what follows we summarise some
of these issues and explain to which extent and how we deal with them.

One class of issues is rooted in the design choice concerning the semantics of certain
programming constructs in Solidity. Some examples of this are: (i) a differing semantics
whether division is on literals (and precomputed by the compiler) or involves variables

Verification of Smart Contract Business Logic Properties 241

(evaluated at runtime), (ii) difference in the treatment of method calls depending on
using an implicit or explicit this, i.e., the statements/expressions this.m() and m()
may result in different behaviour, and (iii) usage of copy-by-reference and copy-by-
value looks the same on the source code level. All of these issues are or can be easily
supported by our approach at the translation level by choosing the correct Java imple-
mentation of the used Solidity construct. This is indeed possible as these differences,
although invisible or surprising to the user, can be identified unambiguously by static
analysis and taken care of accordingly.

Another issue is how a programming language decides to deal with integer overflow
(and underflow). Solidity joins C’s and Java’s approach by silently overflowing. This
easily leads to mistakes, as programmers often use natural or whole numbers as internal
mental models. Our approach models overflow and underflow semantics faithfully and
proves a program correct only if the overflow was intended and/or does not invalidate
the property to be proven. KeY for Java provides also a second sound (but incomplete)
approach to the same problem by enforcing to prove that no overflow happens.

7 Related Work

Although the need for formal verification, particularly compile-time static analysis tech-
niques, for smart contracts has been highlighted various times e.g. [3,7], actual work in
the domain is still sparse. Most work on static analysis techniques for smart contracts
falls in one of two categories—either Lint-like syntactic analysis of code to find poten-
tial vulnerabilities like Solcheck (https://git.io/fxXeu) and Solium (https://git.io/fxXec),
or semantics-based static analysis specialised to identify commonly encountered prob-
lems with smart contracts (e.g. gas leaks, reentrancy problems).

Of the latter type, one finds approaches designed for different types of vulnerabili-
ties. Fröwis et al. [8] address smart contract control-flow mutability which is typically
not desirable. OYENTE [13] is a tool which can perform reentrancy detection and other
analysis using symbolic execution. Mythril [14] uses concolic analysis, taint analysis and
control-flow analysis for identifying security vulnerability, while SmartCheck (https://
tool.smartdec.net) uses both Lint-like and semantic analysis to identify various vulner-
abilities. Bhargavan et al. [5] transform Solidity into F* on which they perform analysis
to identify vulnerable patterns. The other approaches perform their analysis at the EVM
bytecode level, mainly because the control-flow analysis used typically does not use
the program structure. This enables the analysis of any smart contract deployed on the
Ethereum blockchain. It is worth noting that the semantics of Solidity are only infor-
mally described in the language documentation, and effectively pragmatically decided
based on what the compiler does. In contrast, there are published formal semantics for
EVM bytecode either through direct formalisation or via translation in [9–11].

Both these types of static analysis approaches have been shown to readily scale up to
large smart contracts, the former because the complexity of syntactic analysis is of the
order of the size of the source code, while the latter typically use overapproximations
to ensure tractability. However, the downside is that neither of these approaches allow
reasoning about the functional aspect of the smart contract under scrutiny, i.e. what the

https://git.io/fxXeu
https://git.io/fxXec
https://tool.smartdec.net
https://tool.smartdec.net

242 W. Ahrendt et al.

contract is actually trying to achieve. There is little published work towards achieving
specification-specific static analysis for business logic verification of smart contracts.

Bai et al. [4] perform model checking using SPIN but perform the analysis on
a model of the smart contract rather than directly on the code. Similarly, Abdellatif
et al. [1] build a model not only of the smart contracts but also the underlying blockchain
and miners using timed automata to enable verification. In both cases there lies a sub-
stantial gap between the actual smart contract and the model, raising questions of the
faithfulness of the model with respect to the concrete code. Our approach suffers also
from this issue due to the translation from Solidity to Java. However, our model is much
more granular (no loss of precision), and thus the gap between our Java model and the
original is much narrower.

8 Conclusions

We have presented a translation-based verifier of smart contracts using the deductive
verification tool KeY. Our approach is one of the first to go beyond verifying standard
sanity checks (e.g. there are no integer over- and underflows) and enable verification
of business-logic and thus contract-specific specifications (e.g. when a player guesses a
number, the casino contract will pay her 1.8 times the bet they placed). We implemented
the translation in a tool and illustrated its use on a simple casino smart contract.

Although our results indicate that our approach is promising, our contribution
uncovered new unexpected questions and challenges. The first question is how the app-
roach fares with real-life contracts. What is promising is that the size and complexity
of smart contracts is trivial compared to typical software systems and matches well
with our case study. They typically run into some hundreds lines of code, and use loops
sparingly due to gas concerns. This may indicate that typical smart contracts are within
reach of automated verification techniques. We are currently applying our approach to
a number of real-world use cases (some with known bugs) to evaluate better this claim.

Currently we depend solely on hand-waving argumentation that the semantics of
Solidity and our translation match, which is a concern. However, we have to emphasise
that there is no established (or otherwise) formal semantics of Solidity, with the lan-
guage manual and the compiler acting as arbiters as to how constructs actually work.
Until now, the only semantics available are at the EVM assembly level, making a proof
of correctness of the translation impossible at present. However, translating between
two structured high level formalisms—Solidity and JavaCard—we believe that the leap
of faith is across a much narrower gap than using a semantics at a lower level of abstrac-
tion, and the fact that both languages have a native transaction (rollback) mechanism
strengthens this point. Still, a proof of semantics-preservation is highly desirable. We
are also currently investigating how to build a verification tool handling Solidity pro-
grams directly rather than through a translation.

References

1. Abdellatif, T., Brousmiche, K.: Formal verification of smart contracts based on users and
blockchain behaviors models. In: NTMS 2018, pp. 1–5 (2018)

Verification of Smart Contract Business Logic Properties 243

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deduc-
tive Software Verification - The KeY Book. LNCS, vol. 10001. Springer, New York (2016).
https://doi.org/10.1007/978-3-319-49812-6

3. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart contracts (SoK).
In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 8

4. Bai, X., Cheng, Z., Duan, Z., Hu, K.: Formal modeling and verification of smart contracts.
In: ICSCA 2018, pp. 322–326 (2018)

5. Bhargavan, K., et al.: Formal verification of smart contracts: Short paper. In: PLAS 2016,
ACM (2016)

6. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating a safe
smart contract: lessons and insights from a cryptocurrency lab. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp.
79–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 6

7. Everts, M., Muller, F.: Will that smart contract really do what you expect it to do? White
paper (2018)

8. Fröwis, M., Böhme, R.: In code we trust? – measuring the control flow immutability of all
smart contracts deployed on Ethereum. In: Garcia-Alfaro, J., Navarro-Arribas, G., Harten-
stein, H., Herrera-Joancomartı́, J. (eds.) ESORICS/DPM/CBT 2017. LNCS, vol. 10436, pp.
357–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 20

9. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the security anal-
ysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol.
10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 10

10. Hildenbrandt, E., et al.: KEVM: a complete semantics of the Ethereum virtual machine.
White paper (2017)

11. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70278-0 33

12. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

13. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In:
CCS 2016, pp. 254–269 (2016)

14. Mueller, B.: Smashing Ethereum smart contracts for fun and real profit. In: HITB SECCONF
Amsterdam (2018)

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. White Paper (2009). https://
bitcoin.org/bitcoin.pdf

16. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper 151, pp. 1–32 (2014)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-319-67816-0_20
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-319-70278-0_33
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Verification of Smart Contract Business Logic
	1 Introduction
	2 Preliminaries
	2.1 Smart Contracts in Solidity
	2.2 Deductive Verification with KeY

	3 Translation to Java
	4 Verification with KeY
	5 Case Study: Casino Contract
	6 Limitations and Challenges
	7 Related Work
	8 Conclusions
	References

