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Abstract. Business process management is an operational management
approach that focuses on improving business processes. Business pro-
cesses, i.e., collections of important activities in an organization, are
represented in the form of a workflow, an orchestrated and repeatable
pattern of activities amenable to automated analysis and control. Prior-
ity is an important concept in modeling workflows. We need priority to
model cancelable and compensable tasks within transactional business
processes. We use the Reo coordination language to model and formally
analyze workflows. In this paper, we propose a constraint-based approach
to formalize priority in Reo. We introduce special channels to propagate
and block priority flows, define their semantics as constraints, and model
priority propagation as a constraint satisfaction problem.
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1 Introduction

Business Process Management (BPM) systems [20,23] are widely used to auto-
mate organizational business processes. Organizations rely on BPM to analyze,
control or optimize their processes. BPM systems provide means for automated
process analysis such as model validation, transformation, simulation, visualiza-
tion of key performance indicators, and reporting [3]. Despite the variety of BPM
systems [21,29], The foundation of BPMN is based on Petri Nets [1,32]. The
choice of Petri Nets as foundation for BPMN implementation over other formal
methods, often more expressive or specialized [13,14], is not surprising: hardly
any model is as simple, intuitive, and naturally supports task traceability.
While Petri net-based models enable automated process analysis, they lack
a few desirable characteristics: (i) They cannot naturally represent semantics
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of component-based or service-based processes. Ideally, we would like to plug
semantic models for individual components (often integrated dynamically at
run time) to the semantic models of existing processes in a compositional way.
(ii) The classical Petri Nets are not expressive enough and often are extended
(e.g., with colors, reset and inhibitor arcs, priority transitions) to enable mean-
ingful process analysis. Such extensions change the semantics of the model and
generate incompatible dialects of process-specification languages adopted by var-
ious tools.

An alternative formalization to express the semantics of BPMN models is
the Reo coordination language [5]. Reo has been used to formalize semantics
of BPMN, UML Activity and Sequence Diagrams [15], to map BPEL frag-
ments [33], to represent transactional workflows [27], and to implement service
orchestrations [24] and service choreographies [30]. Reo allows composition of
components and services in an intuitive way, and addresses the issue (i) men-
tioned above. Moreover, the open-ended nature of Reo allows us to introduce
channels with specific properties required for some applications. Introducing new
primitives may make it necessary to extend the formal semantics of Reo in order
to include some new concepts. Several dozen variations of semantic models for
Reo have been proposed [25]. They vary from rather simple ones that cover basic
Reo behavior (e.g., constraint automata [8]) to more complex models that cover
specific behavioral aspects, e.g., context-sensitivity [18]. In some of these models,
computing the overall semantics of a system is computationally expensive. This
hampers using the language for analyzing large real-world business processes.

In [16], the authors proposed to model the semantics of Reo as a constraint
satisfaction problem (CSP). They define data flow in a Reo network in the form
of mathematical expressions on data observed at Reo nodes. The main advantage
of such representation is the possibility to use existing constraint solvers to infer
the behavior of a network given the semantics of its constituent parts.

Priority flow is an important aspect of process modeling, which is not easily
supported by existing formalisms. Analyzing compensation and error handling
requires a mechanism to express priority of some flow alternatives over others. In
this paper, we propose a constraint-based framework for priority flow. There is
ongoing work on an existing automata based formal semantics of Reo to handle
priority, but our practical needs for dealing with large models of realistic business
processes currently complicates direct use of automata-based semantic models.

This paper is organized as follows: In Sect.2, we briefly describe the Reo
coordination language. In Sect. 3, we introduce priority flow in Reo along with a
constraint-based semantics for it. In Sect. 4, we extend our approach to support
numeric priorities. In Sect. 5, we show the application of our constraint-based
approach via two classes of connectors: (a) priority-aware, and (b) connectors
with a large number of states. In Sect. 6, we overview related work. Finally, in
Sect. 7, we conclude the paper and outline future work.



196 B. Changizi et al.

2 Reo

In the realm of service-oriented computing, the behavior of a software system is
not only defined by the functionality of its services, but also by their interactions.
The code written to realize the latter is often called glue code. Writing and
maintaining glue code is a tedious task, especially in complex systems wherein
the size and rigidity of the glue code tend to grow over time. Coordination
languages offer a more manageable alternative for generating glue code. Reo [5,6]
is a channel-based coordination language for composition of software components
and services. Using a small and open-ended set of predefined and user-defined
constructs, Reo supports modeling of complex coordination behavior.

The primitive constructs in Reo are channels and nodes, whose composition
yields connectors. A channel is an atomic connector with two ends and a con-
straint that relates the flow of data at these ends. Channel ends are either source
ends that read data into the channel or sink ends that write the channel’s data
out. Channels can connect to each other through nodes. There are two types
of channel ends; therefore, three types of nodes can exist: source nodes where
only source ends coincide, sink nodes where only sink ends coincide, and mized
nodes where both source and sink ends coincide. The mixed nodes of a connec-
tor are internal to the connector and not accessible for external data exchange.
The source and sink nodes of a connector, collectively called its boundary nodes
or ports, are used to connect to (the ports of) components to exchange data.
A source node atomically replicates an incoming data items into all of its coin-
cident channel ends, whenever they are all ready to accept. A sink node nonde-
terministically selects a data item out of one of its coincident channel ends and
delivers it as its outgoing data item, leaving all other data items in its coincident
channels intact. The behavior of a mixed node is an atomic combination of the
behavior of a source node and that of a sink node: whenever all of its coinci-
dent source channels ends are ready to accept data items, it selects a data item
out of one of its nondeterministically chosen coincident sink channel ends, and
atomically replicates it into all of its source channel ends.

A Sync channel .. has a source and a sink end. It accepts data from
its source iff its sink can dispense it simultaneously. A LossySync .---» has
a source and a sink end. It reads a data item from its source and writes it
simultaneously to its sink. If the sink end is not ready to accept the data item,
the channel loses it. A SyncDrain - has two source ends and no sink end.
It reads data from its two ends and discards it iff the ends are ready to interact
simultaneously. A FIFO; —— has a source end, a sink end, and capacity
for only one data item. If it is empty, the channel accepts a data item from its
source end and buffers it. If it is full, it is ready to dispense data through its sink
end. Both ends of the channel cannot interact simultaneously. In addition to the
primitive nodes, Merger and Replicator, here we use Router and Cross-product,
which are shortcuts for derived connectors. The Reo nodes used in this work are
explained as follows: A Replicator - has one source end and one or more sink

ends. It replicates data coming from its source to its sinks simultaneously. A
Merger P has one or more source ends and one sink end. It chooses one of its
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Fig. 1. 7-Sequencer

ready to interat source ends non-deterministically, receives a data item through
this end, and writes it to its sink end simultaneously. A Router _‘XC has one

source end and a number of sink ends. It accepts a data item from its source
and simultaneously replicates it on one of its non-deterministically chosen sink,
which is ready to accept data. A Cross-product >¥ has a number of source ends

and a sink end. It accepts a data item from each source, forms a tuple of them in
the counter-clock-wise order with respect to its sink, where it writes the tuple,
simultaneously.

3 Priority Flow

Here we define four channels to deal with priority in Reo.

A PrioritySync —— channel is similar to a Sync channel except it imposes
priority on its flow, which propagates through the connector (unless it is blocked),
and it can influence the non-deterministic choices in the containing connector
by favoring data-flow alternatives that incorporate its ends. A BlockSourceSync
channel “= is a Sync channel that blocks the propagation of priority from its
source end towards its sink end. A BlockSinkSync channel — is a Sync channel
that stops propagation of priority from its sink end towards its source end. A
BlockSync channel 7, a combination of BlockSourceSync and BlockSinkSync,
stops the propagation of priority in both ways.

We model priority using the concepts of innate and acquired priority. Both
ends of priority sync have innate priority. When an end with innate priority
connects to another end that has no priority, the new end will obtain acquired
priority. When one end of a synchronous type channel (e.g., sync, lossy sync,
sync drain, ...) has acquired priority, the other end has innate priority.

However, in the case of non-synchronous channels (e.g., FIFO, async drain)
and also the priority blocking channels, their ends can only have acquired prior-
ity. We update the constraint-based framework for Reo [16] to capture priority
and the priority propagation mechanism, which we informally described above.
In the rest of this paper, we omit data constraints when defining behavior of
Reo elements. Data constraints are irrelevant for priority flow and were thor-
oughly covered in [16]. Motivated by the constraint-based nature of Reo itself,
and the fact that constraint solving has advanced to the point that a number of
practically useful constraint solvers exist today that can cope with realistically
sized problems, we propose to define the behavior of Reo channels, as algebraic
constraints that alter a set of variables.
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Let A and M be global sets of ends and state memory variables, respectively.
A free variable v has one of the following forms, where n € N' and m € M:
n € {T, L} shows presence or absence of data-flow on n; m,m’ € {T, L} denotes
whether or not the state memory variable m is defined in the source and the
target states of the transition, respectively; n” € {T, L} indicates the reason
for lack of data-flow on n originating from the primitive or the context (of this
primitive), respectively; n'*, n'* € {T, L} models priority flow denoting whether
n has acquired or innate priority. An end n has priority iff n'" v n'" = T.

A constraint ¥, which encodes the behavior of a Reo network is defined as:
az=n|n'" |0 | n” | m|m (atoms), Yz =T |a|-¥| WA ¥ (formulae)
A solution to ¥ is a map from the variable sets V' to a value in {L, T}. The
satisfaction rules for a solution () are satisfaction in propositional logic. We
denote the set of all solutions for ¥ as &(¥).

Definition 1 (RCSP). A Reo Constraint Satisfaction Problem (RCSP) is a
tuple (N, M, My, V, C), where: N is a finite set of ends. M is a finite set of state
memory variables. My C M is a set of state memory variables that define the
initial configuration of a network. V is a set of variables v defined by the grammar
vi=n|n" |m | |0 |0 forneN andme M. C={Cy, Cy, ..., Cn}
s a finite set of constraints, where each C; is a constraint given by the grammar
¥ involving a subset of variables V; C V.

Definition 2. (Composition ®). The composition of two RCSPs p; = (N7,
M, Mo, Vi, C1) and po = (No, Ma, Moo, Vo, Cs) is defined as follows:
p1® p2 = N1UNo, My UMs, M1 UMy, Vi UVa, C1ACo).

Axiom 1 (Join axiom). To propagate no-flow reasons, when a source end c
and a sink end k from two networks, the following holds: —¢ & —k < (& V k7).

Axiom 2 (Priority join axiom). When a source end ¢ and a sink end k from
two networks connect, this holds: (¢" V* < k" VE)A (T AES < " VED).

Axiom 3 (Non-deterministic choice axiom). Let N be a set of ends from
which a Reo primitive chooses one for communication non-deterministically. The
following guarantees that a node y with no priority has flow only if no prioritized

node, e.g., x, is ready to interact: (=% A (.T!O Vv m!.) AGA ﬁ(y!o V y!.)) = x>

In [16], the authors described the constraints that a primitive imposes on
a network as a CSP. We extend these constraints with priority capturing vari-
ables. If the variable p'* is true, the end p has innate priority. For example,
in a PrioritySync channel, both ends have innate priority. A primitive end can
also obtain innate priority via propagation. For instance, if one end of a Sync
channel has acquired priority, which means it is prioritized because a primitive
connected to it propagates priority, then the other end will have innate priority.
We denote acquired priority for a primitive end p as: p'° A =p'". The priority
capturing constraint for a Sync channel with source end a and sink end b can be
specified as follows: =(a” Va' Vb" V)V (@ A=a” AWV (@ ABT A=),
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Input: A Reo network R and its RCSP ¢, Output: Solutions for the given RCSP

fifoStates « initial states of FIFOs from the given RCSP;
stateg «— {( fifoStates )}; toExplore «— {stateg}; visited <« {}; solutions «— {};
while (toEzplore # {}) do
state < toExplore.pop(); visited « visited U {state};
cnf «— updateStateAndMakeCNF (v, state);
solutionsp + solve(cnf);
for solp € solutionsp do

state’«— next state of FIFOs extracted from solp;

if state’ ¢ visited and state’ ¢ toExzplore then

‘ toExplore < toExplore U {state’};

end

solutions « solutions U {(state, solp, state’)};
end
output < {solutions, stateg};

N O Uk N

HoR R R
A ®NKHOO

[
o

end

[
o

Algorithm 1. Finding solutions for a given RCSP

The assertion —p'" blocks the priority propagation on p. Though, p can still have
acquired priority through a potential connecting primitive when p'" = T.

Table 1 shows the constraint encoding of Reo channels and nodes in pres-
ence of priority flow. The solutions to the CSP expressing the behavior of a Reo
network encode possible data-flow through its nodes. Since a network may later
connect to another network, the constraints should account for priority imposed
by potential future connections. This information can be discarded when ana-
lyzing the behavior of a network in isolation. To exclude such cases, we should
restrict the possible values of boundary ends.

Axiom 4 (Grounding axiom). Let B C N be the set of boundary nodes
in a Reo network. We rule out the solutions that are only present for further
expansion of the network by: Vb € B : b = b"".

Solutions of the RCSP represent semantics of the corresponding Reo network,
but they are specified as equations, which are much harder to interpret than an
equivalent automata-based semantics. To tackle this issue, we introduce a new
form of automata-like semantics for Reo, which we call Reo Labeled Transition
System (RLTS). The purpose of the RLTS is to compactly represent solutions of
RCSPs for visualization, model checking and simulation. Given a Reo network,
its RCSP can be obtained by traversing the network and forming the conjunction
the constraint encodings of its primitives. The procedure to solve an RCSP is
presented in Algorithm 1. It takes a Reo connector and its RCSP and outputs the
solutions set and the initial state of the connector. First, the algorithm initializes
the global variables that keep the states of FTFO channels (fifoStates), the states
to explore (toExplore), and the visited states (visited) (lines 2,3). While toEzplore
is not empty, ¥ is updated with the current state and its conjunctive normal
form (CNF) is produced for computing the solutions of the Boolean predicates
(lines 4,5). The (state’) indicates the new state of the connector and if it is not
already explored or queued to be processed, it gets added to the list of states
to be explored (lines 6-9). Then, the solutions set is updated with the current
solution (line 13). The final output is the set of solutions and the initial state.
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Table 1. Constraint encoding of Reo with priority

Channel Constraints

ae—i—eb (@< b) A=(a® AV Aa AbT

ae—g>eb (@< B)A—(a® AP A

ae—>b (~<:)I~J)/\—|(ab/\bb)/\

ae—Heb (@ b) A=(a” AB) Ama /\ﬁb

ae——>e} (@ & b) A=(a” AD”) ((—\a A=t A= A=)V (b =
B A = d)))

Qoo >} (b= a) ﬂab/\ﬂa:bD/\((ﬁa’ A=a A=bT A=)V ((0b =
VA G = d"))

G2 (ay <:>a)/\ﬁ(aT/\a'§)/\((ﬁa! A-a A= ASD)V (6 =
B A B = a))

G b (@= —1aA YA (b = AR )A(maA—b) = (1h < ')A (—1h =
V) A (1h = a”) A (=d'” A =b)

a a1 |a < (by Ab2) A—a = ((—a® AD; ABS)V (2bF ABS A ™)V (—b5 A

2 1
Db b—C_ (05 Aa®)) A ((ma” A b A by A—alt A=Y A by )V (6 =
a2 a

21 ABEY A Y VE ) = d)))

@< (b1 Vb)) A=(b1 Ab) Ad < (ma” Vv =(b5 VES))A((ma” A=by A
—by A—a'” A=bY A=by )V (@ = (6 = (b by ) A DY Vb ) =
a") (b1 = (@' = by AbY = a" ) A (2 A by A=ba A (b V
by )) = —bo” ) A Az = (@ = by Aby = a A (b A=by A
—b1 A (bl vV 61 ) = =bi")))))

Table 2. Updating Priority capturing constraints

ae—l—>e b ae—)r—>eh ae—{—>eh ae—H—>eh Gl e b

1® |® e 1® e 1®

a >PAb >P |b =0 a =0 a =0Ab =0 | —ogAb'® =0
1® [ 10 [ [ [ [

Qo= (aofo/\a 70/\b :(~)/\b =0)V((a >0=(a" =b NADb >0=
0" = )))/\(b >0=b)

ae—>eh
a e—><«so |

(@ —0/\a =0Ab =0Ab" =0) V(@ >0= (@ =0")An" >
1®

0= (" =a"))

b

)

aedl _beb | _gap =0
a1
B—b ((a!.ZO/\aO—0/\b.—OAbO—O)\/((bO>O:>(a!1.:bO/\ 2':
a2 10 10 1° 10
a1 b)) A (ay >O:>(a2_al N _al)/\(a2 >0:>(a1 = a, N

ay )

=

_((‘Z
a_g<b2

b1
))—)a
ba

((a!‘:om"—om’—OAb°—o)v(z§1:>(b >0:>( =a"N)A
(by = (by > 0= (b =a )))/\((mar(bl BL%) > maz(by by ) = (B2 A
—b1) = b)) A ((maz(bly by ) > maz (bl , b)) = (b1 A —ba) = —=b3)))
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Definition 3 (RLTS). A Reo Labeled Transition System (RLTS) is a tuple
RLTS=N, M, Q, —, qo), where: N is a set of ends, M is a set of state
memory variables, Q is a (finite) set of states of the form (M), M is the set of
state memory variables that are valid in the given state, — C Qx2N x2N x 2N xQ
is a transition relation, wherein N, R, and I in (¢, N, R, I, p) €— represent
the ends that have flow, those without flow for which the reason for no flow is
the end not being ready for interaction, and the ends with priority. Note that
n & N does not always mean n € R as the reason for data flow can be the
network (then, n requires a reason for no flow). go € @Q is the initial state. We

writequ instead of (9, N, R, I,p) € —». FornelI,n¢ R<neN.

Definition 4 (Composition [). We define the composition of L; =
My, My, Q1, —1, qo,) and Ly = (Mg, Mo, Q2, —2, qo,) as: Ly [ Ly =
(M UN2, MiUMa, —, qo, X qo,) where — is defined as:

Ni,Ry,1q No,Rg,I
q1 1t1g2 2to N1NYo=NoNNt1 R1NNo=RoNI; [1NNo=15NNT4

N1UNg,R{URg,1{Ul5
q1Xq2 t1 Xt2

Ni,Ry,1q No,Rg,I
a 1t1g2 2ta N1NNo=0
N1,R1,11
q1Xqe——t1Xi2

, and its symmetric rule.

We define few operations on a solution s for ¥ = (Ny, My, Myq, Vg, Cyp ):
source(s)=({m|m° € My : s(m°) = T}), target(s)=({m|m'® € My : s(m'°) =
T}, flow(s)={n|n € Ny: s(i) = T}, reason-giving(s)={n|n € Ny : s(n”) = T},
priority(s)={n|n € Ny : (s(n"") vV s(n'")) = T}. We say s «~ ¢ RSN p, where ¢
= source(s), N = flow(s), R=reason-giving(s), I = priority(s), p = target(s).

Definition 5 (Visualization). The visualization function v on ¥ = (N, M,
My, V, C) yields L=(N, M, Q, —, qo), where M = {m]|s(m°) = TV s(m'°) =
T,5 € 6(")}, Q = Usee(w){source(s), target(s)t, —= {(source(s), flow(s),
reason-giving(s), priority(s), target(s)) |s € 6(¥)}, qo= source(sp).

Theorem 1. Let U1 and Wy be two RCSPs, we show that y(¥h © ¥a) = y(¥1) 1
v(¥2).

PT’OOf. Let ’y(wl):(mh M17 Qla —1, qu)a ’Y(WQ) = (m2> M2a Q2a —2, q02)a
and y(¥1 © ¥) = (M, Q, —, qo). It is trivial to see that 91 = 9 U Ny,
M= M, UMQ, Q = Ql XQQ, qo = 4o, X qo,- Assume Js € G(Wl @yv/g), S1, € 61,

Ni1,Rq,I1 N2,Ra2,I2
S2 € 69, t1 1 qu 1P1, t2 © @2 op2 8.t. s1 « t1 and sg v ta, but
N,R.I

At:q "5 pe—st. s t. Therefore, Ny NNy # No NI AN NNy # 0
or (N1 UN2) N (R1 U Ry) # (. The latter is impossible. For the former, either
n € Ni,n ¢ Ny or n € No,n ¢ Ny, which is not possible as it means s(n) =
T A s(n) = L. Similarly, we can show it is impossible to have a ¢ in y(¥; © ¥s),
when there isno s € & s.t. s« t.

RLTS is comparable with Reo autornata [12], a context-dependent formal seman-
tic of Reo. A transition in Reo automata is labeled with a guard, which is a
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Boolean predicate in disjunctive normal form expressing positive and negative
information about presence or absence of 1/O requests, and a firing set that
models the occurring I/O operations in the transition. The second set in RLTS
transitions (the set of ends that provide reason for no flow) correspond to the
negated elements of the guards in Reo automata, while the set of ends with flow
relates to both the firing set and the positive elements of the guards. Unlike Reo
automata, RLTS supports priority.

4 Numeric Priority

In BPMN, an error event has the highest priority, and the exception has priority
over the normal flow. In this extension, the range for priority variables of an end
n,n" and n'", is N (natural numbers) U {0}, where 0 indicates no priority. The
larger number is the higher priority it represents. Each PrioritySync channel
comes with a user defined priority value, which propagates through its ends. To
propagation of a higher priority over a lower priority or no priority, we constrain
priority variables to be greater than or equal to their initial values. Table 2 shows
the priority related parts of the Reo constructs constraints. (§) k= > P iff §(z) > P,
(6 E x> Piff §(x) > P, (§) Ex = P iff §(z) = P, where z € {z'*,2'°}, P € NU {0}. The new
constraint-based encodings of the replicator and router nodes in this table are
constructed in accordance with Axiom 3.

Definition 6 (NPRLTS). A Numeric Priority Reo Labeled Transition System
is a tuple (N, M, Q, —, qo), where: N is a set of ends, M is a set of state
memory variables, Q is a (finite) set of states of the form (M), M is the set of
state memory variables that are valid in the given state, — C Q x 2N x 2N x N —
NxQ is a transition relation, wherein N, R, and f; in (¢, N, R, fr, p) €— are
the ends having flow, those without flow for which the reason for no flow is the

end not being ready for interaction, and a partial map of nodes with priority to

o ) . o . N,R,
their priority values, respectively. qo € Q is the initial state. We write q EALLE LN P

instead of (¢, N, R, fr, p) € —. For allq Mp: (n)>0,n¢ N <ne€R.

We redefine priority(s) as {(n,p)|n € Ny : s(n”) =pV s(n'") = p}.

Definition 7 (Extended Visualization). The visualization function v on
v = (Ng, My, My,, V, C) yields L = (N, Mp, Q, —, qo), where N, =
{n|s(n) =T, s € 6W)}, My ={m|s(m°) =T VvV s(m°) =T, s € 6W)},
Q = Usee(w){source(s), target(s)}, —= {(source(s), flow(s), reason-giving(s),
priority(s), target(s)) | s € 6(¥)}, go=source(sp).

5 Case Study

Here we demonstrate the application of our approach via an example and present
a performance evaluation of our approach. Figure2(a) depicts a sales process,
which starts by receiving an order. It proceeds by reserving the ordered items
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for the customer. Then, the customer gets charged and her account is updated.
Meanwhile if the payment encounters a problem, a cancellation event is triggered,
which causes compensation for all of the performed activities. However, if an
error event occurs, all tasks inside the transaction stop, the boundary error
catch event redirects the flow to notifying the operator. Finally, if no problem
occurs, the ordered items are shipped and the process ends.

Figure 2(c) shows a Reo network that simulates this process. The process
starts by reading a token from the writer Wy, which resembles receiving an
order. Though a Reo network can be used for modeling infinite data flow, in
the BPMN standard, when a start event is triggered, a new instance of the
process is instantiated. Therefore, the Reo network is designed to handle only
one request. The end A; reads a token from the writer W5 and directs it to
replicator node B, which duplicates the token and forwards them to the BC' and
BE FIFO; channels. The token from BC continues to the CD FIF(O; channel.
If the payment succeeds, the flow from CD and BE FIF(O; channels merge and
a token enters the FG FIFO; channel. Then, it gets consumed by the reader Rs.

If the payment fails, performed activities need to be compensated. A token
from W; simulates a payment failure, so the process needs to be canceled. The
prioritySync channel IJ imposes a priority of one on the failure associated flow.
The node J replicates the failure token into the lossySync channels JM and JU,
depending on whether each of the F'1FO; channels BC and C'D is empty or full,
the connected lossySync channels lose the incoming tokens or pass them to the
adjacent syncDrain to consume the tokens of F'I FO; channels, respectively. At
the same time, the replicator node J writes into the FIFO; channels JK and
J N, which simulate cancel reservation and undo changes tasks, respectively. The
flow corresponding to error, starting from the writer Wy, is structurally similar
to the failure flow, but it has a priority of 2 due to SQ PrioritySync.

To analyze the presented BPMN process, we convert it to a Reo network. The
core mapping is presented in [7,17], which maps a task to a F'I1FO; channel, while
it converts message, cancel, and error events to writer components simulating the
incoming flows from the environment. A diverging parallel gateway is mapped
to a replicator, while a converging parallel gateway is mapped to a join. The
sequence flows are converted into sync channels. The mapping of ezception and
error handling flows are more complex and are presented in [27].

In this example, the error handling flow has the highest priority, while the
exception handling has the medium priority, and the success flow has no priority.
The choice between these three alternative flows is made by the routers. We
obtain the NPRLTS as follows: First, we form the RCSP of the network by
traversing through its primitives. Then, we solve the obtained RCSP and extract
transitions from obtained solutions, as described in Algorithm 1.

To show the effect of priority on our example, we first investigate the behavior
of the network in absence of priority, wherein the normal flow of the process can
continue even in case of a payment failure. This is because the router node E
chooses one of its outgoing flows non-deterministically. The following assets a
priority-respecting routing of these alternative flows. ({BE} € source(t) A (Cy €
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flow(t)VE; € flow(t))) = (W3 ¢ reason—giving(t) < W3 € flow(t))AN(W3 €
reason — giving(t) A Wi ¢ reason — giving(t)) < Wi € flow(t)).

A typical way of verifying this property is to check it against the NPRLTS of
the network. The given property is straight forward to check. Due to the number
of ends in this example, the transition labels of the NPRLTS are lengthy. Thus
for brevity, we apply an abstraction on the original NPRLTS, which leads to a
more concise and readable model. To address a node end, we append a number
index to the node name (e.g., By). We refer to a channel using the name of the
nodes connected to its ends (e.g., BC). Similarly, we append a number index to
a channel name to denote a channel end (e.g., BCy). In addition, we group the
ends with a similar name e.g., By o (referring to ends B; and Ba).

Since, the property solely mentions the ends Ci, Ey, Wi, and W3 on the
transitions originating from the states where BE FIFQO; channel is full, we
abstract from the rest of the ends in those transitions and from all the ends
in other transitions. It is straight-forward to see that this abstraction does not
affect the correctness of the validation due to the nature of the property.

Figure 2(b) shows the abstract NPRLTS of the network of Fig. 2(c) in absence
of priority. The property that we are interested to check is that if from any state
wherein BE holds, W3 has flow unless it provides a reason for no flow itself, and
if W3 provides a reason for no flow, Wj has flow unless it provides a reason for no
flow itself. This property, however, does not hold on the current NPRLTS as it
contains transitions originating from states { BC, BE} and {C'D, BE}, wherein
either W3 is absent in R (the set of ends providing a reason for now flow), yet it
is not in N (the set of ends with data flow) or W3 is in R, but W is not in R,
yet it is not in V.

Here we show how considering priority constraints rules out these transi-
tions. We reason about one of the transitions (the transition from {BC, BE} to
{CD,BE} with N = {C4,...}, R = {W1,...}). Similar reasonings hold for the
rest.

( . HENPRLTS:C1EN (1), W1 ER(1), Wag N (1), Ws R (1)

3 s€G(¥) s.t. s=>C1LA-W3AWPA-W3P
0&Yprioritysyncy (SQ1,2) & priority join on the network

1: yolkm )
=
9. 0&YprioritySyncy (IJ1,2) & priority join on the network L 2¥%router(C1,2,3,4)
- =2 13 T A Cam
4,O&join 5,coloring&join 6,0&3&4&5 7,0&5
. ﬁé4 ? : C4>¢W3> 7 . VVgD ? : 1

This disproves the existence of the aforementioned transition meaning that
when {BC} and {BE} are full, the request from W; is not ignored.
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The execution time of the Algorithm 1 depends on the number of states of
the RCSP and the time to solve the RCSP. Thus, to study the performance
of our framework and to compare it with the existing approaches, we choose
N-Sequencer, which consists of N FIFO channels that are circularly connected.
Adding each F'IFO; channel doubles the number of states in the corresponding
semantic model and increases the complexity of the constraints encoding the
behavior of the network by adding new variables and new assertions on them.
This makes the network a good choice for our benchmarking, where we would like
to compare the solutions on state explosion. Since we are interested in comparing
our approach with the existing tools, we do not include priority in our case study.
This is justified by the fact that incorporating priority does not affect the number
of states in the model and influences only the size of the constraint. In addition,
adding more F'I FO; channels to the network increases both the number of states
and the size of the constraint capturing the semantics of the network. Since we
use optimized third-library tools to solve the constraints, we do not distinguish
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between the various form of constraints obtained from different channels and
instead we observe the approximate growth of the size of constraints.

Figure 1 shows a 7-sequencer. Though the size of the operational semantics
model of this network grows in a linear fashion in relation with N, the num-
ber of intermediate states to compute the final results grows exponentially. The
benchmarks have been performed on Mac Book Pro OS X El Capitan with 2.8
GHz Intel Core i7 and 16 GB MHz DDR3 memory. Our approach is imple-
mented in Java 8. We have used Reduce Algebra System revision number 2337
to compute the conjunctive normal form of the constraints and to solve them. We
have experimented with an optimization on the number of variables used in the
constraints by substituting equal variables with a single variable. Figure2(a)
presents the average time to compute a single solution of the RCSP of an
N-Sequencer. Figure2(b) shows the relation between N and the size of the
RCSP’s constraints of an N-Sequencer. This is an indication of the complex-
ity of the constraint. Figure 2(c) illustrates the total time required to compute
all solutions of a RCSP’s constraint of an N-Sequencer. Figure 2(d) shows the
time consumed to calculate the coloring semantics and the constraint automata
semantics of N-Sequencers using the ECT toolset. The computation of the color-
ing semantics and the constraint automata fail with the stack overflow error for
N =16 and N = 21, respectively. The results shows that our approach handles
larger models than the existing tools can. The effect of the optimization is more
significant for larger N.

6 Related Work

Several works, e.g., [10,11,22] use priorities to model scheduling policies. Many
workflow languages rely on Petri nets [2,4]. Priority flow in Petri net-based
process models is managed with the help of inhibitor arcs and transition prior-
ities [31]. Inhibitor arcs allow a transition to fire only if the adjacent place is
empty. Prioritized Petri nets [9] introduce a partial order on transitions. Given
a set of enabled transitions, the transitions with higher priority fire before the
transitions with lower priority. Others, e.g., [28,34] use a partial order on tran-
sitions to model priority. Our earlier approach in modeling priority using binary
variables supports a limited form of priority compared to the mentioned Petri
nets approaches. However, the proposed extension bridges this gap by defining
priorities as non-zero natural numbers. An advantage of our model is its compo-
sitionality. Compared to the aforementioned methods, Reo fits in the realm of
component-based or service-oriented architecture in a compositional way. Reo is
an extensible language, where new behavioral aspects can be added. An effort
to express the behavior of Reo networks via constraints is reported in [19]. It
demonstrates the efficiency of the constraint-based approach. It models synchro-
nization and data flow constraints, but no priority flow was considered. In [16], a
framework is presented to encode semantics of Reo networks as CSP with predi-
cates in the form of binary propositions and numerical constraints. An advantage
of this method is handling data constraints symbolically and, hence, mitigating
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the state explosion problem of automata models. We extended this framework to
handle priority constraints, taking a step forward toward implementing a toolset
that covers all behavioral aspects of Reo. Among the formal semantics of Reo,
connector coloring comes with a limited notion of priority based on the context
information. The context information affects otherwise non-deterministic data-
flow choices. In [26], an automata-based semantics is proposed, which associates
a preference for each transitions. A transition of lower preference is fired iff no
more preferred transition can occur.

7 Conclusions and Future Work

In this paper, we addressed the problem of priority flow modelling using the
Reo coordination language. We extended the unified constraint-based semantics
of Reo with binary and numeric priority constraints, showed correctness of our
approach for the binary case and evaluated the performance of the algorithm for
solving the RCSP to derive the semantics of a Reo network given the behavior of
its consituent elements. We also illustrated the use of our framework for modeling
business processes with priority flow.

As part of our ongoing work, we are using this framework to encode other
aspects of the semantics of Reo, specifically, timed behavior. A promising area
for future work is to use our framework for constraint-based model checking of
Reo networks with priority.
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