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Abstract. Currently state-of-the-art trackers rely on fully convolutional
neural network (FCNN) for extracting salient features in order to cre-
ate an appearance representation of the target. Ordinarily, most of them
intend to work with input streams from the visible spectrum, yet how
does an input stream from the infrared spectrum and a fused visible-
infrared stream affect their performances and how does it benefit or
detriment them? Towards this end, we compare the performance of var-
ious reference trackers utilizing FCNN for feature extraction, on vis-
ible, infrared and fused spectrums. By utilizing a carefully processed
publicly available data set for the evaluation, containing visible-infrared
paired sequences, we ensure to find synchronized and same attributes
at the same locations, effectively studying only the impact of a spec-
tral change. Thus, by analyzing quantitative results, we identify visual
attributes which benefit or detriment from a fused approach on typical
visual tracking scenarios.

Keywords: Visual tracking · Infrared imagery ·
Image fusion visible-infrared

1 Introduction

Tracking is an elemental task for any practical video application, requiring a
level of understanding about the objects of interest. The subject has received
increasing attention in recent years, where state-of-the-art trackers mainly focus
on using the visible spectrum and deep neural networks. Despite the increase
in accuracy and robustness, some limitations still persist. In order to overcome
the constraints from a single spectral range during tracking, a multi-spectral
approach can be utilized. For example, an additional infrared sensor can provide
complementary information to an image obtained in the visible range. On the
one hand, visible images offer rich content (i.e. colors, texture) and should be
preferred when the thermal properties of an object are close to the surrounding
environment, on the other hand, infrared images are better suited in case of a
change in lighting conditions or gloomy environments [3,7]. This approach could
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highly benefit applications such as, surveillance [1], traffic monitoring [2] and
medical imaging [6].

Among some challenges arising in both domains, the potential added value
is accompanied by an overhead like increased amount of raw data that needs
to be processed. Therefore, an ideal fusion method should preserve the positive
characteristics of the individual channels, but reduce the amount of data needed
to be processed. Accordingly, all subsequent processing stages, like visual track-
ing should benefit from the fused input stream. However, due to an inevitable
non-optimal fused image, it is not clear if the general expectation of increased
performance is met. Towards this end, we evaluate the effect of current state-
of-art visual trackers on fused data streams provided by current state-of-the-art
fusion strategies.

The evaluation is done on typical visual tracking sequences from the Camel [9]
data set. Since image fusion relies on synchronized and well-registered camera,
the data set is carefully further edited to ensure best possible fusion results by
still capturing different visual attributes as displayed in Fig. 1. Thereby, we can
identify approaches and occurring visual attributes which can benefit from a
fused input stream. This study differs from the 2015 VOT challenge [15], by
only evaluating the appearance changes from one spectrum to another, by using
synchronized input streams.

Fig. 1. Synchronized frames of a video stream from Camel [9] in the (from left to right)
visual, infrared, addition and l1-norm subsets.

In the following Sect. 2 a short introduction of the selected trackers and
fusion strategies are presented. Afterward, we describe the evaluation process
and examine the quantitative results in Sect. 3 and Sect. 4 concludes the paper.

2 Visual Trackers and Fusion

2.1 Reference Trackers

Due to the potential wide range of industrial tracking-based applications, visual
tracking is a very popular research area and several publicly benchmarks exist.
A selection of current single-object visual trackers achieving top-ranks on most-
widely used visual tracking benchmarks [14,24] is considered for the experi-
ments presented in this paper. Furthermore, the selected tracker have to rely
on an FCNN for feature extraction and operate model free. For a more detailed
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description and categorization, we refer to the original papers and to the corre-
sponding benchmark papers. Following those criteria, we chose to work with:

Re3 [10] (Real-Time Recurrent Regression Network) performs feature extraction
using the CaffeNet architecture (Re-implementation of AlexNet [16] in Caffe)
without the fully connected part. A regression layer is used to output the loca-
tion of the object in the frame and the size of the object. The tracker uses two
LSTM layers for remembering appearance changes and motion information
of the target.

MBMD [27] is the winner of 2018 VOT long term challenge [14] and is com-
posed of a bounding box regression network for identifying potential loca-
tions of the target and a verification network, identifying the target and the
potential locations. Feature extraction for the regression is performed by an
SSD-MobileNet [13] network and feature extraction for the verification stage
is performed by a pre-trained VGG-16 [22].

DaSiamRPN [28] is the winner of the VOT real-time challenge 2018 [14] and
runner up in the long term part of the challenge and is an extension of
SiamRPN [18]. Feature extraction is performed using the FCNN of Bertinetto
et al. [5]. In addition, it uses a local-global search region strategy for target re-
detection and a distractor-aware component for catching target appearance
variations and to discriminate the target against the surrounding.

MemTrack [26] is based on a dynamic memory network [17] architecture. Fea-
ture extraction is performed by the FCNN used in [5]. A soft attention mecha-
nism [25] locates potential regions of the targets in the search area. An LSTM
selects an appropriate template from stored ones based on the output of the
attention mechanism, combined with a reference template, creating a residual
template. Afterwards, the residual template is used for finding the location
of the target in the search area.

SiamMask [23] is a recently state-of-the-art introduced tracker which produces
in addition to a rotational bounding box a binary mask, classifying pixel-wise
belongingness to the target. Feature extraction is performed by a variation of
ResNet-50 [12]. Using a depth-wise cross correlation [4] on feature spaces and
a region proposal network [21]. By examining the potential targets locations,
the actual target is found and a binary mask is created.

2.2 Fusion Strategies

Image fusion strives to preserve positive characteristics of individual channels, in
addition to reducing the amount of data needed for processing. Due to inevitable
errors induced by image fusion and depending on specific conditions, it is unclear
how beneficial this approach is for tracking applications. Before analyzing the
effects, we present the main concepts on image fusion methods and the selected
strategies for this study.

In multi-modal fusion, different sensors i.e. visible, infrared, are used in the
process of image acquisition. The fusion process can be applied on pixel, object
or on decision levels. However, in this paper, we examine only pixel level fusion,
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which can traditionally be divided into transformation domain methods and spa-
tial domain methods [7,11]. These techniques can involve around simple transfor-
mations e.g. averaging, adding, subtracting, on pixel intensities, or more complex
transformations e.g. Laplace pyramid, wavelet pyramid. Unlike these traditional
strategies, a shift to deep learning is occurring, which are now able to achieve
state-of-the-art performance. Therefore, for the experiments of this study we
select the deep neural network (DNN), DenseFuse [19].

The authors of DenseFuse propose a novel deep learning architecture using
convolutional layers and dense blocks. The DNN is composed of three major
components. The first component is an encoder made from one convolutional
layer, that extracts rough features, followed by three dense convolutional layers,
enabling the network to preserve mid and deep level features better. Allowing
in addition to improve information flow and diminish the overfitting problem
during training. The second component is a fusion layer incorporating two fusion
strategies, i.e addition strategy presented originally in DeepFuse [20] and an l1-
norm strategy. This layer integrates into one feature map the pertinent features
extracted by the encoder from the source images i.e from the visible and infrared
images. The third part of the DNN is a decoder which re-constructs the fused
visible-infrared image using convolutional layers [19].

Originally, DenseFuse fuses a grayscale image with an infrared image, but it
also handles visible images, in splitting the image into separate channels, that are
then passed through the DNN and fused separately with the infrared image. The
final result is a combination of the three newly created fused images. Figure 1
displays the fused image using both strategies from DenseFuse, and the original
visible and infrared images.

3 Evaluation

The goal of this section is to provide empirical results and discuss the benefits
and detriments of a fused approach, which can lead to non-optimal output.

3.1 Data Set to Subsets

For this study, we employed the Camel [9] data set which captured 26 annotated
video streams paired in the visible and infrared domain. The video streams were
taken in an urban environment and captured during day and night time. Similar
visual attributes from popular data set for visual object tracking challenges [8,14]
are present, i.e. in-plane rotation, illumination change, scale variation, occlusion
and camera motion. The data set contains 765 annotated objects in the visible
domain and 787 in the infrared domain, where four different classes are present,
i.e bicycle, person, vehicle and dog. In order to reduce registration errors, only
a reduced subset of sequences are considered for the evaluation. The criteria are
set as follows:

– We kept sequences having an Intersection over Union (IoU) over 0.7 between
ground-truth bounding boxes in the visible-infrared domain and lasting at
least 30 consecutive frames.
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– Furthermore, in order to ensure adequate sequence length, a short drop of the
IoU under 0.7 is accepted if its only for less than 10 frames and still above
0.5. Whereas an IoU under 0.5 stops the recording until the condition from
stage one is valid again.

Based on the newly created domain subset, we created the two fused subsets
with the available fusion strategies from DenseFuse (i.e. addition and l1-norm
subsets). The ground truth annotation for the fused subsets, is simply adapted
by averaging the ground truth bounding boxes from both domains, ensuring us
to keep a minimal valid bounding box around the target.

The resulting 4 subsets, visible (VIS), infrared (IR), addition (Add) and l1-
norm (l1) subsets used for the evaluation, contain 438 sequences, with a median
sequence length of 107 frames, a median target width ratio of 0.1 and height
ratio of 0.17. Example images from the four evaluation subsets are displayed in
figures of Subsect. 3.5.

Although, we use a state-of-art DNN for image fusion, we can not prevent
errors generated by the DNN during the fusion process, i.e. noise, registration
difference between visible and infrared images. For example, the images in Fig. 2
depict a non-optimal registration between the source images.

Fig. 2. Example images from Camel [9], showing a registration problem between the
synchronized frames in (from left to right) the visual and infrared domain subsets, and
the final results in the addition and l1-norm subsets

In contrast to the most closely related investigations on the VOT-IR dataset,
here by selecting the Camel data set, we ensure to find synchronized and same
attributes at the same locations, effectively studying only the impact of a spectral
change on the FCNN of the trackers.

3.2 Evaluation Metrics

Methodologies from one challenge to another differ in the evaluation process as
well as the performance measures. In this paper two measures are mainly used
to rank the performance: Firstly, accuracy which measures the overlap during
successful tracking periods, secondly robustness, which is the number of times
the tracker lost the target. We rank the tracker accordingly to their average
IoU and average robustness on the whole subsets. For the evaluation, a target
is considered lost when the IoU between ground truth and predicted bounding
box is under 0.5 for 10 consecutive frames. If the target is lost, we initialize
the tracker again on the next frame. For easier comparison between the tracker
results, we combine accuracy and robustness together in on score.
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3.3 Evaluation on Subsets

Since we use video streams differing domain wise, and use original implementa-
tion of the trackers, the change in performance can mainly by assigned to the
extracted features. Their performances on the subsets are displayed in Fig. 3 and
Table 1 resumes the results in one score.

Based on these results, the Re3, and MBMD trackers show better scores
in accuracy and robustness on the visual subset compared to the infrared sub-
set. Both also perform better on the addition subset, gaining in accuracy and
robustness, whereas the usage of the l1-norm subset shows a performance drop.

The MemTrack and SiamMask trackers responded interestingly with a better
score on the infrared subset than on the visible subset, but regardless of the
fusion strategy employed, both achieve better results on the fused subsets. With
the MemTrack achieving a slightly better score on the addition subset, and the
SiamMask tracker on the l1-norm subset.

In contrast to previous trackers, the DaSiamRPN tracker, does not react as
positively as expected. Indeed, the best performance is achieved on the visible
subset, even though the addition subset score is close to the visible subset. The
worst score for this tracker is achieved when applying the fused L1-norm subset.

Aside from the DaSiamRPN tracker, all trackers benefit from a fusion
between the visible and the infrared spectrum at the input stage as shown in
Table 2. We also notice that, even though the FCNN part of the tracker are dif-
ferent from each other, some react similarly, as Re3 with MBMD or MemTrack
with SiamMask. For instance, the MemTrack and SiamMask respond very well
to both fusion strategies, and Re3 displays a similar score variation as MBMD
on VIS-Add.

Table 1. Average score (combination between average accuracy and robustness) for
each tracker on every subsets.

Subset DaSiamRPN Re3 MemTrack MBMD SiamMask
VIS 0.998 0.976 0.941 0.883 0.995
IR 0.973 0.935 0.971 0.878 0.999
Add 0.981 0.999 0.976 0.905 1.015
l1 0.972 0.975 0.975 0.883 1.016

Table 2. Relative performance variation between a domain subsets (DS) and a fused
subsets (FS) depending on the tracker.

DS-FS DaSiamRPN (%) Re3 (%) MemTrack (%) MBMD (%) SiamMask (%)

VIS-Add −1.69 2.40 3.76 2.46 2.00

IR-Add 0.89 6.84 0.61 3.09 1.57

VIS-l1 −2.64 −0.03 3.64 0.02 2.12

IR-l1 −0.08 4.30 0.49 0.64 1.69
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3.4 Fused Subsets Versus Domain Subsets

Based on Table 3 we notice that the lowest score distribution occurs on the
infrared subset, regardless the tracker. Indicating that the infrared subset is the
most difficult one to extract an appearance model from the surrounding, which
is coherent since the trackers were originally trained on visible images.
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Fig. 3. Average accuracy and robustness given by reference trackers on the subsets.
Tracker reaching the top-right corner of the graphic display better performance.

DaSiamPRN responds strongly on 48% video streams of the visible subset
and poorly on 22%, with a standard score deviation of 0.229. Whereas, 13% video
streams from the additional subset enable a high response from the tracker and
only 4% a low response, with a standard score deviation of 0.196. Although, the
DaSiamRPN responds stronger on a higher number of video streams from the
visible subset, it also responds poorer on a higher number in comparison to the
additional subset. Thus, using a fused subset enabled the tracker to track more
robustly on a wider sequences diversity, even if using the fused subset did not
manage to outperform the score from the visible subset.

Re3 and MBMD score better on 35% and 39% of the video streams from
the additional subset, albeit Re3 also responds strongly to the same number of
video streams in the visible subset. We note that both respond poorly on a low
number of video streams from the addition subset, and achieving a low standard
score deviation on the fused subsets. Indicating that using fused input stream
enhances their performance on a larger number of streams and allows a more
robust approach.

Oddly enough, MemTrack and SiamMask show a strong response on 43%
video streams of the infrared subset and a poor response on 39% of it, albeit
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they originally were trained for visible imagery. Yet, both respond with a low
amount of strong and poor scores on the video streams from the fused subsets.
The standard score deviation for both trackers is also lower in the fused subsets
compared to the domain subsets, even though the MemTrack has the lowest
deviation on the infrared subset. Results from SiamMask indicate that using
video streams from the fused subset reduce the standard score deviation, thus
making the tracker more stable and also improving the results on a variety of
sequences. Whereas the MemTrack, having a lower standard score deviation on
the infrared domain, performs still better on the fused subsets, suggesting that
the fused subset did not necessarily increase stability, but increased overall scores
of the tracker on the sequences that gave previously poor scores on the domain
subsets.

Table 3. Highest and lowest score distribution of trackers on video streams from the
subsets and standard score deviation of the trackers on the subsets

Subset DaSiamRPN Re3 MemTrack MBMD SiamMask

VIS
Percentage of highest scores 48% 35% 30% 13% 22%
Percentage of lowest scores 22% 26% 35% 30% 35%
Standard score deviation 0.229 0.249 0.207 0.219 0.231

IR
Percentage of highest scores 17% 22% 43% 13% 43%
Percentage of lowest scores 52% 57% 39% 39% 39%
Standard score deviation 0.204 0.252 0.192 0.223 0.222

Add
Percentage of highest scores 13% 35% 17% 39% 9%
Percentage of lowest scores 4% 9% 9% 4% 17%
Standard score deviation 0.196 0.236 0.194 0.203 0.207

l1
Percentage of highest scores 22% 9% 9% 22% 13%
Percentage of lowest scores 22% 9% 17% 26% 9%
Standard score deviation 0.195 0.224 0.197 0.201 0.209

In most cases, the usage of fused subsets proved to be beneficially for stability,
as the scores where more balanced and enhanced overall as a whole, rather than
individual sequences.

3.5 Special Case Analysis

In this section, we look at video streams that give high score variations from a
domain subset to a fused subset, regardless if positive or negative. Albeit the
trackers react very differently to the video streams, there are special cases where
a general tendency can be observed.

Synchronized frames of the video stream number 3 from Camel [9] are shown
in Fig. 4. The video stream has a score increase on the fused subsets compared
to the infrared subset, but a lower score compared to the visible subset. In these
video stream, the potential targets belong to the same class and are clustered
together, thus making the tracking process more challenging in the infrared



Impact of Fused Visible-Infrared Video Streams on Visual Tracking 109

domain because they all look alike in the infrared spectrum. Whereas, in the
visible domain, color and texture are used to discriminate the target against the
surrounding, easing the tracking process. But, depending on the fusion strategy,
color and texture are removed to some extent and whitened, and useful features
from the visible domain are kept to a degree, allowing a performance increase
compared to the infrared domain.

Fig. 4. Synchronized frames of video stream 03 from Camel [9] in the (from left to
right) visual, infrared, addition and l1-norm subset, which favours the visible domain
due to the presence of color and texture in a crowded scene. (Color figure online)

Matching frames from video stream 9 from Camel [9] are displayed in Fig. 5.
Contrariwise to the previous example, these video stream shows a performance
gain on the fused subset compared to the visible subset and a drop compared
to the infrared subset. Most of the potential targets (i.e. cars) undergo a sud-
den change in luminosity when passing under the shadows, which is a difficult
attribute to handle for visual trackers. Whereas, on the infrared subset, the
potential targets are still very clear, and since they are also clearly apart from
each other, no clutter attribute is present to increase the difficulty of the track-
ing process in the infrared domain. By fusing both streams, the whitened target
benefits from a constant white color that does not fade away under the shadows,
in contrary to colors and textures.

Fig. 5. Synchronized frames of video stream 09 from Camel [9] in the (from left to right)
visual, infrared, addition and l1-norm subsets, which favours the infrared domain due
to the sudden illumination change. (Color figure online)

Presented in Fig. 6, are four synchronized frames from video steam number
15, which is recorded during night time in Camel [9]. Trackers show better perfor-
mances on the fused subsets version of this stream than on the domain subsets.
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Because of the gloomy environment, tracking in the visible domain is very dif-
ficult and naturally tracking in the infrared domain is more suited under these
conditions. However, a fused version of both domains, shows a more robust alter-
native to the visible subset and an increase in accuracy compared to the infrared
subset.

Fig. 6. Synchronized frames of video stream 15 from Camel [9] in the (from left to
right) visual, infrared, addition and l1-norm subsets, favouring the fused subsets.

Synchronized frames of the video stream number 7 from Camel [9] are showed
in Fig. 7. Trackers show better results on the domain subsets than on the fused
versions. Due to the environment, a fused approach makes tracking more diffi-
cult since the whitening of the targets blends better with the white background
and the snowy weather. Thus, tracking in the visible domain under these condi-
tions is easier, since the tracking process can rely on color and texture features.
Also, when using the infrared domain, the target is even clearer to discriminates
against the surrounding background as shown in Fig. 7.

Fig. 7. Synchronized frames of video stream 07 from Camel [9] in the (from left to
right) visual, infrared, addition and l1-norm subsets, where neither of the fused subset
outperforms a domain subset. (Color figure online)

4 Conclusion

We present an evaluation of state-of-the-art visual trackers applied on visible,
infrared, and fused input streams. In contrary to using one domain for tracking,
where specific attributes to the domain can be difficult i.e. illumination change
in the visible domain or clutter in the infrared domain to deal with, a fused
approach at the input stage can be effective at handling those attributes. Indeed
using early fused input streams indicate a tendency to enhance performance,
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enabling more robust and accurate tracking. In addition, allowing also to handle
more robustly diverse type of sequences under various conditions and attributes.
Depending on the fusion strategy, performances can improve or diminish. How-
ever an ideal fusion strategy would enable the tracker to perform on the fused
subset as good as it would perform on an adequate domain subset version.
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