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Abstract. This paper introduces a new analysis-based regularizer,
which incorporates the neighborhood-awareness of the structure tensor
total variation (STV) and the tunability of the directional total variation
(DTV), in favor of a pre-selected direction with a pre-selected dose of
penalization. In order to show the utility of the proposed regularizer, we
consider the problem of denoising uni-directional images. Since the regu-
larizer is convex, we develop a simple optimization algorithm by realizing
its proximal map. The quantitative and the visual experiments demon-
strate the superiority of our regularizer over DTV (only for scalar-valued
images) and STV.
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1 Introduction

From capturing to encoding and transmission, different stages of an image acqui-
sition pipeline produce different types of noise (additive vs. multiplicative, struc-
tured vs. random, signal dependent vs. independent, etc.). The noise existing on
an image not only creates visual disruption, but also obscures significant details.
Either to meet the quality expectations or to extract valuable information from
the image, denoising has become an indispensable part of the processing. And
yet, various denoising techniques have been proposed so far. These techniques
most particularly aimed at recovering the latent signal f ∈ R

NC from the obser-
vation g ∈ R

NC , by considering the forward corruption model of the form:
g = f + η, where η ∈ R

NC is the additive noise that is assumed to be i.i.d.
and normally distributed (η ∼ N (0, σ2

ηI)). Note that, the images are assumed
to be stacked into vectors, where N and C are respectively denoting the number
of pixels in a single channel, and the number of channels. For the scalar-valued
images C = 1.
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The variational methods inverse the given forward model by minimizing an
energy functional of the form:

E(f) =
1
2
‖g − f‖22 + τR(f) (1)

where R(f) stands for the regularizer, whose role is encoding a prior on the
unknown image. The prior may reflect some real characteristics, or may just
presume them to reduce the size of search space. τ ≥ 0 is a variable used to tune
the contribution of R(f) to E(f), and for the small values of it, the fidelity to
the observed data dominates the prior. The choice of R(f) is crucial. Over the
years, intensive research has been pursued on designing good regularizers, which
can adequately characterize the latent image in an efficiently solvable way. The
concept of compressive sensing (CS) proves that the recovery of a deficient signal
is possible, as long as it exhibits sparsity in a certain domain. This sparsity can be
encoded by a regularizer. The total variation (TV) is such a regularizer, where the
image’s gradient is assumed to be sparse (yielding a piecewise constant – PWC
image) as a special case of CS. It is a convex functional, thus ensures a feasible
solution. TV has given rise to a diverse range of TV inspired regularizers aiming
to cope with TV’s limitations (especially with the staircase artifacts caused due
to the PWC assumption), while preserving its convexity. One of the most popular
methods is the total generalized variation (TGV) [4], which favors piecewise
smoothness rather than PWC, by encoding not only first-, but also higher-order
information. Another such TV variant is structure tensor total variation (STV)
[8], which forms the basis for this paper together with another variant: directional
total variation (DTV) [1] designed for uni-directional images. STV penalizes the
non-linear combinations of the first-order derivatives within a neighborhood (i.e.
eigenvalues of the structure tensor), while DTV penalizes weighted and rotated
gradients of each pixel. STV applies semi-local regularization, while DTV does
local. Moreover, STV can intrinsically decide and adaptively apply the dose of
penalization, while DTV requires priorly determined parameters for this purpose.

STV and DTV are both analysis-based convex regularizers. Here the term
analysis-based refers to the regularizers of the form (in discrete setting):

R(f) =
N∑

i=1

φ((Γf)[i]) (2)

which directly run on the image, rather than applying the regularization in a
transform domain (i.e. sythesis-based regularizers such as wavelet, curvelet and
shearlet.) In Eq. (2), Γ : RN → R

N×D is regularization operator with (Γf)[i]
denoting the D-dimensional i-th element of Γf mapping, and φ : RM → R is
a potential function. For TV regularization, Γ = ∇ that denotes the gradient
operator, and φ = ‖ · ‖p, where p = 2 for the native isotropic TV [10]. There
are also anisotropic alternatives, designed to catch convex shapes with angled
boundaries. For example in [7], a convex TV variant that uses p = 1 was sug-
gested, which was later referred to as anisotropic TV. In [6], the authors preferred
using p ∈ (0, 1), and in the recent work [9], a weighted mixed-norm design like
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φ = w1‖ · ‖1 + w2‖ · ‖2 was proposed. The common drawback of the last two
is their non-convexity. Also, there are applications of having p = 0, as in [12],
which is intrinsically NP-hard. This work aims at designing such a regularizer by
combining the ideas behind STV and DTV regularizers, which will be introduced
in the following section.

2 Background

By recalling Eq. (2), STV plugs Γ = Sk and φ = ‖
√

λ(·)‖p. (Skf)[i] stands for
the structure tensor, which is a symmetric positive semi-definite (PSD) matrix
normally defined as (Skf)[i] = kσ ∗ ((Jf)[i](Jf)[i]T ), where kσ is a Gaussian
kernel of standard deviation σ; and λ returns the eigenvalues of the given
matrix. Here J denotes the Jacobian operator defined by extending the gra-
dient for vector-valued images: (Jf)[i] =

[
(∇f1)[i] (∇f2)[i] · · · (∇fC)[i]

]T ,
where superscripted f ’s are denoting the channels. Thus for scalar-valued images,
J(·) = ∇(·). When compared to the local differential operators, semi-local struc-
ture tensor provides a better way to characterize the directional variations, since
it also takes the neighboring pixels into account. This way lies in its rooted
eigenvalues and their associated unit eigenvectors, which summarize the gradi-
ents within a patch supported by kσ and centered at i-th pixel.

In [8], the authors also defined the structure tensor in terms of another
operator that they proposed and called as patch-based Jacobian Jk : RN×C 	→
R

N×LC×2, which embodies the convolution kernel of size L. It is defined as:

(Jkf)[i] =
[
(∇̃f1)[i], (∇̃f2)[i] · · · (∇̃fC)[i]

]T (3)

where (∇̃fc)[i] =
[
(T1∇fc)[i], (T2∇fc)[i], · · · , (TL∇fc)[i]

]
. Each l-th entity cor-

responds to shifting and weighting on the gradient as (Tl∇fc)[i] = ω[pl](∇f)[xi−
pl], where xi denotes the actual 2D coordinates of the i-th pixel, pl ∈ P is the
shift amount so that each xi − pl is within the P-neighborhood of xi, and the
weight is determined by the smoothing kernel kσ as ω[pl] =

√
kσ[pl]. This new

operator allows us to decompose the nonlinear (Skf)[i] into linear (Jkf)[i]’s as
follows:

(Skf)[i] = (Jkf)[i](Jkf)[i]T (4)

so that the new formulation reveals an easier way of employing optimization
tools. The rooted eigenvalues of (Skf)[i] coincide with the singular values of
(Jkf)[i], and this paves the way of using Schatten p-norms to redefine STV by
this time plugging Γ = Jk and φ = ‖ · ‖Sp

in Eq. (2). Sp matrix norm is nothing
but the 	p-norm of the vector that contains the singular values of the subjected
matrix, which is (Jkf)[i] in our case. Therefore, STV regularizer in its first and
second form is given below:

STV (f) =
N∑

i=1

‖
√

λ((Skf)[i])‖p =
N∑

i=1

‖(Jkf)[i]‖Sp
(5)

where λ((Skf)[i]) = [λ+((Skf)[i]), λ−((Skf)[i])]T .
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The DTV, on the other hand, simply substitutes Γ = ∇ and φ =

‖ΛαR−θ(·)‖2, where Rθ =
[

cosθ −sinθ
sinθ cosθ

]
and Λα =

[
α 0
0 1

]
. Here θ corresponds

to the dominant direction (that should be pre-determined), and α is used to
tune the dose of penalization throughout that direction. DTV stipulates that
the image to be recovered exhibits a global directional dominance. It is only
designed for the scalar-valued images.

The structure tensor has the ability of capturing the first-order information
within a local neighborhood. This neigborhood-awareness makes it more robust
to the noise (or the other types of deterioration), when compared to the gradient.
Since STV is designed by using the rooted eigenvalues of the structure tensor, it
better codifies the image variation at a point than the regularizers that aims to
penalize the gradient magnitude (such as TV and DTV). However, STV may not
always distinguish the edges under excessive noise, thus may smooth out them.
Even though DTV’s preference of penalizing the gradient magnitude makes it
vulnerable to the noise, it is good at struggling with it along the edges, since its
gradients are rotated to a favorable direction and scaled according to a favorable
dose of smoothness.

3 Method

Let us define a new operator Π (as being a composition of Rθ and Λα), which
can act on the gradients within the patch, when applied to the patch-based
Jacobian, as follows:

(ΠJkf)[i] =

⎡

⎢⎢⎢⎣

(T1ΛαR−θ∇f1)[i] (T2ΛαR−θ∇f1)[i] · · · (TLΛαR−θ∇f1)[i]
(T1ΛαR−θ∇f2)[i] (T2ΛαR−θ∇f2)[i] · · · (TLΛαR−θ∇f2)[i]

...
...

...
...

(T1ΛαR−θ∇fc)[i] (T2ΛαR−θ∇fc)[i] · · · (TLΛαR−θ∇fc)[i]

⎤

⎥⎥⎥⎦ (6)

Let it be called as directional patch-based Jacobian. Therefore, we propose a new
regularizer of the form: DSTV functional of the form:

DSTV (f) =
N∑

i=1

‖(ΠJkf)[i]‖Sp
(7)

where DSTV abbreviates the direction guided STV, here and hereafter. By
means of Eq. (7), one has the chance of penalizing the eigenvalues of the struc-
ture tensor, in favor of the predetermined direction. By means of Eq. (7), the
eigenvalues of the structure tensor this time summarize the rotated and scaled
gradients with the incorporation of prior knowledge. Also, the presence of the
ΛαRθ’s doesn’t destroy the convexity of the regularizer.

Equation (7) can equivalently be written as a support function of the set
BF = {Υ ∈ R

LC×2 : ‖Υ‖S2 ≤ 1}, which is the unit ball of S2 (Frobenius) matrix
norm and takes the shape of:
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DSTV (f) =
N∑

i=1

sup
Υ∈BF

〈(ΠJkf)[i], Υ 〉 (8)

where 〈·〉 denotes the inner product. The right-hand side of Eq. (8) can be rewrit-
ten in the compact form of sup

Ψ [i]∈BF

〈ΠJkf, Ψ〉, by introducing another variable

Ψ ∈ R
N×LC×2, where Ψ [i] is the i-th submatrix. This expression allows us to

use the available algorithms for orthogonal projection onto the convex BF .
Therefore, a DSTV-regularized denoising problem will require to solve the

following minimization problem:

min
f∈C

1
2
‖g − f‖22 + τ sup

Ψ [i]∈BF

〈ΠJkf, Ψ〉 (9)

where C is nothing but a set that corresponds to an additional constraint on f
(e.g. box constraint), which is equal to R

N for unconstrained case.
Due to DSTV’s nonsmoothness, solving Eq. (9) is nontrivial. But since the

convexity of the STV (proven in [8]) is preserved in Eq. (8), the proximal map
of DSTV corresponds to the minimizer, thus can be employed as:

f̂ = proxτDSTV (f)(g) := argmin
f∈C

1
2
‖g − f‖22 + τ sup

Ψ [i]∈BF

〈f, J∗
kΠ∗Ψ〉 (10)

where J∗
k and Π∗ arising after we leave f alone, denote the adjoints. J∗

k was
defined in [8] as:

(J∗
KX)[k] =

L∑

l=1

−div(T ∗
l X[i, s]) (11)

where s = (c − 1)L + l and k = (c − 1)N + n with 1 ≤ n ≤ N and 1 ≤ c ≤ C.
T ∗

l corresponds to the adjoint of Tl, which scans the X[i, s] in column-wise
manner, where X[i, s] ∈ R

2 is the s-th row of the i-th submatrix of an arbitrary
X ∈ R

N×LC×2. In Eq. (10), X = Π∗Ψ for the operator Π∗ acting the same way
with Π, except that the operator pair ΛαR−θ applied to the two-dimensional
vector elements (Ψ [i, s] in this case) is replaced by RθΛα. Also in Eq. (11), div is
discrete divergence, whose definition depends on the discretization scheme used
for the gradient. In [8], it is defined using backward differences, since the gradient
is discretized using forward differences.

From now on, we will be following the fast gradient projection (FGP) method
[2], which combines the dual approach introduced in [5] to solve TV-based
denoising, and the convergence accelerator FISTA [3]. Equation (10) can first
be expressed as a minimax problem for the objective L(f, Ψ) = 1

2‖g − f‖22 +
τ〈f, J∗

kΠ∗Ψ〉, which is convex w.r.t. f and concave w.r.t. Ψ ; thus, has a com-
mon saddle point that doesn’t change when the minimum and the maximum are
swapped as shown below:

min
f∈C

max
Ψ [i]∈BF

L(f, Ψ) = L(f̂ , Ψ̂) = max
Ψ [i]∈BF

min
f∈C

L(f, Ψ) (12)



94 E. Demircan-Tureyen and M. E. Kamasak

Algorithm 1. Algorithm for DSTV-based denoising
1: ε ∈ (0,min(1, L(d))), τ ∈ [ε, 1]
2: u(j=1) := [0, 0], t(j=1) := 1
3: while Eq. (10) is not ε − converged do

4: u(j) ← PBF

(
u(j) + (8

√
2(α2 + 1)τ)−1

(
ΠJkPC(g − τJ∗

kΠ∗u(j))
))

5: (u(j+1), t(j+1)) ← FISTA (t(j), u(j), u(j−1))
6: end while
7: f̂ ← PC(g − γτJ∗

kΠ∗u(j))

Maximization of the dual problem d(Ψ) = min
f∈C

L(f, Ψ) at the right-hand side is

same with the minimization of the primal problem at the left-hand side. When
the maximizer Ψ̂ of d(Ψ) is found, it can be used to find the minimizer f̂ of the
primal problem. In order to find Ψ̂ , we first derive the minimizer f̂ , in terms of
Ψ , as:

f̂ = argmin
f∈C

L(f, Ψ) (13)

where L(f, Ψ) = ‖f − (g − τJ∗
k (Π∗Ψ))‖22 − M is found by expanding the equa-

tion, collecting the constants at the end, and subsumed under the term M . The
solution of Eq. (13) is f̂ = PC(g − τJ∗

kΠ∗Ψ), where PC(·) is the orthogonal pro-
jection onto the convex set C. Then we proceed by plugging f̂ in L(f, Ψ) to get
the dual problem d(Ψ) = L(f̂ , Ψ) = 1

2‖w − PC(w)‖22 + 1
2 (‖z‖22 − ‖w‖22), where

w = g − τJ∗
kΠ∗Ψ . As opposed to the primal problem, d(Ψ) is smooth with a

well-defined gradient:

∇d(Ψ) = τΠJkPC(g − γτJ∗
kΠ∗Ψ) (14)

obtained based on the derivation in Lemma 4.1 of [2]. From now on, finding the
maximizer Ψ̂ of d(Ψ) is trivial by using the idea of the projected gradients [5].
In case of minimization, it iteratively performs decoupled sequences of gradient
descent and gradient projection on a set. In our case, each Ψ [i] will be projected
onto the set BF , where the projection is defined as:

PBF
(Ψ [i]) =

Ψ [i]
max(1, ‖Ψ [i]‖F )

(15)

in [8], to which the readers are referred for the derivation. When it comes to
gradient ascent, an appropriate step size that ensures the convergence is needed.
Since Eq. (14) is a Lipschitz continuous gradient, a constant step size 1/L(d) can
be used, where L(d) is the Lipschitz constant having the upper bound L(d) ≤
8
√

2(α2 + 1)γ2τ2. For the derivation, see Appendix A.
As a consequence, the overall algorithm is shown in Algorithm 1. FISTA pro-

cedure is referring to the fast iterative shrinkage-thresholding algorithm proposed
in [3], and attached to Appendix B.
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4 Experimental Results

In this section, we perform experiments to compare the performance of our regu-
larizer, with its predecessor STV and its influencer DTV. Since STV’s superiority
over the baseline TV and the TGV has already been shown in [8], they are not
included to the competing algorithms. In Fig. 1, the uni-directional grayscale
and color images used in the experiments are all shown. Among those images;
reed, sea shell, cotton bud, and feather were taken from Amsterdam Library of
Textures (ALOT) image dataset while the others were public domain images.
We use peak signal to noise ratio (PSNR) and structural similarity index (SSIM)
[11] to assess the performances of the algorithms. DSTV has been implemented
on top of STV, whose source code is publicly available on the author’s (Lefkim-
miatis, S.) website. All methods were written in MATLAB by only making use
of the CPU. The runtimes were computed on a computer equipped with Intel
Core Processor i7-7500U (2.70-GHz) with 16 GB of memory.

Fig. 1. Above row respectively shows the thumbnails of the grayscale cotton bud,
feather, straw ; and color reed, grass, paper, sea shell, palm, cat fur images of size 256
× 256 used in the experiments. (Color figure online)

For the convolution kernel kσ of the structure tensor, we choose it to be a 5×5
pixel Gaussian window with standard deviation σ = 0.5 pixels, for both STV and
DSTV. This decision is taken by prioritizing the reconstruction quality; however,
by selecting a 3 × 3 window, the computational complexity, thus the reported
runtimes can be reduced (nearly up to the DTV’s runtimes) at the cost of a
little loss from the quality. On the other hand, in all experiments, α for DTV
and DSTV, and the regularization parameter τ for all competing regularizers
are optimized, such that they yield the best possible PSNR. Furthermore, to
be used by DTV and DSTV, the θ value is estimated from the observed image
by computing the DTV measures for a range of angles, while keeping α > 1
constant. The angle that yields the smallest DTV is picked as the dominant
direction.

The grayscale results of the DSTV against to the DTV and the STV are
reported in Table 1. The PSNR and SSIM performances are listed, along with
their respective runtimes, by considering four different noise levels applied on the
first three images shown in Fig. 1. Although it is obvious that the DSTV yields
better recovery than the others, for the cotton bud and the feather images, DTV
almost catches up DSTV, especially in terms of the PSNR measure. This is due
to the fact that those images are coherently uni-directional (except the bottom
left and top right corners of the feather image), with smooth, non-textural, and
continuous stripes. Denoising this kind of images is a trivial task for DTV, since
its enforced direction of smoothness coincides with the correct pattern. Even so,
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Fig. 2. The restored versions of the noisy (ση = 0.2) feather and straw images (col-2),
by using DTV (col-3), STV (col-4) and DSTV (col-5) regularizers. The quantity pairs
shown at the bottom of each image are corresponding to the (PSNR, SSIM) values.
Also the detail patches cropped from each image are provided.

in higher frequency feather image, the SSIM gap between DTV and DSTV is
concretely higher than the one obtained in cotton bud image. When it comes
to the straw image, deviations from the dominant direction work against both
DTV and DSTV. The results on straw image can better reflect the DSTV’s
superiority arising from the semi-localness of the structure tensor, over DTV.
This semi-localness make DSTV more robust to the errors in pre-determined θ.
For the visual assessment, Fig. 2 shows the restored versions of the feather and
straw images by three subjected regularizers. As one can observe, STV causes
to the oil-painting like artifacts on the edges, whereas it is the only regularizer
that can manage to restore the texture at the bottom left corner of the feather
image, where the direction does not match with the dominant one. On the other
side, the DTV over-smooths by damaging rough textures on the details, which
are well preserved by the DSTV (see the detail images in Fig. 2).

In Table 2 and in Fig. 3, the results obtained from the color images are
reported. Since DTV is only designed for the scalar-valued images, it is excluded
from these experiments. According to the results presented in the table, DSTV
systematically outperforms STV for our uni-directional image denoising prob-
lem. Its superiority becomes more apparent in the high-frequency images with
less deviations from the pre-determined dominant direction (e.g. palm). In sea
shell image on the other hand, the PSNR and the SSIM values obtained by both
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Table 1. Assessing the PSNR/SSIM performances of DTV [1], STV [8], and DSTV
regularizers (along with their elapsed runtimes) on scalar-valued (grayscale) images
shown in Fig. 2.

ση 0.1 0.15 0.2 0.25

Cotton bud DTV 29.80/0.90 27.91/0.86 26.58/0.83 25.57/0.80

4.55 s 4.02 s 4.10 s 2.16 s

STV 27.85/0.86 25.78/0.80 24.35/0.75 23.28/0.70

25.08 s 29.01 s 22.70 s 28.98 s

DSTV 29.87/0.90 28.04/0.87 26.89/0.84 25.98/0.81

25.61 s 25.46 s 16.60 s 29.24 s

Feather DTV 25.17/0.86 23.23/0.78 21.95/0.71 21.04/0.66

3.06 s 4.26 s 3.92 s 4.42 s

STV 23.83/0.82 21.69/0.72 20.27/0.65 19.30/0.56

29.77 s 23.91 s 26.06 s 23.46 s

DSTV 25.60/0.87 27.13/0.81 22.27/0.75 21.43/0.70

17.82 s 23.66 s 28.50 s 31.1 s

Straw DTV 22.59/0.93 20.19/0.89 18.64/0.84 17.51/0.79

1.62 s 2.31 s 2.68 s 4.07 s

STV 22.47/0.93 19.97/0.88 18.36/0.82 17.20/0.77

27.16 s 28.45 s 30.52 s 34.48 s

DSTV 23.17/0.94 20.81/0.90 19.24/0.86 18.11/0.82

32.28 s 33.61 s 28.52 s 35.85 s

Table 2. Assessing the PSNR/SSIM performances of STV [8] and DSTV denoisers
(along with their elapsed runtimes) on vector-valued (color) images shown in Fig. 3.

Method STV DSTV

ση 0.1 0.15 0.2 0.1 0.15 0.2

Reed 28.31/0.95 26.73/0.93 25.62/0.92 29.17/0.96 27.75/0.94 26.77/0.93

28.14 s 27.44 s 28.88 s 30.39 s 30.12 s 31.98 s

Grass 28.13/0.97 26.09/0.96 24.72/0.95 29.42/0.98 27.26/0.97 25.63/0.95

28.52 s 31.17 s 46.52 s 29.91 s 31.12 s 30.17 s

Paper 27.38/0.95 25.03/0.91 23.47/0.88 29.73/0.97 27.57/0.95 26.04/0.93

32.85 s 27.60 s 46.30 s 31.73 s 48.21 s 47.41 s

Sea shell 31.68/0.90 30.00/0.87 29.45/0.85 31.72/0.90 30.45/0.87 29.54/0.85

33.85 s 31.46 s 28.60 s 33.50 s 37.19 s 32.29 s

Palm 24.34/0.91 22.02/0.85 20.52/0.79 25.87/0.94 23.67/0.90 22.19/0.86

30.81 s 31.36 s 50.55 s 27.92 s 29.80 s 23.65 s

Cat fur 24.81/0.76 23.08/0.65 22.11/0.57 24.87/0.77 23.28/0.68 22.31/0.60

30.23 s 30.85 s 30.44 s 29.83 s 27.49 s 32.75 s
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Fig. 3. The restored versions of the noisy (ση = 0.2) reed, paper, sea shell, and palm
images (col-2), by using STV (col-3) and DSTV (col-4) regularizers. The quantity pairs
shown at the bottom of each image are corresponding to the (PSNR, SSIM) values.
Also the detail patches cropped from each image are provided. (Color figure online)
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regularizers are almost same. This result is due to the smooth transitions of the
stripes on the shell from one direction to another. However, for the same image,
the value of DSTV can visually be seen by comparing the detail images given
in Fig. 3(k) and (l). In contrast to the quantitative results, these images reflect
the DSTV’s ability of texture preservation. The same applies for the cat fur
image, which substantially may not be categorized as a uni-directional image.
Also to evaluate the DSTV’s robustness to the small deviations from the dom-
inant direction, one can observe the first row of Fig. 3. Overall, DSTV’s idea of
contributing STV minimization process in favor of the dominant direction suc-
ceeds denoising in more appealing way for nearly uni-directional images; while
STV fails to restore high-frequency details under excessive amount of noise, since
the fair contributions of the rapidly changing gradients within a neighborhood
may mislead the process.

5 Conclusion and Future Work

In this paper, we discoursed the denoising problem from variational perspective,
and proposed a new analysis-based regularizer to be used on uni-directional
images. We utilized the DTV’s idea of incorporating the prior knowledge on
the directional dominance of the latent image to the inversion process, while
designing our regularizer DSTV as a variant of STV. Throughout the paper,
only the uni-directional images were our concern. Even though this scenario is
biased to the DTV and DSTV, it provides valuable insight on how the guidance
of a directional prior can improve one of the state-of-the-art regularizers. As
shown by the experimental results, DSTV systematically outperformed its two
predecessors. This encourages us about a possible extension to DSTV that can
work with spatially varying θ’s and α’s, extracted from the observed image.
A relevant research question is if it is possible to develop such a preprocessor
algorithm that can extract robust derivative-based directional descriptors, and
can feed them into DSTV-based denoising machinery.

Appendix A

In order to find an upper bound for Lipschitz constant, we follow the derivation
in [2] and adapt it to our formulation.

‖∇d(v) − ∇d(u)‖ = τ‖(ΠJkPC(g − τJ∗
kΠ∗u) − ΠJkPC(g − τJ∗

kΠ∗v)‖
≤ τ‖ΠJk‖‖PC(g − τJ∗

kΠ∗u) − PC(g − τJ∗
kΠ∗v)‖

≤ τ‖ΠJk‖‖τJ∗
kΠ∗(u − v)‖

≤ τ2‖Π‖2‖Jk‖2‖u − v‖
≤ τ2‖Π‖2‖∇‖2‖T‖2‖u − v‖

(16)

where T =
∑L

l=1(T ∗
l Tl). Knowing from [2] that ‖∇‖2 ≤ 8, from [8] that ‖T‖2 ≤√

2, and further showing that ‖Π∗‖2 ≤ (α2 + 1), we come up with the Lipschitz
constant L(d) ≤ 8

√
2(α2 + 1)τ2.
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Appendix B

Algorithm 2. FISTA [3]

1: function: (f (next), t(next)) = FISTA (t, f (cur), f (prev))

2: t(next) ← (1 +
√

1 + 4t2)
/
2

3: f (next) ← f (cur) + ( t−1
t(next) )(f (cur) − f (prev))

4: end
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