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Abstract. The recognition of food image is an interesting research
topic, in which its applicability in the creation of nutritional diaries
stands out with the aim of improving the quality of life of people with a
chronic disease (e.g. diabetes, heart disease) or prone to acquire it (e.g.
people with overweight or obese). For a food recognition system to be
useful in real applications, it is necessary to recognize a huge number of
different foods. We argue that for very large scale classification, a tra-
ditional flat classifier is not enough to acquire an acceptable result. To
address this, we propose a method that performs prediction with local
classifiers, based on a class hierarchy, or with flat classifier. We decide
which approach to use, depending on the analysis of both the Epistemic
Uncertainty obtained for the image in the children classifiers and the
prediction of the parent classifier. When our criterion is met, the final
prediction is obtained with the respective local classifier; otherwise, with
the flat classifier. From the results, we can see that the proposed method
improves the classification performance compared to the use of a single
flat classifier.

Keywords: CNNs · Deep learning · Epistemic Uncertainty ·
Image classification · Food recognition

1 Introduction

Analysis of food images has been an emerging research topic in recent years
within the field of Computer vision. Currently, there is a large number of food
image datasets that makes possible to perform food recognition [2,3,5]. However,
the food classes provided by these are still low compared to those needed for a
real food recognition application. Just considering the most common foods, there
will easily be thousands of different food classes in worldwide. On the other
hand, models based on Convolutional Neural Networks (CNNs) have allowed
to address problems of object recognition on a large-scale achieving promising
results. Although it has also been shown that the number of classes that will
be recognized and the number of images that belong to each one are inversely
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Fig. 1. Example image that illustrates the class hierarchy of the Local Classifier per
Parent Node and Flat Classification approaches on MaFood-121 Dataset. A, A1-A11,
B denotes the classifiers for the nodes within the respective rectangles.

proportional to the model performance [9]. Samples of this can be seen in [14],
where the proposed model decreases the performance on about 10% when we
compared the result on cifar-10 [7] with respect to cifar-100 [7]. In the case of
food domain, a reduction of 7% is shown in [10] when we compared the result
on uecfood-100 [11] with respect to uecfood-256 [5]. This suggests that the use
of a single CNNs model to recognize all classes will not be enough to classify a
huge amount of foods classes.

Regarding the strategies for solving classification problems, these can be
grouped in two ways [12]: (1) By means of a flat classification approach, where
a single classifier is used for all classes to be predicted; and (2) By means of a
hierarchical classification approach, where the classes to be predicted are orga-
nized into a class hierarchy. As for the second strategy, there are three types of
local classifiers to perform the predictions [12]: (2.1) Local Classifier Per Node
Approach (LCN), which consists in training a binary classifier for each node of
the class hierarchy; (2.2) Local Classifier Per Parent Node Approach (LCPN),
which consists in training multi-class classifier for each parent node in the class
hierarchy to distinguish between its child nodes; and (2.3) Local Classifier Per
Level Approach (LCL), which consists of training one multi-class classifier for
each level of the class hierarchy. Note that the only one hierarchical approach
applied, in the context of food recognition, was proposed by [13], which incor-
porates in their method an LCL strategy to obtain error closer to the real class
when the classification is erroneous. Focusing on the LCPN approach, the main
problem is that the error in the parent local classifiers is propagated to the chil-
dren. For example, in the Fig. 1, if the classifier A miss-classifies the cuisine of
the image like C11, the dish recognition from the labels D111-D121 automati-
cally will be wrong. To reduce the error propagated for the LCPN approach, we
propose only to classify with this strategy those predictions that are likely well,
and the remainder one to classify with a flat classification approach. To identify
a good prediction, we complemented the decision of the local classifier for the
parent node with the most probable child node obtained from the analysis of
the Epistemic Uncertainty (EU). By definition, the EU captures the ignorance
about which model generated the collected data [6]. Therefore, we expect that
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Fig. 2. Main scheme of the proposed method, which shows the procedure performed
when the predictions in the first level of the hierarchy is equal to 1. The suffix wod
denotes the prediction with the dropout turned off, wd denotes the prediction with
the dropout turned on, the terms SO, MSO, and EU, denotes Softmax Output, Mean
Softmax Output and Epistemic Uncertainty.

the correct local classifier for the child node to give a low uncertainty when the
image to be predicted belongs to the classes for which it was trained.

Our main contributions in this paper are as follows: (1) we provide an epis-
temic uncertainty-based method, which minimizes error propagated from parents
to children in the LCPN approach; (2) we propose a criterion to decide when
to apply a local or flat classifier; and (3) we demonstrate that it is possible to
achieve better classification results when we integrate the prediction of LCPN
with flat classifier through our proposal.

The remainder of this paper is organized as follows: first, in Sect. 2, we present
the proposed method; second, in the Sect. 3, we present the dataset, the experi-
mental setup and discuss the results; finally, in Sect. 4, we describe the conclu-
sions.

2 Proposed Method

In this section, we explain detailed the steps involved in the proposed approach,
which considers local and flat classifiers to perform image predictions. In the
follow subsection, we first comment the consideration in the model architecture,
second we describe the equation to obtain the EU and then we explain all the
components involved in our approach.

2.1 Model Setup

Every classifier trained in our proposed approach is based on the same CNNs
architecture. At the top of the network, the output of the last convolution layer
is flattened. Then, it is necessary to add a dropout layer after each hidden fully
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connected layer so that we are able to apply the Monte Carlo dropout (MC-
dropout) sampling [6] to calculate the epistemic uncertainty. Finally, it is ended
up with an output layer with softmax activation and neurons equal to the number
of classes. Note that all the classifiers are trained independently, and then, the
proposed method is applied to give the final prediction (see Fig. 2).

2.2 Epistemic Uncertainty

During the prediction phase, a key part of our method contemplates the analysis
of the EU obtained for the images during the prediction phase when we classify
their with the local classifier on the second level of the hierarchy. The EU can
be obtained by applying MC-dropout sampling. In practical terms, it means to
predict K times the same image using the model with the dropout layer turned
on. Then, the EU will correspond to the predictive entropy calculated from the
K predictions given.

Formally, the EU can be expressed as follows:
Let p(yc = ŷc|x) be the average probability that the prediction yc is equal to

the ground-truth ŷc given image x, calculated from K MC-dropouts simulations.
Then,

EU(xt) = −
C∑

c=1

p(yc = ŷc|xt) ln(p(yc = ŷc|xt)), (1)

where

p(yc = ŷc|x) =
1
K

K∑

k=1

p(ykc = ŷkc |x). (2)

2.3 Prediction by Integrating Local and Flat Classifiers

The proposed method contemplates the training of LCPN and also a flat classi-
fier, and the integration of both approaches during the prediction. The proposal
is thought for two level of hierarchy, but can be easily extensible to more levels.

One problem with LCPN approach is that the error is propagated from upper
to lower levels. To deal with this, in our proposal, instead of directly applying the
prediction given for the local parent classifier (LPC), we propose a strategy to
ensure that the prediction is very likely the correct one, and thus, minimize the
error propagation. This strategy consists in three parts: (a) Get the prediction
of the images using the LPC with the dropout turned off; (b) Get the mean of
the predictions to send K times the images to the LPC with the dropout turned
on; (c) Estimate the EU of the samples for each local child classifier (LCH)
and choose the label which represents the LCH that provides the lower EU for
the respective image. After that, we compared the three predictions and in the
case of all of them get the same value, we apply the respective LCH using the
dropout turned off. Otherwise, we classify the image with the Flat classifier with
dropout turned off. In Fig. 2, we illustrated the steps involves in our proposal.
In this case, all the strategies (a-c) give the same prediction, and therefore, the
local classifier is chosen to give the final response.
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3 Experiments

In this section, we first present the dataset used, second we describe the evalua-
tion measures, third we present the experimental setup and last we describe the
results obtained with our proposed approach.

3.1 Dataset

In order to validate the benefits of our proposed method, we chose the newly
published food dataset MAFood-121 [1]. This is a multi-task food image dataset
comprising 3 related tasks: (a) dish, (b) cuisine, and (c) categories/food groups.
The dataset was built up taking into account the top 11 most popular cuisines
collecting the images from 4 different sources, 3 public food datasets [2,3,5], and
Google Search Engine. For each cuisine, 11 dishes are considered with an average
of 119 images per dish with their respective annotations of food categories. In
total, 21.175 images were gathered, distributed as 72.5% for training, 12.5% for
validation and 15% for test. For our purpose, we only consider the single label
tasks (cuisine and dish) and keep the same distribution of data for training,
validation and test. An example image for each cuisine can be seen in Fig. 3.

Fig. 3. An example representative image for each cuisine belonging to MaFood-121.

3.2 Metric

In order to evaluate the performance of our approach, we used the overall Accu-
racy (Acc), which is a standard metric for object recognition. Formally it is
defined as follows:

Acc =
1
T

C∑

c=1

TPc, (3)

where C is the number of classes, TPc (True Positives) is the amount of images
belonging to the class c classified correctly, and T is the total number of images
evaluated.

3.3 Experimental Setup

We trained a CNN architecture based on ResNet-50 [4], using the categorical
cross-entropy loss optimized with Adam. We modified this neural network by
removing the output layer, and instead, we added one hidden fully connected
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layer of 2048 neurons, followed by a dropout layer with a probability of 0.5, and
we ended up with an output layer with softmax activation and neurons equal to
the number of classes of the respective subset. In this particular case, there were
121 neurons for the flat classification and 11 for the local classifiers. In total,
thirteen models were trained based on the same architecture. The models are
named as follows:

1. A: CNN Model trained to perform the cuisine classification.
2. A1–A11 : CNN Model trained to perform the local dish classification for the

following cuisines: American (A1), Japanese (A2), Italian (A3), Greek (A4),
Turkish (A5), Chinese (A6), Mexican (A7), Indian (A8), Thai (A9), Viet-
namese (A10) and French (A11).

3. B : CNN Model trained to perform the flat classification for all dishes.

Model B was re-trained, from a pre-trained model on ILSVRC dataset [8],
during 50 epochs with a batch size of 32, and an initial learning rate of 1e− 4.
With respect to models A and A1–A11, they were re-trained on the top of the
networks (after the last convolutional layer) from the pre-trained model B, during
32 epoch with a batch size of 32, and an initial learning rate of 1e − 5. In all
models, we applied a decay of 0.5 every 8 epochs. On the other hand, regarding
the data augmentation process, for all models, the original image is re-sized to
(256, 256) and then random crops with a size of (224, 224) and horizontal flip
with a 50% probability are applied. The training was done using Keras with
Tensorflow as backend.

3.4 Results

In this section, we present the results obtained on the MAFood-121 dataset
by the Local and Flat classification approaches and our proposed method, which
integrates both during the image prediction.

One of the key elements of our approach involves calculating the EU of the
sample when it is sent to several local classifiers, one for each cuisine, in order to
determine the cuisine to which the image belongs to. The idea behind this is that
the EU is explained with enough data. Therefore, if we have an image with the
features close to those learned by a model, the EU will be small, which implies
that it is very likely that this image belongs to any of their classes. Figure 4
shows an example of the results obtained in terms of EU for the test set images
by three local classifiers. Each color represents a different cuisine and each row
corresponds to the EU obtained for the local classifiers. Note that the EU for
images belonging to the type of cuisine used for the training of the first classifier
(first row) is represented with the points of the first color, for the second classifier
(second row) with the points of the second color and so on. As expected, when
we compared the result given for a classifier with respect to the cuisine of the
image (left to right) or when we compared the results for all the classifiers with
respect to the images of a specific cuisine, we can see that the EU tends to be
small when the test images are similar to the images used in the training of the
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Fig. 4. Epistemic uncertainty obtained for three local cuisine classifiers in the images
of the test set. Each color represents a cuisine and each subplot - the result obtained
for the respective classifier. (Color figure online)

classifier. However, in some cases the minimum EU is not corresponding to the
real cuisine of the image. We believe that this occurs due to the shared features
among different cuisine in some cases. For this reason, we consider the analysis
of the EU like a complement to the cuisine recognition classifier, instead to use
directly this procedure to determine the cuisine of the image.

As for the local classifiers, we evaluate the performance applying two different
training strategies: Transfer Learning from ImageNet (TLI), which consists of
re-training the whole network with the food images, using as initial weight of the
lower layers (before the first fully connected layer) the values obtained when the
base model was trained on ImageNet dataset; and Transfer Learning from Food
(TLF), which consists of freezing the lower layers and re-training only the upper
layers, using as initial weight the values obtained for a model trained with the
same type of data, specifically we use as a base model the flat classifier trained
with all foods. The results obtained can be seen in Fig. 5a and the distribution of
the test images used for each local cuisine classifiers in Fig. 5b. For all cases, using
the TLF strategy we were able to improve the results of the local classifications.
In particular, for the classifiers A2, A3, A6 and A9, we can see biggest increment
in the performance. We believe that the improvement occurs mainly because the
use of a subset of images for each classifier is not enough to avoid the overfitting
of the network when we train all the layers. However, if we share the global
features extracted (lower layer) from all the foods and then we only retrained
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(a) (b)

Fig. 5. From left to right: (a) the accuracy obtained for each local classifier when used
Transfer Learning From ImageNet (TLI) or Transfer Learning From Food (TLF) for
the training of the classifier; and (b) the distribution of the test images for each cuisine.

Table 1. Results on MaFood-121 in terms of Accuracy.

Approach Cuisine Local Flat Overall

#Images Acc #Images Acc #Images Acc Acc

GT+Local 3177 100.00% 3177 89.61% - - 89.61%

Cuisine+Local 3177 87.19% 2770 91.71% - - 79.96%

Flat – – – – 3177 81.37% 81.37%

Proposed method 1579 96.96% 1531 96.08% 1598 70.21% 81.62%

the last fully connected layer, the network achieves better adjustment of the
model’s weights.

Finally in Table 1 we show the results achieved for four approaches: (a)
GT+Local, to reflect the performance of the dish classification when we have
a perfect cuisine recognition; (b) Cuisine+Local, which is the base line for dish
classification when we chose the local classifier per cuisine considering the cuisine
recognition performance; (c) Flat, which corresponds to classification of all the
classes in the same classifier; (d) Our proposed model, which integrates the Local
and Flat classifiers taking into account the EU to take the cuisine decision on the
image prediction. From the results, we demonstrate that it is possible to achieve
large increase in terms of accuracy when we have perfect cuisine recognition and
we use an individual classifier for each cuisine type (see GT+Local). In our case,
the performance of cuisine recognition is far from perfect (87.19%), and for this
reason, the error propagated by these predictions produced the lowest classifica-
tion accuracy (79.96%) despite the local classifier per cuisine provided 91.71%
of accuracy. As for our proposed, we intend to reduce the miss-classification pro-
duced by error in the cuisine recognition complementing the prediction with the
results obtained by the analysis of the EU, with which 1579 images are obtained
with a high likely that the cuisine is well classified. In this subset of images, we
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obtain a 96.96% of accuracy on cuisine classification and 96.08% accuracy in the
local classifiers per cuisine, which when combined with the Flat classifier predic-
tions we obtain 81.62%. This result outperforms the classification obtained for
the Cuisine+Local and Flat approaches.

4 Conclusions

In this paper, we proposed a new method to perform food recognition by the
integration of a hierarchical with flat classifiers. In our method, we contem-
plated that hierarchical classification can propagate the error from parent to
child nodes, and for this reason we proposed to use local classifiers only when
we are sure that it is very likely that the prediction will be good. Otherwise the
classification is performed with the flat classifier. To recognize good prediction,
we complemented the output of the local classifier with the analysis of the EU of
the images. From the results obtained, we observed that the proposed approach
provides a good performance allowing us to further reduce propagation error.
As a conclusion, we have shown the benefits of the proposed approach, which
can be a good alternative when we have to predict a huge number of classes. As
future work, we will explore the application of EU to another problems such as,
novelty detection or active labeling.

Acknowledgement. This work was partially funded by TIN2015-66951-C2-1-R,
2017 SGR 1742, Nestore, Validithi, 20141510 (La MaratoTV3) and CERCA Pro-
gramme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT
Becas Chile and M. P. Radeva is partially supported by ICREA Academia 2014. We
acknowledge the support of NVIDIA Corporation with the donation of Titan Xp GPUs.

References

1. Aguilar, E., Bolaños, M., Radeva, P.: Regularized uncertainty-based multi-task
learning model for food analysis. J. Vis. Commun. Image Represent. 60, 360–370
(2019)

2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative com-
ponents with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10599-4 29
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