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Abstract. The traditional approach for point set registration is based
on matching feature descriptors between the target object and the query
image and then the fundamental matrix is calculated robustly using
RANSAC to align the target in the image. However, this approach can
easily fail in the presence of occlusion, background clutter and changes
in scale and camera viewpoint, being the RANSAC algorithm unable
to filter out many outliers. In our proposal the target is represented by
an attribute graph, where its vertices represent salient features describ-
ing the target object and its edges encode their spatial relationships.
The matched keypoints between the attribute graph and the descrip-
tors in the query image are filtered taking into account features such as
orientation and scale, as well as the structure of the graph. Preliminary
results using the Stanford Mobile Visual search data set and the Stanford
Streaming Mobile Augmented Reality Dataset show the best behaviour
of our proposal in valid matches and lower computational cost in relation
to the standard approach based on RANSAC.
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1 Introduction

A large number of vision applications, such as visual correspondence, object
matching, 3D reconstruction and motion tracking, rely on matching keypoints
across images. Effective and efficient generation of keypoints from an image is
a well-studied problem in the literature and is the basis of many Computer
Vision applications. In spite of the large literature dealing with this issue, it
remains a challenging topic for achieving stable and reliable matching results
in a complex situation, facing illumination variation, shape and scale change,
background clutter, appearance change, partial occlusions, etc.

The standard approach for feature matching relies on some steps. The first
one is to find feature points in each image. Next, keypoint descriptors are
matched for each pair of images using the approximate nearest neighbour (ANN).
After matching features for an image pair the fundamental matrix is robustly
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Fig. 1. Point set registration found with RANSAC. Feature descriptors are represented
by a circle, pointing to the scale, and an arrow indicating the orientation. Inlier matches
are represented in yellow, while the outliers are in red. (Color figure online)

estimated for the pair using Random Sample Consensus (RANSAC) algorithm
[1] in order to determinate in-liners. Although RANSAC works well in many
cases, there is no guarantee that it will obtain a reasonable solution even if there
exists one. It can also be hard to determine if there is no solution at all.

Matching between images is accomplished by feature descriptors. It provides
a list of candidate matching points between the object and the descriptors in
the image. However, there exists some other keypoint attributes, such as scale or
orientation, useful for pruning false matches. Inspired in fingerprint recognition
we follow a similar feature matching process to remove wrong correspondences.
So, when matching keypoints the correspondence among them has to be in accor-
dance with the change of scale and orientation between both images. Figure 1
shows the matches after RANSAC between two images where some outliers are
still present. Feature points in both images are represented by a circle, whose
size is proportional to its scale, and an arrow that shows the main orientation of
the descriptor. It is easily seen how the extreme outlier, depicted in red, can be
removed as it does not exhibit a similar change in scale or orientation between
both images.

However, this filtering process may be not enough as it is based on point to
point correspondences without taking into account the overall structure of the
object. Some authors propose the modelling of the object by an attribute graph,
where keypoints provided by the feature detector constitute the vertices of the
graph. The topological relationship of these keypoints are preserved by the edge
interconnections. The structure of the graph has itself a relevant information
about the object and can be useful for filtering mismatches as we propose in this
paper. Figure 3 shows a mismatch between three points. Orientation and change
in scale is similar for the matched points, as they correspond to a similar cloud
in the image. However, from a structural point of view, both triangles are not
matched as they correspond to a different graph structure.
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The main contributions of this paper are: the generation of an Attribute
Graph (AG) and a matching filtering based on attribute and structure which
overcome the limitations of RANSAC, mainly to assess if there is no matching
between two images.

2 Related Work

2.1 Local Features from Images

Feature detection aims at finding some interesting points (features) in the image
such as corners. On the other hand, descriptor extraction aims to represent those
interesting points to later compare them with other interesting points (features)
in a different image. Current methods for feature matching rely on well-known
descriptors for detection and matching as the SIFT and SURF keypoint detec-
tor and descriptor, or more recent descriptors such as BRIEF or BRISK which
exhibit an acceptable performance with the benefit of a low computational cost,
see [2] for a deeper insight in comparison of feature detectors and descriptors for
object class matching. Those sparse methods that find interest points and then
match them across images become the de facto standard [3].

In recent years, many of these approaches have been revised using deep net-
works [3,4], which has led to a revival for dense matching [5,6]. Despite the great
expectation raised by dense methods, they still tend to fail in complex scenes
with occlusions.

Regardless the learning procedure used to get local features, sparse or dense
methods, this paper tackles with the problem of how to combine them in a higher
structure to cope with the limitations that both approaches still suffer.

2.2 Image-to-Image Alignment

Another problem that has attracted increasing attention over the past years
is the localization problem, i.e. estimating the position of a camera giving an
image. Several approaches have been suggested to solve this problem. Many of
them have adopted an image retrieval approach, where a query image is matched
to a database of images using visual features. Sometimes this is combined with a
geometric verification step, but in many cases the underlying geometry is largely
ignored, see [7].

Some works afford the representation of the target object by an attributed
graph, where its vertices represent feature descriptors and its edges encode their
spatial relationship which has already been proposed in [8]. The authors propose
an attribute graph to represent the structure of a target object in the problem of
tracking it along time. The structure of the model yields in the change of shape
when the object moves, adapting continuously to the edge ratio in each triangle
of the graph. As in many other computer vision problems when adapting the
model according to the appearance of the object it can easily be degenerated to
loose the target when the model no longer fit to the object.
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2.3 Filtering Correspondences

Image alignment and structure-from-motion methods often use RANSAC to find
optimal transformation hypotheses [1]. In the last decades many variants of the
original RANSAC procedure have been proposed, we refer the reader to [9] for
a performance evaluation of these methods.

A major drawback of these approaches is that they rely on small subsets
of the data to generate the hypotheses, e.g., the 5-point algorithm or 8-point
algorithm to retrieve the essential matrix. It requires that most false matches
have to be removed in advance. As image pairs with large baselines and imaging
changes will contain a large percentage of outliers, it makes RANSAC to fail in
these kind of situations.

Recent works try to overcome this limitation by simultaneously rejecting
outliers and estimating global motion. GMS [10] divides the image into multi-
ple grids and forms initial matches between the grid cells. Although they show
improvements over traditional matching strategies, the piecewise smoothness
assumption is often violated in practice.

As mentioned previously, traditionally hand-crafted feature descriptions have
been replaced by deep learning ones, which can be trained in an end-to-end way.
However, RANSAC has not been used as part of such deep learning pipelines,
because its hypothesis selection procedure is non-differentiable. As far as our
knowledge, DSAC [11] is the only work to tackle spare outlier rejection in a
differentiable way. However, this method is designed to mimic RANSAC rather
than to outperform it, as we propose in this paper. Furthermore, it is specific to
3D to 2D correspondences, rather than point set registration [12].

3 Our Approach

3.1 Attribute Graph

Given a target image and a set of keypoints and its corresponding descriptors
we first model the target by an attribute graph. Triangles are 2D entities that
are able to describe the geometry of planar objects and more complex objects
by a triangle mesh. In our approach, the object is modelled by a triangle mesh
where each point in the mesh corresponds to a keypoint, which has associated a
feature descriptor.

Formally speaking, an attributed graph G consists of a set of vertices V ,
which are connected via a set of edges E. The edges E are inserted following
the rules of the Delaunay triangulation. Hence, there is also a set of triangles
F , where c : F −→ V 3; c(f) = {v1, v2, v3}. The model stores attributes with
vertices and triangles.

Attributes of Vertices: Each vertex v ∈ V stores a set of attributes {p, β, s}.
p: p(v) = {x, y}T is the 2D position of vertex v.
β: β(v) is the orientation provided by the feature detector for this vertex.
s: s(v) is the scale provided by the feature detector for this vertex.
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Attributes of Triangles: Each triangle f ∈ F stores a set of vertices c(f) =
{v1, v2, v3} and barycentric angles A.

A: A(f) = {α1, α2, α3}T are the angles between any vertex and the barycen-
tric, see Fig. 2.

Fig. 2. Attributes for vertices and triangle.

3.2 Attribute Filtering

The standard approach for feature matching basically relies on three steps. The
first one is to find feature points in each image (keypoints). Next, for each pair
of images, keypoint descriptors are matched for each pair of images using the
approximate nearest neighbour. After matching features for an image pair the
fundamental matrix is robustly estimated for the pair using RANSAC, removing
outliers.

In our proposal we follow the first two steps, i.e., feature detection and match-
ing based on kd-tree and then use the graph structure to remove false matchings.
We carry out two filtering processes one after the other. The first one is based
on attributes and the other one on structure.

Matching between images is accomplished by feature descriptors. It provides
a list of candidate matching points between the object and the descriptors in the
image. However, other keypoint attributes, such as scale or orientation, useful
for pruning false matches exist.

To recover the orientation between the model and the image the most prob-
able orientation difference is found. The median is obtained and all the corre-
spondences higher, or lower, a threshold from this value are rejected. To do so,
the circular statistic is used due to the inherent nature of the data.

Afterwards, the same process is carried out using the scale attribute. For
those correspondences exhibiting a difference in scale attribute higher or lower
than the median are removed. In this paper we consider a scale threshold corre-
sponding to the double or the half of the median scale change.
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Fig. 3. Mismatch points filtered by structure.

3.3 Structure Filtering

In spite of the attribute filtering some mismatch points, with similar change
in orientation and scale, might remain, see Fig. 3 where a solid triangle suffers
from a projective change. The structure filtering takes into account the Delau-
nay triangulation in the graph to analyse the consistency of the matching from a
structural point of view. For every triangle in the graph the barycentric is calcu-
lated. Afterwards, for each vertex in the triangle we compute the angle between
the vector given by the descriptor orientation and the vector joining the vertex
with the barycentric. In a similar way, we compute the angle between the orien-
tation of the descriptor in the image and the vector joining that keypoint and
the coordinates of its barycentric. Computing the angle descriptor in relation to
the barycentric vector is similar to a normalization process and therefore, the
difference between both keypoints in the image and the target should be close
to 0.

For the example shown in Fig. 3, it can be easily verified that the ordination
of the points is not preserved, and therefore, the change of orientation between
both triangles will not pass the structure filtering. Next step consists in iden-
tifying which is the wrong point in the triangle, or could be more than one.
As every triangle is not isolated, but it belongs to a graph, we check for each
vertex if it is or not in accordance with its neighbour triangles in the graph. In
this way, we obtain a list of triangle orientation for any point in relation to its
neighbours. Now we apply the voting rule, so that the point which has received
more mismatches will be rejected. The process carries on till all vertices pass the
triangle orientation exam.
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Fig. 4. Object detection in presence of scale and orientation changes, background
clutter and partial occlusions for The Stanford Streaming Mobile Augmented Real-
ity Dataset. From left to right: Barry White Moving, Chris Brown Moving, Toy Story
Moving and Titanic Moving. At the top, the original DVD covers. Following rows show
some frames suffering from different partial occlusions (first frame of the sequence on
the middle row, last frame on the bottom row. The rectangular DVD cover is depicted
in yellow after the four corners are detected.

4 Experiments

Next, we describe a set of experiments used to verify our theoretical results. We
use two datasets: The Stanford Streaming Mobile Augmented Reality Dataset
and The Stanford Mobile Visual Search data set. For the former dataset we
report the mean error in the estimation of the target bounding box as well as
the computational cost to carry out the object location. For the last dataset we
report the image match accuracy.

All experiments have been implemented in Matlab. For both datasets we use
the SIFT descriptor, running the code provided by [13]. The algorithm provides
a feature vector of salient keypoints. For every keypoint the x and y coordinates,
the scale and the orientation are given. Additionally, the code provides a 128-d
histogram as feature descriptor for every keypoint. It is well known that Hellinger
measures outperform Euclidean distance when comparing histograms. So, in our
experiments we follow the so called RootSIFT approach proposed by [15] to
improve the matching. As the Hellinger distance goes from 0 to 1, we use a 0.95
value as a threshold to valid the feature descriptor matching. Approximated
nearest neighbour (ARR) is computed by kd-tree.

In these experiments we compared the performance of the proposed algorithm
to that of RANSAC and a couple of its variants, i.e., MSAC, and MLESAC. For
all these methods, the number of iterations was set to 100, and in each iteration
the fundamental matrix was calculated using the eight-point algorithm, the Chi
squared probability threshold for inliers is set to 0.99 and the noise standard
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Fig. 5. Top: lost frames in any dataset. Bottom: average error for the four corners
obtained from the right matched frames.

deviation to 2, see [14]. Additionally, we use another implementation of RANSAC
provided by [16], that we denoted as ransac1.

4.1 The Stanford Streaming Mobile Augmented Reality Dataset

The Stanford Streaming Mobile Augmented Reality Dataset [17] contains 23
different objects of interest, divided to four categories: Books, CD covers, DVD
covers and Common Objects.Each video is 100 frames long, recorded at 30 fps
with resolution 640 × 480. For each video, we provide a clean database image (no
background noise) for the corresponding object of interest. In our experiments
we use those videos corresponding to moving objects recorded with a moving
camera, i.e., Barry White Moving, Chris Brown Moving, Toy Story Moving,
Titanic Moving. These videos help to study the effect of background clutter when
there is a relative motion between the object and the background. The dataset
authors provide the ground-truth localization information for these videos, where
they manually define a bounding quadrilateral around the object of interest
in each video frame. To make the experiments even more challenging we have
simulated the partial occlusion of the object using a square with a texture similar
to that of the target. As the object is being moved along the scene, we check the
behaviour of all approaches considering four different occlusion placements, see
Fig. 4.

Figures 5 (bottom) show the number of frames where the matching has failed
or the error in any of the four corners is longer than the maximum image size, as
well as, the mean error, given in pixels, for the four corners corresponding to the
correct frames (on the top). Some conclusions can be drawn from this Figure.
The most relevant one is that our approach, based on an Attribute Graph (AG)
and filtering, outperforms the results provided by the RANSAC algorithm and
its variants. No frame is lost in our approach. Besides, the average error for all
frames in any dataset, for all occlusions, is lower in AG.
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Fig. 6. Applying the attribute and structural filters after RANSAC. On the top: the
average error (in pixels) for all datasets. On the bottom: the average computational
cost (in ms) taken by any of the proposals.

Fig. 7. Landmark dataset. The query image (top), the reference image (bottom)

In relation to the RANSAC algorithms taken from the literature we have
found that the so called ransac1 exhibits the best performance among them.
Therefore, we have run a second experiment to check the improvement of this
algorithm in conjunction with our approach. Figure 6 shows on the top the aver-
age error for four different situations: (a) running the RANSAC algorithm alone,
(b) applying afterwards the attribute filter or (c) the structure filter and (d) both
filters after RANSAC. It is noticeable how the average error of RANSAC is highly
reduced after applying our filtering approach.

Figure 6 on the bottom shows the average time (in ms) taken to compute any
of these four experiments. As it can be seen, the RANSAC algorithm consumes
most of the time, being the attribute filter practically negligible. Therefore, we
can pay for a low increase in computational cost to obtain a lower error in
localization.
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Fig. 8. Matching accuracy for the Landmark dataset for three different thresholds:
0.95; 0.90, 0.85 from left to right

4.2 The Stanford Mobile Visual Search Data Set

Outdoor applications pose additional challenges to those shown in the previous
experiments where highly textured rigid planar objects taken under controlled
lighting conditions were used. Buildings, on the other hand, tend to have fewer
features, exhibit repetitive structures and their 3-D geometric distortions are
not captured by simple affine or projective transformations. In order to check
our proposal for this kind of applications we have selected The Stanford Mobile
Visual Search data set, which exhibits some characteristics lacking in the pre-
vious data sets: rigid objects, widely varying lighting conditions, perspective
distortion, foreground and background clutter and query data collected from
heterogeneous low and high-end camera phones, [18]. The Landmarks dataset
has been used for the experiments as it constitutes one of the most challenging
dataset in relation to image registration. Figure 7 shows some examples.

By this new set of experiments we intend to asses the performance of
the matching filtering processes discussed in this paper, i.e., orientation+scale
attribute filtering, structure filtering and RANSAC. In this regard, we run a set
of experiments denoted as: A (Attribute filtering); S (Structure filtering); A+S
(Structure filtering after Attribute filtering); R (RANSAC); R+A (Attribute
filtering after RANSAC); R+S (Structure filtering after RANSAC); R+A+S
(Structured filtering after Attribute after RANSAC).

We run a new experiment with the Lanmark dataset for image retrieval
taking a query image from the query subset and see which one corresponds to
the reference subset. Taking into account the eight-point problem, we consider
that if there are not at least eight point correspondences between the query and
the reference image we label it as no found. Both subsets, query and reference,
have the same number of pictures (N = 501). So far, we have performed several
experiments using the Hellinger distance for feature matching with a threshold
value equal to 0.95. This parameter can be relevant when dealing with outdoor
images which tend to have fewer features and lighting conditions can change
significantly at different times of the day. Therefore, in the new experiments
three different values have been used, i.e., 0.95, 0.90 and 0.85.

Figure 8 shows the results for the three thresholds under consideration for all
the filtering combinations previously mentioned. In order to analyse these graphs
we have to consider two aspects: on the one hand, the recognition matching
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has to be the highest possible and on the other hand, the wrong mismatches
have to be the lowest. In this regards we can notice that the attribute filtering
and the RANSAC filter exhibit the highest number of wrong mismatches of
all approaches. It is worth noticing that the combination of structure filtering
after attribute filtering improve the results provided by the structure filtering
alone. We can see how A+S outperforms S approach and the same can be said
for R+A+S in relation to R+S. Finally, it is shown that the A+S approach
outperforms the R+A+S for this dataset.

5 Conclusions

In this paper we have tackled with the problem of feature matching for object
detection by modelling the object as an attribute graph. Keypoints provided by
the feature detector constitute the vertices of the graph. The topological rela-
tionship of these keypoints is preserved by the edge interconnections. Matching
filtering takes into account attributes of the nodes, such as orientation or scale,
as well as the structure of the graph.

Experiments with the Stanford Streaming Mobile Augmented Reality
Dataset have confirmed the better performance of our approach in relation to
traditional methods based on RANSAC and variants. Moreover, the matching
filtering approach based on attributes and structure has even worked well for
matching outdoor images, such as landmarks, where their 3-D geometric dis-
tortions are not captured by simple affine or projective transformations. One of
the most remarkable property of our approach is that it does not generate false
image correspondences, as other RANSAC-based approaches do.
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