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Abstract. Leishmaniasis is a parasitic disease, transmitted by the bite
of an insect that has previously fed on an infected host. One of its clin-
ical forms is Cutaneous Leishmaniasis - CL and due to its increasing
incidence, it is necessary to create effective and easy-use diagnostic meth-
ods. In this paper, we assess two unsupervised band-selection algorithms
that allow the dimensional reduction of hyperspectral data taken from
CL ulcers, maintaining a high classification accuracy. This is an impor-
tant task for the development of an non-invasive system based on mul-
tispectral imaging, that support the diagnosis and treatment follow-up
of cutaneous ulcer caused by Leishmaniasis. Spectral data was obtained
in golden hamsters subjected to varying conditions of infection. Two
algorithms, one based on similarity and the other based on singular val-
ues decomposition, are implemented using MATLAB functions and are
applied to the spectral data. The selected subsets of bands are used to
classify the spectra into healthy skin, border and ulcer centers using sup-
port vector machines - SVM and neural networks - NN. The obtained
results are represented in precision tables and allow to observe that both
methods achieve an appropriate dimensional reduction of multispectral
data without losing key information for their subsequent classification.
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At the end, we show that it is possible to obtain a subset of spectral
bands to discriminate between healthy skin and cutaneous ulcers caused
by Leishmaniasis.

Keywords: Leishmaniasis · Hyperspectral data ·
Unsupervised band selection · Spectral reduction · Classification

1 Introduction

Leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania,
transmitted by the bite of an infected insect. There are two clinical presentations:
Visceral Leishmaniasis (VL) and Cutaneous Leishmaniasis (CL). VL is the most
serious and can be fatal. CL does not cause death, but it represents a large burden
due to social stigma. Also, CL is related with psychological effects and decreasing
of productivity of patients. Since the incidence of this disease is growing, it is
necessary to develop new techniques for its diagnosis [1,2,10,11].

Some studies propose the use of spectral data for the diagnosis of skin dis-
eases. Spectral data is refereed to spectral signatures obtained by spectropho-
tometer, as well as, multispectral or hyperspectral imagery collected by cameras.
Spectral system measures the reflected and emitted energy by a surface along
the electromagnetic spectrum. Spectral data from skin can provide accurate
information to develop non-invasive techniques for the diagnosis of skin dis-
eases. For example, Vyas et al. [14] proposed a non-invasive estimation of skin
thickness from hyperspectral imaging; Attia et al. [4] developed a non-invasive
real-time characterization of non-melanoma skin cancer; and [6] reviewed sev-
eral non-invasive techniques for diagnosis of skin cancer, including some based
on spectrophotometry data. Despite the advance in this field, more methodolo-
gies and techniques are necessary in order to characterize skin ulcers in their
different phases of formation and treatment follow-up.

This paper presents results from a project that seeks to develop a portable
non-invasive system based on multispectral imaging for the diagnosis and mon-
itoring of skin ulcer treatments caused by Leishmaniasis. For the development
of a new multispectectral system, we need to understand the spectral signature
of both healthy skin and CL ulcers. An animal model for CL using golden ham-
sters was employed to build an spectral library. These include several spectra
with nearly 2000 bands between 400 nm to 800 nm from healthy skin and ulcers
in different phases. In this paper, we presents the evaluation of two unsupervised
band selection algorithms, the first based on similarity [7] and the second based
on singular value decomposition (SVD) [3]. These algorithms select the most
relevant bands for the discrimination of healthy skin and leishmanial ulcers. The
comparison of the unsupervised band selection algorithms is performed by using
two classifiers: neural network (NN), and support vector machine (SVM).
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2 Spectral Band Subset Selection Algorithms

In the literature, several algorithms for band subset selection - BSS can be
found. These methods are known as dimensional reduction approaches, which
select a set of bands according to a separability criteria. The difference between
BSS algorithms with other dimensional reduction approach, such as principal
component analysis, is that BSS selects bands from the measured spectrum,
allowing the characterization of the materials, and opening the possibility to
build low-cost sensing system using the selected bands. For this work, we select
two unsupervised BSS algorithms with low computational complexity: similarity-
based band selection [7] and singular value decomposition - SVD based band
subset selection [3].

2.1 Similarity-Based Band Selection

Du and Yang [7] proposed two unsupervised methods: Linear Prediction - LP
and Orthogonal Subspace Projection - OSP, whose basic idea is to look for
the most distinctive bands, but ensuring that the selected bands also are the
most informative ones. For this paper, we use the LP algorithm, since both
algorithms offer the same results, but LP is computationally more efficient by
operating relatively smaller matrices. For both, LP and OSP, the hyperspectral
data must go through a pre-processing to eliminate water absorption and low
signal-to-noise ration bands [7]. Once these bands are removed, a noise whitening
is applied. This whitening is easily achieved thanks to the self-decomposition of
the covariance matrix, using the method presented in [12].

The algorithm begins with the combination of the two best bands, and this
combination increases consecutively until the desired number of bands is selected.
The authors suggest a random selection of the first band and then, a projection
of the additional bands in the orthogonal subspace of the first band, this to select
the bands most dissimilar to each other. However, we chose a different selection
method for the first band seeking to improve the performance of this algorithm.
Since the LP algorithm seeks also for the most informative ones, we choose the
band with the highest variance as the first one. Then, the next band is selected
such that it is the most distant from the first one using the euclidean distance
[7].

The LP algorithm assumes two bands, B1 and B2, belonging to the subset
ϕ, which contains the selected bands, with N pixels each one. To find the band
most dissimilar to B1 and B2, these bands are used to estimate a third band B
using Eq. 1.

B′ = a0 + a1 B1 + a2 B2 (1)

where B′ is the linear estimation of B using B1 and B2, and a0, a1 and a2 are
the parameters that minimize the error of the linear prediction: e =‖ B − B′ ‖.
The parameter vector will be a = (a0, a1, a2), which can be determined using
the least squares solution shown in 2.

a = (XT X)−1XT y (2)
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In 2, X is a matrix N x 3 where the first column is one, the second column
includes the N pixels of B1 and the third column includes the pixels of B2, and
y is a vector of N x 1 with the pixels from the band that is being compared. The
band B with the minimum error e is the most closely to the band B′, and then
it is chosen as B3. This process is iteratively repeated until reaching the desired
number of bands. A seudo-code for this procedure is presented in the Algorithm
1.

Algorithm 1. Similarity Band Selection Pseudo-code
1: function SubsetBandSelection (hsi,bands)
2: bandSubset(1) ← find max std band of hsi
3: bandSubset(2) ← most distant band to bandSubset(1) with euclidean norm
4: n ← number of pixels of each hsi bands
5: for i = 3 to bands do
6: X ← Matrix with a ones nx1 column vector and each band of

bandSubset as column vector
7: for each B band in hsi do
8: if B is in bandSubset then
9: error(index of B) ← -∞

10: else
11: A ← (X ′X)−1Xb
12: B’ ← XA
13: error(index of B) ← ‖B − B′‖
14: end if
15: end for
16: bandSubset(i) ← band-index with max error
17: end for
18: return bandSubset
19: end function

2.2 SVD-Based Band Subset Selection

Velez and Jiménez [3] proposed an unsupervised method based on the singular
value descomposition - SVD. This method combines the SVD with the reveal-
ing range QR factorization and allows to obtain a subset of bands that retain
the data meaning without a transformation [3]. The method used the strongly
restricted projection of a matrix A (see Eq. 3).

A = P

[
Ip
0

]
(3)

where A is a n x p matrix with p < n and ATA = IP , and P is a permutation
matrix. To compute the permutation matrix, first it is calculate the covariance
Σdata for the hyperspectral data. Then, the QR factorization with pivoting is
used to compute the matrix V1

T where V1 is formed by the first p eigenvectors of
Σdata. The pivot matrix P that results from this factorization is the permutation
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matrix for the Eq. 3. Finally, the first p elements of x are the selected bands [3].
A seudo-code for this procedure is presented in the Algorithm 2.

Algorithm 2. SVD-Based Band Subset Selection Pseudo-code
1: function SubsetBandSelection (hsi, bands)
2: Σdata ← covariance of hsi
3: p ← desired length of band-subset given in bands
4: V1 ← first p eigenvectors of Σdata

5: Q,R,P ← QR Factorization wit Pivoting of V T
1

6: x ← P ∗ hsi
7: bandSubset ← first p elements of x
8: return bandSubset
9: end function

3 Spectral Classification

Classification is a process during which each sample is labeled as a class [8],
by applied decision rules, either in the multispectral or spatial domain. Clas-
sification process can be done through supervised or unsupervised approaches.
Supervised classification uses a prior information to learn the decisions rules.
Instead, unsupervised approaches seek for patterns in the data using some sim-
ilarity criterion. In this paper, we used two supervised classification methods:
support vector machines - SVM and neural networks - NN. Both methods are
selected for their high performance documented in the literature with spectral
data.

3.1 Support Vector Machines - SVM

SVMs are a useful technique for data classification. The objective of using SVM
for classification is to find a optimal decision hyperplane to separate unknown
data in two or several classes. A kernel can be used to solve the problem for non-
linear separable data. Most used kernels for hyperspectral data are polynomial
and radial basis function kernel [9].

3.2 Neural Networks - NN

Neural networks are a learning paradigm based on the human brain. These net-
works are composed of individual units that process information through highly
interconnected individual nodes. NN models are useful algorithms for cognitive
tasks, such as classification [8]. In this document, an NN classification was imple-
mented with a network formed by a hidden layer of five neurons (nodes).
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4 Experimental Procedure

4.1 Data Set

Animal models are widely used to analyze new drugs and treatments. For CL
studies, golden hamsters are recommended due to the similarity of their skin
structure with human skin [5,13]. Diffuse reflectance spectral from healthy and
CL ulcers were acquired using a spectrometer Ocean Optics HR4C3337. The
acquired spectra were calibrated using white and black diffuse reflectance stan-
dards. A total of 39 golden hamsters, distributed in 18 females and 21 males, were
used. Hamsters are subject to several conditions of infection and treatment. For
this paper, we used only spectral signatures acquired before treatment. From the
39 golden hamsters, 27 were infected with Leishmaniasis Braziliensis (LB), while
4 were hamsters infected with Leishmaniasis Panamensis (LP), and 8 hamsters
were in the control group (i.e. without CL).

Spectral signatures of each hamster’s skin are obtained each fifteen days.
The first measure is taken before the inoculation of CL, then two more measures
are taken during the development of the ulcers. In each date, up to 12 spectra
are measured for each area: healthy skin, border and ulcer center. This data
collection allows an exhaustive analysis of the evolution of the disease, from the
inoculation process followed by the analysis of ulcer development. This protocol
had the approval from the Universidad de Antioquia animal ethics committee.

Figure 1 presents the average signatures from healthy skin, ulcer border and
ulcer center between 400 nm and 800 nm. After 750 nm, the signature noise
increased. We can also see that the spectral response from the ulcer center is
lower that from healthy skin; but, the spectral signature from the ulcer border
is very similar to healthy skin.
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Fig. 1. Average spectral signatures of healthy skin, ulcer border and ulcer center from
golden hamsters infected infected with Leishmaniasis
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4.2 Experiments

For the evaluation of both BSS algorithms, we used spectral signatures of healthy
skin, border and ulcer center captured from Golden hamsters. First, a mean filter
with a sliding window of 3 points is applied to each of the captured signatures,
in order to reduce noise. Since the bands from 750 nm present higher noise than
lower bands, we defined two experiments to analyze the spectral signatures.
The first experiment applied the BSS algorithms to spectral signatures between
480 nm to 750 nm, eliminating upper bands for reducing the noise. The second
experiment takes all bands between 750 nm to 800 nm. For both BSS algorithms,
we select 10 bands. This number is chosen since the selected bands will be used
in the development a portable system, and commercial filter wheels for 10 filters
are very common. Both experiments applied the two BSS methods: SVD and
Similarity-Based band selection. Bands subsets are converted into its respective
commercial filter, to evaluate a real configuration for a multispectral system.

The evaluation of the selected bands is performed using supervised classifica-
tion. SVM and NN are used to evaluated the capability of the selected bands to
improve the discrimination of healthy skin, border and ulcer center. The param-
eters of both classifiers are optimized to obtain the highest overall accuracy. For
SVM, a radial basis function kernel is used. For NN, a configuration with a hid-
den layer of 5 neurons provided the best performance. For training, 30 samples
are randomly selected for each class. Since border signatures are close to healthy
skin signatures, as shown in Fig. 1, we first classify only healthy skin and ulcer
center. Then, we performed the classification process using the three class. Each
experiment is repeated 100 times to obtain the general classification accuracy.

5 Results

The selected bands from the BSS algorithms using the signatures between 480 nm
to 750 nm are presented in Fig. 2. The spectral signature (blue signal) presented
in Fig. 2 is the average of the all spectra used in the experiment. We can note that
the selected bands by both algorithms are very close. Then, when we identify the
corresponding commercial filters, many spectral bands become the same from
both BSS approaches. Values of the commercial filters are presented in the table
inside Fig. 2.

The selected bands from the BSS algorithms using the signatures between
480 nm to 800 nm are presented in Fig. 3. Values of the commercial filters also
are presented in the table inside Fig. 3. Comparing these results with the first
experiment, we note that two bands are selected between 750 nm to 800 nn for
both algorithms. In these bands (785 nm and 800 nm) we can see a interesting
behavior of healthy skin, border and ulcer center (see Fig. 1), that can be helpful
for the discrimination process.

Once the band subsets are experimentally obtained, these are classified using
SVM and NN. First, a two-class classification is performed, using only healthy
skin and ulcer center signatures. A classification baseline is obtained by using
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Fig. 2. Selected spectral bands for spectral signatures between 480 nm to 750 nm using
SVD (∗) and similarity-based (+) Band Subset Selection. Table shows the equivalent
commercial filters. (Color figure online)
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Fig. 3. Selected spectral bands for spectral signatures between 480 nm to 800 nm using
SVD (∗) and similarity-based (+) Band Subset Selection. Table shows the equivalent
commercial filters.
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Table 1. Overall classification accuracy for two-class problem: healthy skin and ulcer
center

480 nm to 750 nm 480 nm to 800 nm

SVM NN SVM NN

Similarity 95.89% ± 2.41 94.32% ± 3.80 95.25% ± 2.89 93.36% ± 5.47

SVD 95.74% ± 2.83 93.85% ± 4.81 95.94% ± 2.02 91.93% ± 5.98

all spectral bands (nearly 2000). For the two-class problem, we obtain an aver-
age accuracy of 44.66% (±30.43%) using SVM and 58.06% (±13.96%) by NN
using all bands. Table 1 shows the overall classification accuracy for the two-
class problem using the spectral band subsets. Using the selected bands from
480 nm to 750 nm, the best classification is obtained from the subset selected by
similarity-based approach and using SVM classifier. This configuration obtained
a overall accuracy of 95.89%. However, the result obtained using the band sub-
set selected by the SVD approach is very similar (95.74%). The NN classifier
obtained lower overall accuracies for both subset (similarity and SVD). Using
the selected bands from 480 nm to 800 nm, the overall accuracies are very close
to the first experiment. Also, best performance was obtained using SVM than
NN.

For three-class problem, the baseline accuracy was so low as 26.63%
(±20.84%) using SVM and 74.06% (±18.89%) using NN with all the spectral
bands. Table 2 shows the overall classification accuracy for the three-class prob-
lem using the spectral band subsets. We can note that for the three-class prob-
lem, the overall classification accuracy decrease for all configuration in compari-
son with two-class results. The best performance in this case is obtained using the
spectral signatures from 480 nm to 800 nm with the band subset selected by SVD
approach and using NN (82.60%). Then, the two bands selected between 750 nm
to 800 nm are relevants for the discrimiantion between border and healthy skin.
This can also be noted in Fig. 1.

Table 2. Overall classification accuracy for three-class problem: healthy skin, ulcer
center and ulcer border

480 nm to 750 nm 480 nm to 800 nm

SVM NN SVM NN

Similarity 77.58% ± 4.36 77.21% ± 14.25 75.13% ± 4.60 76.02% ± 14.03

SVD 77.15% ± 4.78 76.32% ± 12.60 75.49% ± 5.15 82.60% ± 4.81

Finally, Table 3 shows the confusion matrix for the best result from the three-
class problem (band subset selected by SVD and NN classifier). This confusion
matrix allows determining that the ulcer border zone is the most sensitive to
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classification and tends to have a variability such that, depending on the location,
it may have a reflectance like areas of healthy skin or ulcer center.

Table 3. Confusion matrix for the best result using the three classes: band subset
selected SVD-based algorithm from bands between 480 nm to 800 nm and NN classifier

Healthy Skin Center Border Accuracy(%)

Healthy Skin 241 1 23 91.67%

Center 2 51 6 86.44%

Border 7 2 26 74.24%

Accuracy(%) 96.70% 94.44% 47.27%

6 Conclusions

In this article, we presented the evaluation of two band-selection algorithms: the
first based on similarity measures and the second based on SVD. These algo-
rithms were applied to spectral data captured from cutaneous ulcers caused by
leishmaniasis on golden hamsters. The results shows that both algorithms allows
to obtain an appropriate dimensional reduction of spectral signatures without
losing key information for their subsequent classification. From the spectral range
analyzed, best results are obtained using 480 nm to 800 nm for the discrimina-
tion of healthy skin, border and ulcer center. Ulcer border area is highly sensitive
and represents a challenge for the classification, as this area tends to be confused
with ulcer center and healthy skin.

Since, the band subset selected allows a suitable discrimination of healthy
skin and cutaneous ulcers caused by leishmaniasis, this can be used to develop
an portable multispectal imaging system, that support the diagnosis and follow-
up of treatment of CL. As future work, the selected bands can be evaluated using
images and combining spectral-spatial methods, helping to improve the overall
classification accuracies.
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