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Abstract. Cascade transformer multilevel inverters (CT-MLI) are DC–AC
converters used in medium and high power applications to provide standardized
AC output. Despite their numerous advantages and robustness, these devices are
highly susceptible to fault events because of their high amount of components.
Therefore, early failure detection enables turning off the power system avoiding
the propagation of the fault to the connected loads. Beyond that, converter
operation can be reconfigured to tolerate the fault and activate a fail flag
facilitating the subsequent corrective maintenance. The techniques proposed so
far required several sensors, which is not practical. Therefore, in this study, we
propose an automatic fault detection algorithm for cascade multilevel inverters
based on pattern recognition, that only requires a sensor located at the output of
the inverter. Naive Bayes, decision tree, nearest neighbor, and support vector
machine were tested as classifiers using cross validation. The proposed method
showed high detection accuracy when all the obtained descriptors were
employed, being the K-NN the classifier showing superior performance. Fur-
thermore, an evaluation was developed to determine the minimum number of
descriptors required for the effective operation of the detection system, reducing
the computational cost and simplifying its implementation. The method was
validated by using simulation results obtained from a multilevel inverter circuit
model.

Keywords: Automatic fault detection � Machine learning �
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1 Introduction

Cascaded transformer multilevel inverter (CT-MLI) topologies are structures composed
by multiple stages, each one integrating a power converter and a low frequency
transformer. In the majority of known topologies, the inverter stages inputs are con-
nected in parallel to the same DC source and the outputs in serial. CT-MLI can be
classified as symmetrical or asymmetrical, depending on the turns ratios of the
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transformers, i.e., if they are equal or not. The building of the output signal is
accomplished by stages commutating in a synchronous way named as switching pat-
tern. According to the number of inverter stages, the turns ratios of the transformers and
the switching pattern, the inverter can produce more or fewer output levels which
affects directly the quality of the output signal [1–3]. Then diagnosis methods are
fundamental to predict failures, avoid fault propagation, provide fault tolerant modes or
isolate the system [4].

Fault diagnosis in multilevel inverters cannot rely on detection per element or stage
because it is required multiple measurements, signal acquisitions, and highly complex
algorithms and electronics. Therefore, many algorithms take measurement of output
voltage and current and perform fault detection looking for specific anomalies in the
operation of the system. Anomalies produced by power semiconductors can be
attributed to a permanent state in which the control signal cannot have effect because
one or more elements are damaged keeping into short circuit or open circuit. Detection
of open-circuit failures is more difficult because short-circuits failures easily enforce the
action of fuses and other current protection elements [5, 6]. However, considering that
inverter has multiple stages and also that power levels are considerably high, in some
cases short-circuit failures cannot be detected. Conventional methods operate contin-
uously reviewing changes in the output or current waveforms that indicate the presence
of a fault or using features which are computed for at least a cycle of the signal or, in
best cases, involving a sliding window to increase the rapidity of the detection. The
indicators mainly used are the normalized DC component or average value, the total
harmonic distortion (THD), the RMS value [7–10].

Thanks to the advancements in artificial intelligence and the interest to apply these
methods in diagnosis of power electronics systems, pattern recognition techniques has
been also developed for multilevel inverters. Artificial neural networks (ANN) com-
bined with discrete wavelet transform is presented in [11], where feature extraction of
energy content and mean during transient is accomplished using Clark’s transform.
Classification and localization of faults in an induction motor drive using ANN shows a
performance higher than 97.5% in a symmetric multilevel inverter of two stages where
input currents are used to extract features [12].

Among the classifiers found in the literature for pattern recognition in multilevel
inverters, it can be mentioned the Bayesian classifier called Naive Bayes (NB) [13], the
support vector machine classifier (SVM) [14], the multiclass relevance SVM [15], and
the k-Nearest Neighbors classifier (K-NN) [16]. The detection accuracy of the above-
mentioned methods ranges from 85% to 99%. As a positive impact of the use of the
fault detection capability of these techniques [20, 21], the control of the inverters can be
complemented with fault tolerant or reconfiguration modes in which the system can
temporarily operates when a failure occurs. For instance, in [17] when an inverter stage
fails, the rest of the stages changes the switching pattern to obtain an output signal with
reduced levels while keeping high quality. In this way, the failed stage is by-passed and
the others operate with a different modulation index to compensate for the absence [18].
To potentiate the application of all these techniques in the industry context, relevant
aspects are the computational cost in both memory resources and processing time,
being the improvement of these features a relevant challenge for future research in this
field. However, all the mentioned methods require several sensors, one located at the
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output of each stage, which is not practical. Therefore, in this paper, a new fault
detection method based on pattern recognition is introduced, which requires sensing
only the voltage output of the inverter.

The transformer based multilevel inverter in which the method is applied consists
of four stages (16 power semiconductor devices, four MOSFETs for stage) and is fed
by a single DC source (see more details in [19, 23]).

2 Materials

Multilevel inverters generate an AC output voltage waveform that is built using dis-
crete amplitude steps. As the number of levels in the voltage waveform increases,
higher quality is demonstrated because the total harmonic distortion (THD) decreases.
A high number of levels (more than 35) may be unnecessary and unachievable, in a
practical sense, because a lower amount of levels can comply with international
standards which define 5% as the permissible limit level for THD. In this paper, the
target inverter topology has four stages in which ratios between stages are defined as
6:7:8:9. With this ratio, the inverter can produce until 35 levels in the output signal (see
more details in [19, 23]). The inverter output voltage is given mathematically by the
algebraic sum of the stages output voltages.

The studied multilevel inverter uses 16 power semiconductor devices (4 for each H-
bridge). Each one can suffer a breakdown that would lead to a permanent short or open
circuit state. Furthermore, some failures can affect more than one semiconductor device
simultaneously, thus increasing the set of potential fail events. Thereafter, the proposed
automatic fault detection algorithm was designed to recognize and localize the mal-
functions of the inverter. Figure 1 shows the simulated output inverted signals.
Gaussian noise was added with an amplitude of 5 v and an uniform distribution, this
value is higher than the noise normally found.

Fig. 1. CT–MLI output voltages, short circuit fail and open circuit fail.
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3 Methods

The 60 Hz AC output voltage taken from the CT–MLI model was employed to con-
struct three signal databases to train and test the machine learning-based algorithms.
Each database contains a different number of sample points per signal. The first
database, as is observed in Fig. 2a, is composed of 835 uniformly separated samples
per cycle. The second one, as illustrated in Fig. 2b, is composed only of the samples
taken at the points where there is a voltage change in the signal; it is composed of 120
nonuniformly separated samples per cycle. Finally, the third database (Fig. 2c) was a
quarter of the period of the voltage signal sampled only in level change events;
resulting in 30 data per cycle at 60 Hz (first quarter of the negative half-cycle was
selected).

Therefore, the database was built with 3300 signals for each sample type, used for
the development and evaluation of the proposed method see Fig. 3. The first 100
signals were taken in normal operation without fails, the next signals were taken when
some stage had a fault in one device H-bridge, with possibilities that device remained
in open circuit or short circuit, 100 signals for each device fault in groups of 800
signals for the stage. The target data were chosen as “0” for normal operation, “1” stage
1 fault and so on.

Fig. 2. The samples acquired (a) using sample time of 1 µs (835 descriptors); (b) every
switching event (120 descriptors); (c) every switching event (30 descriptors).

Fig. 3. The database build

Automatic Fault Detection in a CT-MLI 381



The study used a Apple Macbook Air model A1466 with 4 GB DDR3 of memory,
a Intel Core i5 processor @ 1.3 GHz and a Intel HD 1536 MB graphics card. The
signal database was acquired in PSIM and developed in Phyton 2.7. The machine
learning algorithms were implemented in Phyton 2.7, using the Scikit-learn library.

4 Results

4.1 Parameter Estimation

To train the learning algorithms, 75% of the simulated data were used (2310 samples)
for the estimation of the parameters using cross validation. The remaining 25% (990
samples) of the data were used to find the optimal values of each classifier according to
the precision, as presented in Table 1.

To evaluate the methods, a second database was created. This database with more
fails, two for stage and make a test with the data previously training. The build was
with 400 signals for each stage. Finally, classification was performed, and the accuracy
of the four methods was evaluated see Table 4.

4.2 Classification

Once the parameters of interest for each of the analyzed algorithms were selected, we
proceeded with the training and precision calculations using cross validation. The times
required to perform the training classification of the selected samples are shown in
Tables 2 and 3 shows the performance of the classifiers in terms of accuracy for each
sample size. The NB method is the least complex among the classification methods;
however, it demonstrates good results and easy implementation. The K-NN results are
also acceptable, but this method runs very slowly, thus increasing computation time
and memory usage. The results seems to be sufficient even though only 3.6% of the
original data was used.

Table 1. Parameters selected for the different machine learning algorithms.

Classifier Parameter Value

Decision tree Number of samples per division 10
K-NN Number of neighbors 5
SVM Kernel

Gamma
Radial basis function
0.001

Table 2. Classification execution per signal times in microseconds (mS)

Classifier Time by sample 1 Time by sample 2 Time by sample 3

NB 0.07673 0.00766 0.00253
Decision tree 0.00265 0.00114 0.00079
K-NN 0.74247 0.13251 0.06057
SVM 1.74362 0.12284 0.02383
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Like Lilula et al. [22], who proposed a fast and reliable power island detection
method based on the wave coefficients of the transient waveforms, it was found, as it is
shown in Table 3, the decision tree classifier produced the best accuracy.

5 Discussion

Table 2 show that the pattern recognition classification time is much smaller than the
period time per cycle, it means that in one cycle the fail will be detected, also in
Table 3 can be observe that accuracy to classification is superior to 70%. Decision
Trees, K-NN and SVM are roughly equal. However, the presented methods are
computationally efficient because it does not require higher training and does not
require a large amount of memory and computer resources. In addition, it presented the
highest precision of the studied algorithms. Among the other methods, the SVM
presented the highest precision, even though it requires a long analysis time. The
Decision Trees, conversely, was the fastest algorithm and had a precision better to that
of the SVM, making this case the best option for this type of method. Additionally, in
Table 4 is observed that despite without database training the accuracy is acceptable by
sample 3 using NB, Decision Tree, and K–NN classifiers.

6 Conclusions

In this study, a new pattern recognition algorithm for automatic detection and location
of faults in cascaded multilevel inverters was proposed and validated. The four tested
and compared classifiers, namely NB, decision tree, K-NN and SVM show good
accuracy in failure detection. The decision tree classifier showed the best results
regardless of the number of descriptors, followed by SVM method which runs very
slowly, which increases the calculation time and the memory usage. Furthermore, it
was observed that a similar performance was obtained using the complete set of

Table 3. Classifier accuracy according to datatype.

Classifier Sample 1 Sample 2 Sample 3

NB 0.82 0.6948 0.7239
Decision tree 1 1 1
K-NN 0.9997 0.9991 0.9982
SVM 1 1 1

Table 4. Classifier accuracy for more fails for stage according to database.

Classifier Sample 1 Sample 2 Sample 3

NB 0.5 0.5 0.75
Decision tree 0.5 0.5 0.75
K-NN 1 1 1
SVM 1 0 0
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samples taken from a cycle of the output voltage waveform (120 descriptors) and the
second half of the negative half cycle (30 descriptors) in all classifiers, except in NB.
By summarizing, although there are more powerful techniques for pattern recognition,
the K-NN classifier shows good performance and accuracy detecting and locating faults
in the studied multilevel inverter. This work is being currently extended by involving
more possible failure events with the aim to provide information to correctly recon-
figure the inverter in a fault tolerance mode.

Simulated results using an inverter model were obtained, demonstrating the fea-
sibility of the proposal. The effectiveness and performance of the method were assessed
with tested with four different classifiers: NB, decision trees, K-NN and SVM. It was
also observed the number of descriptors can be reduced without affecting the detection
accuracy, which demonstrates the quality of the proposed classifier.
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