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Abstract. Studies based on the cardiac and respiratory system have allowed a
better knowledge of their behavior to contribute with the diagnosis and treat-
ment of diseases associated with them. The main goal of this project was to
analyze the behavior of the cardiorespiratory system in healthy subjects,
depending on the body position. The electrocardiography and respiratory flow
signals were recorded in two positions, supine and sitting. Each signal was
analyzed considering sliding windows of 30 s, with and overlapping of 50%.
Temporal and spectral features were extracted from each signal. A total of 187
features were extracted for each window. According to statistical analysis, 148
features showed significant differences when comparing the position of the
subject. Afterwards, the classifications methods based on decision trees, k-
nearest neighbor and support vector machines were applied to identify the best
classification model. The most advantageous performance model was obtained
with a linear support vector machine method, with an accuracy of 99.5%, a
sensitivity of 99.2% and a specificity of 99.6%. In conclusion, we have observed
that the position of the body (supine or sitting) could modulate the cardiac and
respiratory system response. New statistical models might provide new tools to
analyze the behavior of these systems and the cardiorespiratory interaction
complexity.
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1 Introduction

Over time, studies of the cardiac and the respiratory systems have provided a large
number of tools to diagnose and improve the quality of life of the people. These
contributions not only helped to deepen in the early detection of pathologies but have
also generated studies of new technologies in the clinical field, and research for a better
understanding of the cardiorespiratory system function [1–3].
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Several studies show the relevance of the cardiac and respiratory dynamics
depending on the posture [4–6], recognizing their impact on the diagnosis of some
pathologies such as vertebral fracture [7, 8], how the blood pressure changes in resting
conditions for hypertensive patients [9], or how the posture affects sedentary young
people for the modulation of the autonomous heart rate [10]. However, to the best of
the authors’ knowledge, there are no studies aimed to analyze changes of features of
cardiac and respiratory systems depending on posture, which may lead to specify the
best position for make a clinical examination. The identification of posture, based on
the analysis of the cardiorespiratory dynamics, may also be an area of interest for
clinical and non-clinical applications [11–13].

This document shows a statistical analysis of respiratory flow (FLW) and elec-
trocardiographic (ECG) features, of healthy subjects, depending on the posture.
Machine learning models are proposed for the identification of the posture based only
in some features from ECG and FLW.

2 Materials and Method

2.1 HealthyDB Database

ECG and respiratory flow signals of 44 healthy subjects ranging in age from 22 to 33
years old were recorded under standardized resting conditions (quiet environment,
same place) using BIOPAC System Inc. MP150 equipment. All records were made
considering two positions: supine (for 30 min) and sitting (for 15 min). Table 1 shows
demographic information of the subjects analyzed.

All signals were recorded simultaneously, first in supine position and then in sitting
position, with a five minutes pause between each record. For each one of the 44 healthy
subjects, and each position (supine or sitting), five signals were obtained: four from the
ECG – monopolar leads I, II, III and chest precordial lead – with a sampling frequency
of 250 Hz, and one corresponding to FLW signal with a sampling frequency of 10 Hz.
Figure 1 presents an excerpt of the ECG and FLW signals of a subject in supine
position.

Records were preprocessed to detect and correct artifacts and outliers. Custom
algorithms were applied to detect the events of the signals. Wrong detections were
manually corrected whenever necessary.

Table 1. Mean ± standard deviation of the physical data of the subjects grouped by gender.

N Age (years) Height
(cm)

Weight
(kg)

Smokers Waist
(cm)

Hip
(cm)

ALL 44 27.0 ± 4.5 175.5 ± 10.5 68.0 ± 14.3 8 82.8 ± 10.9 96.5 ± 9.3
MALE 28 27.2 ± 5.4 178.7 ± 6.4 77.6 ± 8.8 7 88.8 ± 7.1 100.3 ± 7.4
FEMALE 16 26.7 ± 2.8 161.1 ± 5.5 54.3 ± 8.1 1 74.3 ± 9.6 90.9 ± 8.8
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2.2 Signal Processing

For each subject and for each signal we extracted time and frequency domain
parameters to describe cardiac and respiratory activity. For the time domain, statistical
and non-linear features were extracted. In addition, machine learning models were used
to classify between the sitting and supine position from the cardiac and respiratory
systems. Figure 2 shows a schematic representation of the process.

ECG signals were pre-processed with a high pass filter with cutoff frequency of
0.2 Hz and a low pass filter with cutoff frequency of 40 Hz, to remove possible
artifacts.

Fig. 1. Excerpt of ECG (leads I, II, III and chest) and FLW signals of a supine subject.
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Fig. 2. Overview of the methodology used in this work.
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2.3 Temporal Features

In time domain, to characterize cardiac and respiratory dynamics, the following fea-
tures were extracted: RR interval (distance between two consecutives R peaks),
amplitude of R peaks from ECG signals; inspiratory time (TI), expiratory time (TE), and
breath total time (TTot) from FLW signal. All these parameters were described in
function of the mean, median, maximum, minimum, standard deviation, kurtosis and
co-variance. In addition, Hjörth complexity and mobility [14], and Higuchi fractal
dimension [15], were computed.

ECG
R peaks and RR intervals were the main features extracted from ECG records. These
were obtained with the QRS complex detection, through Pan-Tompkins algorithm [16]
(Fig. 3).

Once the R peaks were detected, the R-R intervals for each participant were found.
For each R-R interval, the time of the first R peak of each one was assigned, later this
signal was re-sampled at 10 Hz to obtain the HRV signal.

FLW
FLW records were analyzed taking into account three features: time of inspiration, time
of expiration and total time. For these parameters, it was necessary to find the zero cuts
of the signal, as can be seen in Fig. 4.

Fig. 3. ECG Lead II, with R peak detection for a subject in sitting position.
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Complexity measurements
Complexity features allow us to obtain quantitative values related to the complex
behavior of the cardiorespiratory system. These non-linear features allow an assessment
of the signals which has been related with physiological and pathological states, i.e.
epilepsy seizures, migraine, sustained attention, among others [17]. In particular, three
features were computed: Hjörth complexity and mobility [14] and Higuchi fractal
dimension [15].

2.4 Spectral Features

Power spectral density (PSD), estimated through Welch method [18], with 50% of
overlapping and Hamming windowing, was computed to analyze the composition of
the signal in frequency. Power of QRS (0.5 Hz to 4 Hz band), P and T waves (4 Hz to
8 Hz band) and half-power frequency in the ECG signals were obtained from PSD.

In addition, from HRV signal, very low frequency power (0 Hz to 0.004 Hz), low
frequency power (0.04 to 0.15 Hz) and high frequency power (0.15 Hz to 0.4 Hz) were
computed.

2.5 Statistical Analysis

Each signal was analyzed considering sliding windows of 30 s, with and over-lapping
of 50%. A total of 187 features were extracted for each window. Table 2 presents the
description of the temporal and spectral features extracted for each window and each
signal.

Fig. 4. Cuts by zero of the respiratory flow signal.
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In order to identify the features with statistically significant differences, a para-
metric t-Student test was applied, with 5% significance level.

2.6 Classification Techniques

A model was trained from the data with some spectral and temporal features extracted
from signals described in the Table 2. Only the features with significant differences
were fed to the models.These models a holdout validation scheme, with 80% of the
samples (windows) for training and 20% of the samples for testing. Three main
machine learning techniques were used: decision trees, k-nearest neighbor and support
vector machines:

Table 2. Features extracted

Signal Domain Features

ECG Frequency Relative Power of P and T wave 4 Hz – 8 Hz (PowPT)
Relative Power of wave QRS 0.5 Hz – 4 Hz (PowQRS)
Peak Frequency
Peak Frequency Amplitude
Total Power
Half Frequency Power
Low Frequency of RR intervals - 0.04 -0.15 Hz
High Frequency of RR intervals - 0.15 -0.4 Hz
Very Low Frequency of RR Intervals - 0-0.04 Hz

Time Average of RR Intervals, R peak and ECG signal
Mobility RR Intervals, R peak and ECG signal
Complexity RR Intervals, R peak and ECG signal
Maximum RR Intervals and ECG signal
Minimum RR Intervals, R peak and ECG signal
Fractal Dimension RR Intervals, R peak and ECG signal
Standard Derivation RR Intervals, R peak and ECG signal
Median RR Intervals, R peak and ECG signal
Kurtosis RR Intervals, R peak and ECG signal
Covariance RR Intervals, R peak and ECG signal

FLW Time Inspiration Time in seconds
Expiration Time in seconds
Total time in seconds
Expiration Area
Inspiration Area
Absolute Area
FLW signal
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• Decision trees – Are flowchart-like structures in which each internal node repre-
sents a “test” on an attribute, each branch represents the outcome of the test, and
each leaf node represents a class label, this means, decision is taken after computing
all attributes. The paths from root to leaf represent classification rules [19].
In this study, three types of decision trees were implemented: fine, with a maximum
number of splits equals to 100; medium with 20 maximum splits; and coarse, with
only 4 maximum number of splits.

• K-Nearest Neighbor (KNN) uses a predictive model. The input consists of the k
closest samples in the feature space of study, and the output is a class member-
ship. An object is classified by a proximity of its neighbors, being assigned to the
class most common among its k nearest neighbors [20].
Five different KNN models were trained: fine, medium and coarse KNN, varying
the parameter k with values 1, 10 and 100. In addition, a cosine KNN (cosine
distance metric) with k equals 10 and a weighted KNN (different weights based on
distance) with k equals 10 were trained.

• Support Vector Machines (SVM) are based on transforming data into a higher
dimensional space to convert a complex classification problem into a simpler one
that can be solved by a linear discriminant function, known as a hyperplane, and
defined by [21, 22]

f xð Þ ¼ wzþ b ¼
XL

i

aiyiK xiyið Þþ b

where w is the normal vector to the hyperplane. The function K(xi yi) is the Kernel
function that will shape the hyperplane and ai and b define the efficiency of the
classifier on the optimal values. In this study we evaluated linear and quadratic and
cubic kernels.

3 Results

3.1 Statistical Analysis

Once the t-student test is done, it was obtained that 148 features present significant
differences from the 187 total features.

In the bar diagram shown in Fig. 5, the average value of some of the features of
interest is presented. For the implementation of a machine learning model, only those
features, with significant differences were taken into account.
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As it can be seen in Fig. 5, the average values of the features do not show large
differences between the sitting and supine posture, and their standard deviation is very
large, however the parametric test determined that these allow to describe the physi-
ologic behavior depending on the position, and through machine learning model cor-
roborated that it can be determined if a subject is in a sitting or supine posture using
their cardiac and respiratory signals.

3.2 Machine Learning Models

Table 3 describes accuracy scores according to trained models, and linear Support
Vector Machine (SVM) shows the highest accuracy. Overall, accuracy is over 93%.

As shown in Table 3, the best performance was obtained for the linear SVM model.
Its sensitivity was 99.2% and its specificity was 99.6%.

A great variety of studies have been carried out focused on the analysis of posture
through the use of sensors, image capture or physiological records, and implementing
models of automatic learning. Some of the applications of these models is facial
recognition, classification of gestures, posture correction or monitoring while driving,
among others [23–25]. However, this study seeks to determine how physiological
signals can be affected by posture, and thereby may provide evidence to investigate if
there is an adequate position to perform clinical studies with greater clarity.

It was also possible to train a machine learning model that allows to classify
between the supine and sitting position from the cardiac and respiratory signals, in
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Fig. 5. Average values of the features.
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order to provide monitoring tools to the medical area. In other studies, the analysis of
the posture can be determined using sensors incorporated in everyday objects, in
combination with machine learning models [25]; however, a continuous monitoring is
not always possible.

4 Conclusions

It is possible to use statistical and computer tools for design machine learning models
that allow us to identify the subject posture with an accuracy of 99.5%. Future works
may use spectral and temporal analysis with other physiological signals such as
Electromyography (EMG), Electrogastrography (EGG), Electroretinography, among
others, in order to validate how the trace of the signal is being affected according to the
posture.

A machine learning model capable of the identification of the posture of the subject
based on their cardiac and respiratory signals, with an accuracy of 99.5%, provides a
tool for clinical applications. For instance, in the case of a patient with restricted
mobility, the proposed model may warn clinical staffs when the subject has a harmful

Table 3. Accuracy scores and training time according to training models.

Classification model Model Accuracy Hyperparameters Training
time (s)

Decision tree Fine Tree 94.6% Maximum Splits:
100

4.5

Medium
Tree

95.4% Maximum Splits: 20 5.7

Coarse
Tree

93.6% Maximum Splits: 4 4.3

K-Nearest Neighbor
(KNN)

Fine Knn 98.5% K: 1 Distance:
Euclidean

6.4

Medium
Knn

92.4% K: 10. Distance:
Euclidean

5.2

Coarse
Knn

95.7% K: 100. Distance:
Euclidean

6.1

Cosine
Knn

97.8% K: 10. Distance:
Cosine

5.3

Weighted
Knn

99.2% K:10. Distance:
Euclidean

5.8

Support Vector
Machines (SVM)

Cubic
SVM

96.5% C: 1. Kernel Scale: 1 6

Quadratic
SVM

97.3% C: 1. Kernel Scale: 1 7.2

Linear
SVM

99.5% C: 1. Kernel Scale: 1 7.6
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posture. Also using the machine learning model, posture of subjects wearing intelligent
garments in their house could be determined.

Acknowledgements. This work supported in part by CERCA Program, the Secretariat of
Universities and Research of the Department of Economy and Knowledge of the Government of
Catalonia (GRC 2017 SGR 1770) and the Spanish Ministry of Economy and Competitiveness
(DPI2015-68820-R MINECO/FEDER).

References

1. Serra, M., Iturralde Torres, P., Aranda Fraustro, A.: Orígenes del conocimiento de la
estructura y función del sistema cardiovascular. Arch. Cardiol. México 83(3), 225–231
(2013)

2. Thibodeau, A., Patton, K.T.: Structure and Function of the Body, 13th edn. Mosby/Elsevier,
Missouri (2008)

3. Dabbagh, A., Imani, A., Rajaei, S.: Cardiac Physiology. In: Dabbagh, A., Esmailian, F.,
Aranki, S. (eds.) Postoperative Critical Care for Adult Cardiac Surgical Patients, pp. 25–74.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75747-6_3

4. Madias, J.E.: Comparability of the standing and supine standard electrocardiograms and
standing sitting and supine stress electrocardiograms. J. Electrocardiol 39(2), 142–149
(2006)

5. Muehlhan, M., Marxen, M., Landsiedel, J., Malberg, H., Zaunseder, S.: The effect of body
posture on cognitive performance: a question of sleep quality. Front. Hum. Neurosci. 8, 171
(2014)

6. El-Saadawy, H., Tantawi, M., Shedeed, Howida A., Tolba, M.F.: Diagnosing heart diseases
using morphological and dynamic features of electrocardiogram (ECG). In: Hassanien, A.E.,
Shaalan, K., Gaber, T., Tolba, Mohamed F. (eds.) AISI 2017. AISC, vol. 639, pp. 342–352.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_32

7. Tan, M.Y., Ong, T., Sivam, J., Al-Shuft, H., Sahota, O., Salem, K.: 32the role of dynamic
supine-sitting spinal radiographs in the management of vertebral fragility fractures admitted
to hospital. Age Ageing 47(suppl_3), iii9–iii12 (2018)

8. Sierra-Silvestre, E., Bosello, F., Fernández Carnero, J., Hoozemans, M.J.M., Coppieters, M.
W.: Femoral nerve excursion withe knee and neck movements in supine, sitting and side-
lying slump: an in vivo study using ultrasound imaging. Musculoskelet. Sci. Pract. 37, 58–
63 (2018)

9. Cicolini, G., et al.: Differences in blood pressure by body position (supine, fowler’s, and
sitting) in hypertensive subjects. Am. J. Hypertens. 24(10), 1073–1079 (2011)

10. Zuttin, R.S., Moreno, M.A., César, M.C., Martins, L.E.B.: Evaluation of autonomic heart
rate modulation among sedentary young men, in sitting and supine postures. Braz. J. Phys.
Ther. 12(1), 7–12 (2008). Revista Brasileira de Fisioterapia, 6p. 1 Chart, 2 Graphs

11. Nemec, B., Petrič, T., Babič, J., Supej, M.: Estimation of alpine skier posture using machine
learning techniques. Sensors 14(10), 18898–18914 (2014)

12. Antunes, B.O., de Souza, H.C.D., Gianinis, H.H., Passarelli-Amaro, R.D.C.V., Tambascio,
J., Gastaldi, A.C.: Peak expiratory flow in healthy, young, non-active subjects in seated,
supine, and prone postures. Physiother. Theory Pract. 32(6), 489–493 (2016)

13. Kim, Y., Son, Y., Kim, W., Jin, B., Yun, M.: Classification of children’s sitting postures
using machine learning algorithms. Appl. Sci. 8(8), 1280 (2018)

376 A. D. Ruiz et al.

http://dx.doi.org/10.1007/978-3-319-75747-6_3
http://dx.doi.org/10.1007/978-3-319-64861-3_32


14. Cecchin, T., Ranta, R., Koessler, L., Vespignani, H., Maillard, L., Caspary, O.: Seizure
lateralization in scalp EEG using Hjorthparameters. Clin. Neurophysiol. 121(3), 290–300
(2010)

15. Falconer, K.: Geometría Fractal, p. 308. Wiley, Nueva York (2003). ISBN 978–0-470-
84862-3

16. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng.
BME-32(3), 230–236 (1985)

17. Liu, Y., Lin, Y., Wang, J., Shang, P.: Refined generalized multiscale entropy analysis for
physiological signals. Phys. A Stat. Mech. Appl. 490, 975–985 (2018)

18. Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method
based on time averaging over short, modified periodograms. IEEE Transactions on audio and
electroacoustics 15(2), 70–73 (1967)

19. Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision
trees. CEJOR 26, 135–159 (2017)

20. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am.
Stat. 46, 175–185 (1992)

21. Steinwart, I., Chrismann, A.: Super Vector Machine. Information Science and Statistics.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77242-4

22. Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B.F.: Patients on
weaning trials classified with support vector machines. Physiol. Meas. 31, 979–993 (2010)

23. Vatavu, R.-D.: Beyond features for recognition: human-readable measures to understand
users’ whole-body gesture performance. Int. J. Hum.-Comput. Interact. 33(9), 713–730
(2017)

24. Rasouli, M.S., Payandeh, S.: A novel depth image analysis for sleep posture estimation.
J. Ambient Intell. Hum. Comput. 10(5), 1999–2014 (2019)

25. Zemp, R., et al.: Application of machine learning approaches for classifying sitting posture
based on force and acceleration sensors. Biomed. Res. Int. 2016, 1–9 (2016)

Characterization of Cardiac and Respiratory System of Healthy Subjects 377

http://dx.doi.org/10.1007/978-0-387-77242-4

	Characterization of Cardiac and Respiratory System of Healthy Subjects in Supine and Sitting Position
	Abstract
	1 Introduction
	2 Materials and Method
	2.1 HealthyDB Database
	2.2 Signal Processing
	2.3 Temporal Features
	2.4 Spectral Features
	2.5 Statistical Analysis
	2.6 Classification Techniques

	3 Results
	3.1 Statistical Analysis
	3.2 Machine Learning Models

	4 Conclusions
	Acknowledgements
	References




