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Abstract. Instance selection is one of the most successful solutions to
low noise tolerance of the nearest neighbor classifier. Many algorithms
have been proposed in the literature, but further research in this area
is still needed to complement the existing findings. Here we intend to
go beyond a simple comparison of instance selection methods and corre-
spondingly, we carry out a qualitative analysis of why some algorithms
perform better than others under different conditions. In summary, this
paper investigates the impact of instance selection on the underlying
structure of a data set by analyzing the distribution of sample types,
with the purpose of linking the performance of these methods to changes
in the data structure.
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1 Introduction

In supervised learning, one of the most popular models is the well-known and
understood k-nearest neighbors (kNN) algorithm [6]. A query sample is assigned
to the class represented by the majority of its k nearest neighbors in the train-
ing set (a collection of correctly classified instances). A particular case is when
k = 1, in which a query sample is decided to belong to the class indicated by
its closest neighbor. The 1NN classifier benefits from a number of advantages,
which have made it useful and effective for many real-world problems: (i) it can
be implemented easily due to its conceptual simplicity; (ii) it does not require
any a priori probabilistic information relating to data; and (iii) the error rate
for 1NN is at most twice the optimal Bayes error as the training set size tends
to infinity.
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However, the kNN algorithm suffers from some inherent weaknesses that may
hinder its efficiency and effectiveness due to intensive computational require-
ments and extreme sensitivity to errors or noise in the training set. To tackle
these issues, data reduction has been devised as a tool to obtain a reduced
representation of the training set that can closely maintain the properties of
the original data. Depending on the approach of the data reduction methods,
these can be categorized into two groups [8]: instance reduction or condensing to
lessen the size of the training set by removing redundant examples, and instance
selection or editing to achieve a similar or even higher accuracy by eliminat-
ing erroneous and noisy samples. While condensing retains borderline samples
(those that are close to the decision boundaries) and removes internal samples,
the general strategy followed by editing is the opposite (i.e., the examples chosen
to be removed are the borderline samples). In the case of editing, most studies
have focused either on carrying out experimental comparisons over multiple data
sets or on designing a meta-learning framework to choose the best performing
algorithm through the analysis of some data characterization measures [5,12,14].

The aim of this paper is to contribute to further understanding of the effects
of instance selection on the underlying structure of data sets and to explore
for possible connections with the classification accuracy of 1NN. To this end,
we will exploit local information to categorize the instances into four different
groups (safe, borderline, rare, and outlier), compare their distribution in the
original training set with that in the edited set, and relate the performance of
some instance selection methods to changes in the data structure. Hopefully,
this will allow to gain some insight into the reasons why the 1NN classification
performance depends so heavily on the particular instance selection algorithm.

2 Categorization of Sample Types

In the context of learning from imbalanced data, several authors have proposed
to distinguish between safe and unsafe samples according to their neighbor-
hood [11,15,17]. The safe samples are placed in homogeneous regions with data
from a single class and are sufficiently separated from instances belonging to
any other classes, whereas the remaining samples are referred to as unsafe. The
safe samples are correctly classified by most models, but the unsafe samples may
make their learning especially difficult and more likely to be misclassified.

The common property of the unsafe samples is that they are located close
to instances that belong to the opposite class. However, the unsafe samples can
be further divided into three subtypes: borderline, rare and outlier [10,15]. The
borderline samples are located closely to the decision boundary between classes.
The rare samples form small data structures or clusters located far from the
core of their class. Finally, the outliers are single samples that are surrounded
by instances from the other class. In the present work, this categorization of
samples types will not be used for class-imbalanced problems, but for the analysis
of instance selection methods.
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A straightforward method to identify each sample type consists of analyzing
the local distribution of the data, which can be modeled either by comput-
ing their k-neighborhood or through a kernel function (this consists in setting
a local area around the instance and estimating the number of neighbors and
their class labels within it). It has been claimed that analyzing a local distri-
bution of instances is more appropriate than using global approaches because
the minority class is often formed by small sub-groups with difficult, nonlinear
borders between the classes [15,17].

Algorithm 1. Identification of sample types for multi-class data
1: Input:
2: S {Input data set}
3: k {Neighborhood size}
4:
5: Output:
6: safe {Set of safe samples}
7: borderline {Set of borderline samples}
8: rare {Set of rare samples}
9: outlier {Set of outlier samples}

10:
11: for all zi ∈ S do
12: neighbors ← computeNeighbors(zi, S − {zi}, k)
13: sameClass ← countSameClass(yi, neighbors)
14: if sameClass ≥ �0.8k� then
15: safe ← safe ∪ {zi}
16: else
17: if sameClass ≥ �0.5k� then
18: borderline ← borderline ∪ {zi}
19: else
20: if sameClass ≥ �0.2k� then
21: rare ← rare ∪ {zi}
22: else
23: outlier ← outlier ∪ {zi}
24: end if
25: end if
26: end if
27: end for

Suppose we have a data set, S = {zi = (xi, yi)}, where xi ∈ X ⊂ R
d is a

vector of attributes describing the i-th instance and yi is its class label. The type
of a sample zi is often decided by comparing the number of its k nearest neighbors
that belong to the class of zi with the number of neighbors of the opposite class.
Following the procedure given in Algorithm1, which is a generalization for multi-
class data of the scheme proposed by Stefanowski and Wilk [20], a safe sample
is characterized by having a neighborhood dominated by instances that belong
to its same class, rare samples and outliers are mainly surrounded by instances
from different classes, and the borderline samples are surrounded by instances
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both from their same class and also from a different class. Here we have used two
functions: computeNeighbors to search for the k nearest neighbors of a sample
zi and store them in a vector named neighbors, and countSameClass to count
how many of the k nearest neighbors belong to the class of zi.

Most authors choose a fixed size k = 5 because smaller values may poorly
distinguish the nature of instances and higher values would violate the assump-
tion of local neighborhood. By using k = 5, an instance zi will be defined as: (i)
safe if at least 4 neighbors are from the class yi; (ii) borderline if 2 or 3 neighbors
belong to the class yi; (iii) rare if only one neighbor belongs to the class yi, and
this has no more than one neighbor from its same class; and (iv) outlier if all its
neighbors are from the opposite class.

3 Databases and Experimental Setting

Experiments were conducted on the artificial data sets depicted in Fig. 1, which
are all two-dimensional and correspond to well-balanced binary classification
problems. Using synthetic data allows to know their characteristics a priori and
analyze the results in a fully controlled environment.

(a) Banana (b) Clouds (c) Gaussian (d) XOR

Fig. 1. Artificial data sets

The Banana data set is a non-linearly separable problem with 5,300 samples
that belong to two banana shaped clusters [1]. The Clouds database has 5,000
samples where one class is the sum of three different normal distributions and
the other class is a single normal distribution [3]. The Gaussian database con-
sists of 5,000 instances where one class is represented by a multivariate normal
distribution with zero mean and standard deviation equal to 1 and the other by
a normal distribution with zero mean and standard deviation equal to 2 in all
directions [3]. In the XOR database, a total of 1,600 random bivariate samples
were generated following a uniform distribution in a square of length equal to 2,
centered at zero (apart from a strip of width 0.1 along both axes); the samples
were labeled at each quadrant to reproduce the well-known XOR problem, that
is, the label of each point (x, y) was computed as sign(x) · sign(y) [2].

The stratified 10-fold cross-validation method was adopted for the experi-
ments, thus preserving the prior class probabilities of a database and the sta-
tistical independence between the training and test blocks of each fold. The
experiments were carried out as follows: (i) the training sets were preprocessed
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by various editing techniques, (ii) the 1NN classifier with the Euclidean distance
was applied using each data set, and (iii) the proportion of each sample type
in both the original sets and the filtered sets was recorded. Our hypothesis is
that the analysis of the distribution of sample types in a data set may allow to
explain the performance of each editing algorithm.

The instance selection techniques used in the experiments were: (1) all-kNN
editing (aKNN) [21], (2) Wilson’s editing (WE) [23], (3) editing with estimation
of class probabilities and threshold (CPT) [22], (4) modified Wilson’s editing
(MWE) [9], (5) model class selection (MCS) [4], (6) Multiedit (MultiE) [7],
(7) editing based on nearest centroid neighborhood (NCN) [19], (8) pattern by
ordered projections (POP) [16], (9) editing based on relative neighborhood graph
(RNG) [18], and (10) variable-kernel similarity metric (VSM) [13].

4 Results and Discussion

For each database, the graphs in Fig. 2 display to the accuracy rates of 1NN
using both the original training set with no preprocessing (the dotted horizontal
lines) and the collection of edited sets (vertical bars). The results for Banana,
Clouds and XOR show that all instance selection methods had a very similar
behavior: leaving aside the 10-VSM method, the 1NN classifier trained with
the original training sets and with the edited sets performed equally well. The
most interesting results were for the Gaussian database because most algorithms
improved the performance achieved by 1NN using the original sets and even
more important, some differences from one algorithm to another can be seen.
However, the question here was why some methods performed better than others.
Thus taking care of this objective, the next step in the experiments was to
analyze the underlying structure of each data set and investigate any possible
link between the distribution of sample types and the performance of instance
selection methods.

Fig. 2. Classification accuracy
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The vertical bars in Fig. 3 represent the proportions of safe, borderline, rare
and outlier samples in the sets after applying the editing algorithms. The dot-
ted horizontal lines are for the proportions in the original sets, which should
be interpreted as a reference value. A rapid comparison of the proportions of
safe and unsafe samples in the original training sets reveal that the Gaussian
database represents the most complex and interesting problem with very high
class overlapping, and XOR corresponds to the easiest problem with linear class
separability and no overlapping.

(a) Banana (b) Clouds

(c) Gaussian (d) XOR

Fig. 3. Proportion of sample types

Figure 3 shows that, as expected from the selection strategy of editing, most
methods (8-POP and 10-VSM were the exception) led to an increase in the
proportion of safe samples and a decrease in the proportion of unsafe samples
(borderline, rare and outlier) compared to the reference values (original train-
ing sets). However, paying special attention to the Gaussian problem, one can
note that there exist significant differences in the data structure resulting by
the application of each algorithm; for instance, 3-CPT, 4-MWE and 6-MultiE
were the methods with the highest increase of safe samples and also the highest
decrease of unsafe samples, while the changes produced by 5-MCS and 7-NCN
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were negligible. This may explain the different behavior of 1NN trained by 3-
CPT, 4-MWE or 6-MultiE and that trained by 5-MCS or 7-NCN as shown in
Fig. 2. This observation reinforces our hypothesis and was supported by the fact
that those algorithms with the largest positive changes in the underlying struc-
ture of data sets also achieved the highest accuracy rates and therefore, it seems
possible to conclude that the analysis of the distribution of sample types can be
a useful tool to explain the performance of editing methods.

5 Concluding Remarks

This paper has shown that the performance of instance selection methods can
be understood by analyzing the underlying structure of data sets. To this end,
one can use local information to categorize the samples into different groups
(safe, borderline, rare, and outlier) and compare their distribution in the original
training set with that in the edited set.

The experiments have revealed that the algorithms with the highest increase
of safe samples and the highest decrease of unsafe samples correspond to those
with the highest improvement in 1NN accuracy. Although this work can be
further extended by incorporating other techniques and some real-life databases,
we believe that these initial observations could be utilized to provide a qualitative
discussion of the experimental results in papers where several procedures have
to be compared each other.
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1. Alcalá-Fdez, J., et al.: KEEL data-mining software tool: data set repository, inte-
gration of algorithms and experimental analysis framework. J. Mult.-Valued Log.
S. 17, 255–287 (2011)

2. Barandela, R., Ferri, F.J., Sánchez, J.S.: Decision boundary preserving prototype
selection for nearest neighbor classification. Int. J. Pattern Recogn. 19(6), 787–806
(2005)

3. Blayo, E., et al.: Deliverable R3-B4-E Task B4: benchmarks, ESPRIT 6891. In:
ELENA: Enhanced Learning for Evolutive Neural Architecture (1995)

4. Brodley, C.E.: Adressing the selective superiority problem: automatic algo-
rithm/model class selection. In: Proceedings of the 10th International Machine
Learning Conference, Amherst, MA, pp. 17–24 (1993)
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17. Sáez, J.A., Krawczyk, B., Woźniak, M.: Analyzing the oversampling of different
classes and types of examples in multi-class imbalanced datasets. Pattern Recogn.
57, 164–178 (2016)

18. Sánchez, J.S., Pla, F., Ferri, F.J.: Prototype selection for the nearest neighbor rule
through proximity graphs. Pattern Recogn. Lett. 18, 507–513 (1997)

19. Sánchez, J.S., Pla, F., Ferri, F.J.: Improving the k-NCN classification rule through
heuristic modifications. Pattern Recogn. Lett. 19(13), 1165–1170 (1998)

20. Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving
classification performance. In: Proceedings of the 10th International Conference in
Data Warehousing and Knowledge Discovery, Turin, Italy, pp. 283–292 (2008)

21. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. 6(6), 448–452 (1976)

22. Vázquez, F., Sánchez, J.S., Pla, F.: A stochastic approach to Wilson’s editing
algorithm. In: Proceedings of the 2nd Iberian Conference on Pattern Recognition
and Image Analysis, Estoril, Portugal, pp. 35–42 (2005)

23. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE T. Syst. Man Cybern. 2(3), 408–421 (1972)


	Instance Selection for the Nearest Neighbor Classifier: Connecting the Performance to the Underlying Data Structure
	1 Introduction
	2 Categorization of Sample Types
	3 Databases and Experimental Setting
	4 Results and Discussion
	5 Concluding Remarks
	References




