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Abstract. Pricing is a relevant topic in revenue management that has
awaken interest of researchers, practitioners and analysts in companies
whose managerial decisions are supported by data-driven intelligent sys-
tems. This paper addresses the issue using an approach that combines
model based recursive partitioning with price optimization in order to
identify groups with differential price sensitivity, where optimal price
allocation can be derived at a customer level. The approach is validated
by application to the business case of an on-line auto lending company
taking the interest rate as the price variable. The model based recur-
sive method is used to get a tree that allows to estimate differential bid
response functions across its terminal nodes; the tree is fitted on a train-
ing data set. The estimated bid response functions are combined with the
bid revenue, calculated from data collected by loan applications, in order
to carry out optimal price allocation maximizing the expected revenue.
The expected revenue is compared on an independent test sample data
set with the actual un-optimized revenue and with the revenue obtained
by optimal price allocation using the standard Logit estimation of the
bid response function; the proposed approach gives promising results
that highlight new business opportunities.

Keywords: Pricing analytics · Revenue management ·
Model based recursive partitioning · Optimal price allocation

1 Introduction

Pricing analytics is a relevant issue for revenue management in organizations
that aim to develop their pricing strategies on the basis of data-driven deci-
sions that use different layers of information like product characteristics, the
purchase habits of customers, their socioeconomic and demographic attributes
and some other related business inputs. Due to the increasing interest among
business analysts, data scientists, and financial and revenue managers in data-
driven pricing approaches, the issue has become a hot study topic [4,5,13,18]
with cross-sectorial applications in the banking sector [2,19], insurance [8,9],
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the hospitality industry [3,10] and the airlines business [7,16,17], just to give a
non-exhaustive list with a few representative business applications.

In this paper we address the issue of optimal price allocation from a data-
driven viewpoint: The model based recursive partitioning (MOB) machine learn-
ing method [12,21], that allows to assess price sensitivity (PS) by means of the
estimation of differential bid response functions, is used in combination with
revenue optimization in order to calculate the expected revenue obtained at the
optimal bid prices. The application of MOB for price sensitivity assessment is
not new; actually, this paper is partially inspired in a recent work by [1] and
serves as a complement of the results therein. In this paper the overall pricing
picture is complemented by showing how the outputs provided by the MOB
method can be used as business inputs to address the optimal price allocation
problem on the basis of historical data.

The paper is organized as follows: The next section gives an overview on
the decision trees, which includes classification and regression trees, conditional
inference trees and the MOB method. Section 3 shows its role for addressing the
optimal price allocation problem; when applied to historical data, it allows to
identify groups with differential bid response functions; such differential func-
tions will be used as inputs to solve the customized price optimization problem.
In Sect. 4 we evaluate and validate the MOB approach by means of an application
to an on-line auto lending company; the resulting revenue results are compared
with un-optimized actual revenue and with the revenue obtained by optimal
price allocation using the standard Logit estimation of the bid response func-
tion. The paper finishes with a section of concluding remarks that summarizes
the approach and recapitulates the main findings.

2 The Decision Tree Modeling Approach

This section reviews some background about decision trees, as they are the
instrumental tools of this work.

The decision tree methodology is a data-driven approach for the recursive
partitioning of a data set by means of the search of splitting points within a set
of segmentation variables collected in an input vector Z. The splits are found by
means of criteria that allow to quantify the relationship between the inputs and
a given outcome variable Y . Essentially, the partitioning of the data responds
to the construction of a segmentation guided by the outcome variable, which
is carried out in a recursive fashion. Although there exists a large amount of
algorithms that implement the method [15], here we focus on the classification
and regression tree (CART) [6] and the conditional inference tree (CTREE) [11]
algorithms, as they are two widely used tree methods.

2.1 CART Algorithm

CART is a classification and regression tree algorithm invented by [6]. The algo-
rithm recursively segments the data through binary splits that generate a tree
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structure in which child nodes represent the binary partition obtained by split-
ting each parent node. The splits are generated by assessing the impurity of
the outcome variable at parent and descendant nodes using different impurity
measures [6]. CART explores the set of input variables and looks for the variable
and splitting point that maximizes the impurity decrease in the left and right
descendants. CART decision trees are grown in a recursive way until a large tree
structure is obtained, usually a tree with a minimum number of cases in the ter-
minal nodes; then automated pruning of such a large tree is carried out on a test
sample data by means of an intelligent strategy that eliminates uninformative
branches and avoids overfitting. The resulting tree is the tradeoff between model
complexity and predictive accuracy.

For additional details about CART tuning controls and some other function-
alities of the algorithm, the reader is referred to the pioneer monograph [6]. An
easy to use implementation of CART is provided by the rpart R package [14].

2.2 CTREE Algorithm

One weakness of CART is its bias towards the selection of splitting variables
with many categories [6]. Unlike CART, the CTREE algorithm provides an
alternative approach to overcome such a bias problem [11]. It takes the p-value
obtained by permutation tests that use function-based statistics of the inputs as
a criterion to find the best cutoff point; the p-values are calculated by asymptotic
approximations or by Monte Carlo simulations. Although CTREE can control
the splitting bias, it has the disadvantage of not having a pruning strategy like
CART; so usually the stopping rule must be set in advance by the expert: it may
consist of a threshold for the significance level of the aforementioned tests, above
which a node is declared as terminal (its default is α = 0.05), or alternatively, a
minimum size for the descendant nodes.

The party R package [12] provides an implementation of CTREE, along with
other handy graphical functionalities of the algorithm.

2.3 Model Based Recursive Partitioning

The model based recursive partitioning method rests upon the decision tree
methodology; its goal is twofold: firstly, the segmentation of a data set guided
by a given outcome variable, and secondly, the fit of a parametric model in the
terminal nodes derived by the tree partitioning mechanism so that the parametric
fit of the model is embedded in the tree construction [21]. In order to describe
the MOB method in brief, some previous notation is needed.

Let us denote by Y the outcome target variable. On the other hand, let X be
a vector of covariates used to explain the outcome Y by means of a parametric
model M(X, Y ; θ); assume that the model is fitted by the optimization of an
objective function Ψ(X, Y ; θ); some standard objective functions are those ones
defined by the ordinary least squares (OLS) or the maximum likelihood (ML)
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methods. Finally, let us denote by Z an input vector containing a set of segmen-
tation variables like customer attributes, product characteristics and some other
business inputs.

The goal of the MOB method is the search of non-overlapping groups in the
data, defined by the segmentation variables, such that the parametric model
M(X, Y ; θ) exhibits differential fits on each group. This goal is accomplished by
assessing parameter model stability through fluctuation tests, which are well-
established inferential tools for testing parameter stability [20,21]. The MOB
method is implemented by a greedy search algorithm that finds the segmen-
tation variable yielding the highest instability, as assessed by the significance
level of the corresponding fluctuation test. At each step, the data set is parti-
tioned into two data subsets by a binary split in the segmentation variable which
defines the rule yielding the descendant nodes; the recursive partitioning stops
when the highest achievable significance for testing stability is above a speci-
fied significance level (default: α = 0.05), in which case, the node is declared as
terminal. The algorithm can be summarized by the following steps.

MOB recursive partitioning method

Set the outcome variable Y , the vector of covariates X and the vector Z of segmentation variables

Set the significance level threshold to assess parameter instability (default α = 0.05)

Step 1. Fit the parametric model M(X, Y ; θ) to the data (parent node)

Step 2. Test for parameter stability in the set of segmentation variables

Step 3. Find the most significant variable, say Zl

If its significance is higher than α then stop and declare the node as terminal

else split in Zl, by finding the cutoff point that locally optimizes Ψ , in order to get descendant nodes

Step 4. Go to step 1 and repeat the procedure for each one of the descendant nodes

The partykit R package [12] provides an easy to use implementation of the
MOB method with fancy utilities for setting α and the minimal size of terminal
nodes, and also for the customization of the output.

3 The MOB Method for Pricing Analytics

In the context of the pricing problem, we assume that the outcome variable Y
is a binary one taking the value Y = 1 if a customer has accepted a bid and the
value Y = 0 if the customer didn’t accept it. Now, we consider only one covariate,
X, which is the price variable. Without considering exogenous factors, we can
theoretically assume that the probability of acceptance of a bid increases as the
price decreases; this is a natural observation that points to the Logit model as
a reasonable one to estimate the bid response function [18]. Hence, in this case
the general model M(X, Y ; θ) is given by the following equation:

log
P (Y = 1|X)
P (Y = 0|X)

= α0 + α1X. (1)
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The coefficients in (1) are fitted by the ML method. Once the model has been
fitted from the data, a function of the purchase probability against the price can
be obtained upon inversion of the Logit transform.

In this context we also consider a set of partitioning variables collected by a
vector Z = (Z1, Z2, . . . , Zk) which may contain product characteristics, socioe-
conomic and demographic customer attributes, and any other related business
input. When applied to pricing, the goal of the MOB method is the search of
a data partition leading to segments that exhibit differential purchase sensitiv-
ities, which are described by differential fits of the bid response function using
the Logit Eq. (1). Hence, its application will allow to uncover groups that can be
classified in accordance to their differential PS.

The MOB method is appealing and intuitive, as it provides a customized
estimate of the bid response function easy to interpret in terms of the segmen-
tation variables that came up as splitters in the resulting MOB tree. For each
one of the terminal nodes of the tree, the customized bid response function can
be expressed formally as follows:

g(r, z) = P (Y = 1|X = r,Z = z) (2)

where r and z are the price and the observed values of the vector of segmentation
variables at a customer/bid level.

Note that for an observed instance of the segmentation variables, Z = z, we
obtain a function with respect to the price r. Thus, in order to maximize the
expected revenue for each bid, we state the following optimization problem.

Statement 1. Let us assume that the vector of segmentation variables is such
that Z = z. The optimal price allocation can be derived by solving the following
optimization problem

max
r

g(r, z)R(r, z) (3)

where R(r, z) is the revenue for a given bid with price r.

If we denote by r∗ the optimal price that solves (3) then the maximum
expected revenue of the bid is g(r∗, z)R(r∗, z). Now, assume that the MOB
method results in a data partition with H terminal nodes, each one of size Nk,
such that N1 +N2 + · · ·+NH = N with N the total number of cases in the data;
then the overall expected revenue of the resulting MOB optimization model can
be calculated as follows.

Statement 2. Let us denote by gj the bid response function derived by the MOB
method at the jth terminal node TNj : j = 1, 2, . . . ,H. Then the total expected
revenue obtained by optimal price allocation is given by

TotalRevenue =
H∑

j=1

∑

zi∈TNj

gj(r∗
i , zi)R(r∗

i , zi) (4)

where r∗
i and zi are the optimal price and the observed attributes for the ith bid.
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4 Business Case Application

This next section gives an application of the MOB method to a real business
case. The results of optimal price allocation using MOB are compared with un-
optimized actual prices and with the optimal prices obtained on the basis of the
Logit estimation of the bid response function.

4.1 Data Description

An auto lending company collected historical data from loan applications during
the period from July 2002 to November 2004. The data set contains 208085
approved applications. The 47210 applications for refinancing were removed from
the analysis. In addition, we only considered applications that received approval
at least 45 days prior to the investigation end date because of managerial reasons.
Hence, we end up with 152965 applications for which the auto lender collected
several sources of information measured by the set of variables in Table 1.

Table 1. Variables collected during the period of study.

Set of variables for MOB modeling

Tier Classification of applicants based on FICO scores

Primary FICO FICO score quantifying the applicant’s risk in the range [594, 854]

Term Loan term in months

Amount Approved Amount of the loan in the range [5, 100000]

Competition rate Interest rate of competitor

Car Type id Type of car: new (1) or used (2)

term class Four level segmentation of the Term variable

partnerbin Segmentation based on partners (1: Direct. 2: Partner A. 3: Other partners)

rate Interest rate of the application

onemonth Prime rate

apply Binary outcome variable with the purchase decision

4.2 MOB Modeling

The outcome Y is the apply variable which takes the value 1 if the applicant
was funded and the value 0 otherwise. The records indicate that 26323 applica-
tions were funded; so the response rate is around 17.2%. In this case the price
variable X is the interest rate (rate variable). On the other hand, the vector Z
for segmentation contains the following variables: Tier, PrimaryFICO, Term,
AmountApproved, Competitionrate, CarTypeid, termclass, partnerbin.

The MOB tree model is fit on a training sample containing 80% of the entire
data set. The algorithm is parameterized using the default significance level for
node splitting, α = 0.05, and a minimum node size of 5% the size of the entire
training data set. In this case, a segmentation with H = 4 terminal nodes is
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obtained; it is given by the binary rules shown in Fig. 1. The estimation of the
parameters in (1) provides the bid response functions depicted by the plots in
Fig. 2 for each terminal node; the equations of the corresponding Logit transforms
are shown in the table aside.

CarType_id
p < 0.001

1

≤ 1 > 1

Amount_Approved
p < 0.001

2

≤ 24998.05 > 24998.05
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1

Fig. 1. Segmentation obtained by the MOB method.

Recall that the coefficient α1 in Eq. (1) is a non-decreasing function of the
odds ratio (OR), i.e. OR = eα1 . Hence, it can be interpreted as a measure for
assessing PS, as it quantifies the decay of the likelihood of a positive response
to the bid due to a unit price increase, with the more negative coefficients
corresponding to the higher sensitivities [5]. Therefore, the resulting segments
depicted by the tree of Fig. 1 can be classified as follows (see the table with
the Logit equations of Fig. 2): The highest PS corresponds to the node 6 group,
defined by loan applications for used automobiles with approved amount under
$20000; the nodes 7 and 3 may be considered as moderate to high PS groups,
the former corresponding to applications for used automobiles with approved
amount above $20000 and the latter to loan applications for new automobiles
whose approved amount is under $25000; finally, the lowest PS group appears
at the node 4 which corresponds to applications for new automobiles whose
approved amount is above the $25000 cutoff. Overall, we can interpret that for
both new and used car applications the PS is higher for the lower approved
amounts, as given by the cutoffs of about $25000 and $20000 respectively.

The results provide useful insights for undertaking managerial decisions: We
could suggest a strategy for raising the price at the segments with low sensitivity,
as we would expect a slight negative impact in the purchase decision; on the
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3 −0.13− 0.31X
4 −2.92− 0.02X
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Fig. 2. Bid response functions in the terminal nodes given by the MOB tree. The table
contains the Logit equation at each terminal node.

other hand, we could recommend a price reduction for the segments with high
sensitivity in order to increase the response rate at the expense of a revenue loss.
Section 4.4 addresses the issue of optimal price allocation.

4.3 Logistic Regression Modeling

Now we succinctly review the logistic regression method and show its application
to customized pricing. In this scenario the method allows to estimate the bid
response function by fitting a linear model to the Logit of the take up probability
against the price variable with the incorporation of a set of covariables [4,5].
Mathematically, the model is formulated by the following equation:

log
P (Y = 1|X,Z)
P (Y = 0|X,Z)

= α0 + αX + α1Z1 + α2Z2 + · · ·αpZp. (5)

Here, X is the price variable and Z = (Z1, . . . , Zp) is the vector of covariables
that measure bid characteristics and customer attributes. The coefficients in
Eq. (5) are fitted by maximum likelihood. Upon inversion of the Logit, we get
the take up posterior probability, ensuring values in the interval [0, 1].

Recall that in our business case X is defined by the interest rate. Now, we fit
two Logit models: the first one uses as covariables the segmentation variables that
came up in the MOB tree of Fig. 1; for the second fit, we include the following
set of variables: PrimaryFICO, Term, AmountApproved, CompetitionRate,
CarTypeid, partnerbin in the vector Z of covariables. The corresponding fits of
model (5) lead to the Logit equations:

Logit1 = −0.5256 − 0.3150 × rate

−0.0001 × AmountApproved + 2.1555 × CarTypeid (6)
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Logit2 = 1.5941 − 0.6022 × rate − 0.0055 × PrimaryFICO + 0.0473 × Term

−0.0001 × AmountApproved + 0.3776 × CompetitionRate

+2.0908 × CarTypeid − 0.2114 × partnerbin (7)

The next section addresses the price allocation problem for revenue opti-
mization using the MOB modeling approach. The expected revenues resulting
from MOB optimal price allocation are compared with the expected revenues
obtained by price allocation on the basis of the Logit approach.

4.4 Optimization and Revenue Results

So far we have been concerned with the customized estimation of the bid response
function; recall that the MOB method allowed to classify customers/bids in
accordance to their PS. Now, the output given by the MOB tree is used as input
to address the optimal price allocation problem and to calculate the expected
revenues accordingly.

First of all, we need the revenue function R(r, z) involved in the optimization
problem (3). Since we have at our disposal the term, amount and prime rate of
each bid, the revenue can be calculated by

R(r, zi) = DP · Ai · Ti ·
(

r/12
1 − (1 + r/12)−Ti

− pri/12
1 − (1 + pri/12)−Ti

)
(8)

The quantities involved in this expression denote the following business
inputs: DP is the probability of default which can be set at the value DP = 0.85
as suggested by [5]. On the other hand, Ai. Ti and pri are the approved amount,
term and prime rate for the ith approved bid.

If we insert (8) in expression (3) using the bid response function of the corre-
sponding terminal node, say gj , and solve the optimization problem, we get the
optimal rate r∗

i and the expected revenue gj(r∗
i , zi)R(r∗

i , zi) for the ith bid as
long as the bid belongs to the jth terminal node. The overall expected revenue
can be calculated by computing (4) on an independent test sample; we also have
at hand the expected revenues per node, which are given by

Revj =
∑

zi∈TNj

gj(r∗
i , zi)R(r∗

i , zi) : j = 1, 2, 3, 4. (9)

Note that the terminal nodes, TNj : j = 1, 2, 3, 4, correspond to the nodes
labeled by Node 3, Node 4, Node 6 and Node 7 in the tree of Fig. 1.

In order to calculate the revenue obtained from logistic regression, we must
take into account that in this case there is a single bid response function, g(r, z),
defined by the fit of model (5); when inserted in (3), the overall expected revenue
can be computed by

TotalRevenue =
N∑

i=1

g(r∗
i , zi)R(r∗

i , zi) (10)
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In our case, the function g(r, z) will be replaced by any of the Logit Eqs. (6)
or (7), depending on the fit we aim to use. Hence, we can compare MOB revenue
results with the revenues obtained from both Logit models.

The results are shown by Table 2 which contains the actual revenues, cor-
responding to current un-optimized prices, and the expected revenues obtained
by optimal price allocation derived from MOB and both Logit fits (percentage
node revenues appear in parenthesis). The lift columns provide the increase of
the expected revenue with respect to the un-optimized revenue, quantified in
percentages. We can observe that the expected revenue given by MOB optimal
price allocation is higher than the status quo actual revenue with an overall
39.2% revenue increase, the largest lift appearing at node 4; moreover, the other
nodes also exhibit increases in revenue with lifts 8.2%, 8.2% and 18.5%. These
findings reveal the usefulness of the MOB method for highlighting new busi-
ness opportunities and insights. We can also note that overall, with the striking
exception of node 7, the revenues resulting from MOB optimal price allocation
are greater than the revenues obtained from the Logit approach.

Table 2. Actual un-optimized revenues and the expected revenues given by optimal
price allocation from MOB and the Logit fits (6) and (7) are shown in the columns
Actual, MOB, Logit1 and Logit2 (amounts measured in $ millions on the test sample).
Their lifts are provided by the columns liftMOB , lift1 and lift2 respectively. All the
values are rounded to the first decimal point.

Node ID Actual MOB Logit1 Logit2 liftMOB lift1 lift2

3 255.9 (13.6%) 276.8 (10.6%) 250.7 (13.0%) 365.5 (15.2%) 8.2% −2.0% 42.8%

4 444.6 (23.7%) 1008.6 (38.6%) 390.2 (20.2%) 601.8 (25.0%) 126.9% −12.2% 35.4%

6 531.6 (28.3%) 630.0 (24.1%) 571.6 (29.5%) 565.1 (23.4%) 18.5% 7.5% 6.3%

7 644.3 (34.3%) 697.4 (26.7%) 722.8 (37.3%) 877.4 (36.4%) 8.2% 12.2% 36.2%

Total 1876.4 2612.8 1935.3 2409.8 39.2% 3.1% 28.4%

5 Summary and Concluding Remarks

In this paper we have addressed the customized price optimization problem. A
proposal that combines the data-driven MOB method with optimal price allo-
cation is presented using a two step price allocation strategy: firstly, differential
bid response functions are derived using the MOB method and a segmentation
with differential PS groups is obtained as a result. Secondly, optimal price allo-
cation is carried out, taking the customized bid response functions as inputs for
calculating the price that maximizes the expected revenue at a customer/bid
level. The proposed approach was applied to the business case of an on-line auto
lending company on the basis of the historical data of loan applications. A MOB
tree is fitted on a training data set and the expected revenue is calculated on
a test sample data set. The results show that application of the MOB optimal
price allocation method may result in revenue increases with respect to the sta-
tus quo scenario of un-optimized prices; the comparison with the standard Logit
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method for price allocation also reveals overall revenue gains. Future research
would consist of the validation of the MOB method in other business scenarios
so that it can proposed as a consistent and well-established tool for customized
pricing analytics.
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