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Abstract. In this paper, we propose a new eye iris center localization
method for remote tracking scenarios. The method combines the geodesic
distance with CNN-based classification. Firstly, the geodesic distance is
used for fast preliminary localization of the regions possibly containing
the iris. Then a convolutional neural network is used to carry out the
final decision and to refine the final position of the iris center. In the
first step, the areas that do not appear to contain the eyeball are quickly
filtered out, which makes the whole algorithm fast even on less powerful
computers. The proposed method is evaluated and compared with the
state-of-the-art methods on two publicly available datasets focused to
the remote tracking scenarios (namely BioID [9], GI4E [15]).
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1 Introduction

In the area of recognition of eye movements, the remote and head-mounted eye-
tracker systems have been widely deployed in recent years. The head-mounted
eye-tracker systems are represented by the devices that are very often attached to
the user’s head. These systems can be used to obtain accurate information on the
eye movements, such as gaze direction, or iris and pupil positions. However, these
systems are more intrusive for the users than the remote eye-tracker systems.
The remote trackers can be created by a single camera or by multiple cameras
located away from the user. For example, these kinds of trackers are used inside
the vehicle cockpits to recognize fatigue of the driver or blinking frequency. The
remote systems can also be used for iris and pupil localization, however, due
to the fact that the images provided by the remote systems have usually a low
resolution, recognition of the eye parts represents a challenging task.

In this paper, we propose a method for localization of iris center for the
remote tracking scenarios. The method is based on the geodesic distance com-
bined with a convolutional neural network (CNN). In [6], the authors show that
the geodesic distance can be used for pupil localization. We experimented with
that method and we observed detection shortcomings, which became the motiva-
tion for this paper. However, we found that the method can be useful, especially,
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for fast detecting the coarse position of iris. Our new method runs in two steps.
In the first step, we use the ideas presented in [6] for preliminarily estimating
the candidate areas. The final determination of iris position is done by mak-
ing use of CNN in the second step. The second step extends and improves the
original method, which is the main contribution of this paper. The presented
experiments show that the proposed method outperforms the original method
[6] and the state-of-the-art methods in this area.

The rest of the paper is organized as follows. The previously presented papers
from the area of eye analysis are mentioned in Sect. 2. In Sect. 3, the main steps
of the proposed method are described. In Sect. 4, the results of experiments are
presented.

2 Related Work

In the area of iris and pupil detection, many different approaches have been pre-
sented. In [13], a method designed for head-mounted eye-tracking systems for
pupil localization was proposed. The main steps include: removing the corneal
reflection, pupil edge detection using a feature-based technique, and the ellipse
fitting step using RANSAC. Swirski et al. [14] presented the method that is based
on a Haar-like feature detector to roughly estimate the pupil location in the first
step. In the next step, the potential pupil region is segmented using k-means
clustering to find the largest black region. In the final step, the edge pixels of
region are used for ellipse fitting using RANSAC. Exclusive Curve Selector or
ExCuSe was proposed in [2]. This method is based on the histogram analysis
combined with the Canny edge detector and ellipse estimation using the direct
least squares method. In [8], another pupil detection method known as SET is
proposed. The method is based on thresholding, segmentation, border extrac-
tion using the convex hull method, and selection of the segment with the best
fit. In [5], another approach known as ElSe is presented. The method uses edge
filtering, ellipse evaluation, and pupil validation. Another method for determin-
ing the iris centre in low-resolution images is proposed in [7]. In the first step,
the coarse location of iris centre is determined using a novel hybrid convolution
operator. In the second step, the iris location is further refined using bound-
ary tracing and ellipse fitting. In [10], the pupil localization method based on
the training process and the Hough regression forest was proposed. The method
based on a convolutional neural network is proposed in [3,4]. An evaluation of
the state-of-the-art pupil detection algorithms is presented in [1].

3 Proposed Method

In many iris or pupil detection methods, the coarse position of iris or pupil is
localized in the first step. For example, a circle-shaped (due to the shape of
pupil) convolution filter is used in [7]. In [14], the approximate pupil region is
localized using a Haar-like center-surround feature.
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Fig. 1. The steps of eyeball and iris center localization using Geodesic distances. The
input image (a). The visualization of the distance function from the centroid (b) and
from particular corners (c, d, e, f). The mean of all corner distances (g). The difference
(h) between (g) and (b) (only the non-zero distances are shown). The result of convo-
lution step (i). The final position of iris center (j). The values of distance function are
depicted by the level of brightness.

In this paper, we adopt the coarse localization of iris (eyeball) presented in [6].
For convenience of the reader, we briefly mention this approach. The approach
is based on the geodesic distance that is used in the following way. Suppose
that the image of eye region (Fig. 1(a)) is obtained beforehand (e.g. using facial
landmarks or eye detector). In the first step, the geodesic distance is computed
from the centroid (the point located in the center of the eye region) to all other
points inside the eye image (Fig. 1(b)). The geodesic distance between two points
computes the shortest curve that connects both points along the image manifold.
Since the values of distance function are high in the area of eyebrow, this step is
useful for its removing. It can be clearly seen that the areas with low distances
represent the potential location of pupil and iris.

In the next step, the geodesic distance is also computed from each image
corner to all other points inside the image (Fig. 1(c—f)). Then, the mean of all
corner distances is calculated (Fig. 1(g)). Thereafter, for automatic extraction of
eyeball area, the difference between Fig. 1(g) and (b) is carried out. In the image
that shows this difference (Fig.1(h)), it can be seen that the eyebrow area is
removed and the potential area of iris is localized. In [6], the authors used the
convolution with the Gaussian kernel in the last step (Fig.1(i)). Then, the final
iris position is determined as the location with the maximum value. In Fig. 1(j),
the iris center position obtained using this approach is shown. In this particular
case, it can be seen that the method fails to find the correct pupil and iris center
(position) due to the fact that the iris is gently off-centered. Figure 1(a) is taken
from the GI4E dataset [16] that contains many similar off-center iris and pupil
images. We observed that these kinds of images cause difficulties for the method
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Fig. 2. The steps of iris center localization using the proposed approach. The input
image (a). The visualization of the distance function from the two corners (top left (b)
and bottom right (c)). The mean of two corner distances (d). An example of extracted
preliminary iris region (e) using the difference step between (d) and Fig. 1(b). The
result of convolution step (f). An example of cropped images (windows) that are used
as an input for the CNN-based detector (g). The final position of iris center obtained
using the proposed approach (h). The values of distance function are depicted by the
level of brightness.

that was presented in [6] due to the fact that the final detection is based on
finding one point only with a maximum distance, which does not seem to be
reliable enough.

In contrast to the approach from [6], the main steps of our new approach are
as follows. In the first step, the candidates for iris center are quickly determined.
In the second step, the most probable centre is determined among the candidates
by making use of a traditional convolutional neural network. Rapidly filtering
out the points that do not have a chance to become the iris center speeds up the
whole algorithm, which is often required. In addition to this, the first step also
contributes to the successfulness of recognition since the neural network is asked
to decide only certain specific pixel configurations in image. In the subsequent
paragraphs, this general idea is presented in more details.

In the first step, we follow the approach presented in [6] that has been briefly
repeated at the beginning of this section. Since, in the case of the method pre-
sented here, the goal of the first step is only to determine the candidates (not
to determine the final position of the iris center directly), we may simplify the
algorithm presented in [6], which is desirable since the first step should be fast.
We do the following: Instead of measuring the distances from the four corners,
which was done in the original method, we compute the distances only from two
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Fig. 3. An example of iris and non-iris images.

cornes with the hope that the subsequent use of CNN will compensate for this
simplification. We use the top left and bottom right corner, see Fig. 2(b), (c). For
the same reason, a smaller kernel size may be used in convolution smoothing the
difference between the distances from the center and the mean of the distances
from the corners (see Fig. 2 again), i.e. less aggressive smoothing is used. We note
that the expectations we mention here will also be confirmed experimentally in
Sect. 4.

Before carrying out the second step, suppose that the CNN-based classifier is
trained with a sufficient amount of training iris and non-iris images (Fig.3). In
the second step, the distance differences produced in the first step are subjected
to thresholding. It means that the position is verified by CNN only if the distance
value is big enough at that point; a window (centered at the point that is being
verified) of the gray-scale image is used by CNN (Fig. 2(g)). Finally, the location
with the best response of CNN-based detector represents the final iris position
(Fig. 2(h)).

The main advantages of this approach can be summarized as follows. Since,
the original method uses only the maximum distance value for determining the
final position (i.e. feature vector with one value), the combination with CNN-
based detector has a positive effect on detection accuracy due to the fact that
the model of iris is now described using a more sophisticated feature vector.
With the use of coarse iris localization, the CNN classification is carried out
only in the neighborhood of points with high distance values to fine-tune the
position of iris. This step positively influences the speed of the whole method.
Moreover, a smaller number of negative training images can be used if the iris
position is approximately detected in advance (CNN will decide only certain
specific situations).
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Fig. 4. Examples of eye images used in experiments. The BiolD images are in the first
row. The GI4E images are in the second row.
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Fig. 5. The cumulative distribution of detection error. The error that is calculated as
the Euclidean distance (in pixels) is in the x-axis. The y-axis shows the percentage
of frames with the detection error smaller or equal to a specific error. The names of
datasets are placed above the pictures.

4 Experiments

As we described in the previous section, after detection of the approximate iris
area based on the geodesic distance, the potential points that are selected using
the appropriate threshold are further evaluated with the use of CNN. Based
on our experiments, we observed that 85% of all points in the eye image can be
discarded based on their low distance values. It means that we examine only 15%
of all points in the image (the locations with the highest distance values) using
CNN. Since we would like to keep a fast computational time of the approach, we
use a general architecture of LeNet [12] network for CNN. The network consists
of two convolutional layers with the depth of 6 and 16, respectively, and a 5 x 5
filter size with a 1 x 1 stride. Each of the layers is followed by a rectified linear
activation function. Thereafter, a max pooling layer with a window size of 2 x 2
and with a 2 x 2 stride is added; the last two layers are fully connected. We used
stochastic gradient descent with the learning rate of 0.01 annealed to 0.0001
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To compute the recognition score (confidence), we use the soft-max layer, and
32 x 32 grayscale images are used as an input. The implementation of CNN
is based on Dlib [11]. The training set consists of 4600 iris images and 4600
non-iris images that were manually extracted from our eye image data (Fig. 3).
It is important to note that the number of training images is low due to the
fact that the geodesic distance is used to find the preliminary iris location, and
the CNN-based detector is used to refine the final iris position. Therefore, the
negative training data were obtained around the iris location only.

We examine two configurations of the presented approach. In the first con-
figuration, we use the CNN detector that evaluates the neighborhood of every
point after the distance thresholding (15% of all points). The method with this
configuration is denoted as proposed; in the following experiments. We also cre-
ated a faster version of our method in which only every fourth point is examined
after distance thresholding. This method is referred to as proposeds. The size of
extracted area around each point is 32 x 32 pixels in both variants.

To compare the proposed algorithm to the state-of-the-art methods, we have
chosen the following methods. Namely ElSe, ExCuSe, Swirski, the original
distance method (denoted as Dist), and two CNN-based iris detectors: C'N Ny
and C'N Ny. In the first CNN-based detector (CNNy), we used a sliding window
technique applied to the entire input eye image with one pixel stride, and the
stride of four pixels is used in the second detector (C'NN3). The size of sliding
window is 32 x 32 pixels in both variants (i.e. 32 x 32 grayscale images are
used as an input). The architecture and training process of networks are the
same as in the proposed method. It is worth mentioning that ElSe, ExCuSe,
and Swirski were primarily developed to work with images acquired by head-
mounted cameras, however, the experiments in [1] show that the methods can
be used in the images captured with the use of remote sensors as well. We also
experimented with the parameters of particular methods. For ElSe, we directly
used the setting for remotely acquired images published by the authors of the
algorithm.

To evaluate the methods, we used two public datasets; BiolD [9] and GI4E
[15]. The BioID dataset contains 1521 images with the resolution of 384 x 286
pixels. The GI4E database contains 1339 images with the resolution of 800 x 600.
From both datasets, the eye regions are selected based on the provided ground
truth data of eye corner positions. It is important to mention that the eye images
from datasets are purposely extracted with the eyebrow to test the methods
in complicated conditions. The size of each extracted eye image (from both
datasets) is 100 x 100 pixels in the following experiments. Example images of
the GI4E and BiolD datasets that are used for experiments are shown in Fig. 4.

In Table 1, the detection results and average times of methods are shown. We
note that the average time for processing one eye region was measured on an
Intel core i3 processor (3.7 GHz) with NVIDIA GeForce GTX1050. The errors
are calculated as the Euclidean distance between the ground truth of iris center
and the center provided by the particular detection method. In Fig.5, we also
provide the resulting plots of detection results. In the plots, the cumulative
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Table 1. The detection results of methods.

BioID Mean error | GI4E Mean error | Time per region
(pixels) (pixels) (ms)

proposed; | 4.97 4.09 18

proposeds | 5.36 4.35 9

Dist 5.51 5.58 10

CNN; 6.41 4.65 240

CNN, 6.34 4.92 15

ElSe 10.50 12.72 16

ExzCuSe |11.00 7.10 8

Swirski |10.43 11.10 10

Fig. 6. Examples of images in which the proposed method performs better compared
to other tested methods. The results of methods are distinguished by color: proposeds
- red, CN Nz - blue, Dist - cyan. The first row: GI4E dataset, the second row: BiolD
dataset. (Color figure online)

distribution of detection error is shown (i.e. the figures show the percentage of
frames with the detection error smaller or equal to a specific value).

Based on the results, we can conclude that the proposed method achieved
very stable results and outperforms all methods in the images of both datasets.
For BiolD datasets, the average detection error of proposed method (proposed; )
is 4.97 pixels. It means that the presented method also outperforms the original
method (Dist) in the area of detection accuracy (4.97 vs. 5.51). The faster
variant of our method (proposeds) also achieved promising results (5.36). It is
worth mentioning that the CNN-based detectors achieved good detection score
(6.41 and 6.34), however, the detection time is unnecessarily long in the first
variant of CNN (C'NNp). The situation is better in the second faster variant of
CNN detector (C'N N3), unfortunately, the detection error is bigger than in the
faster variant of proposed approach (6.34 vs 5.36). Based on the results in Fig. 5,
it can be observed that the proposed method is able detect approximately 90%
of all frames with detection error smaller than 8 pixels. Even in the case of GI4E



84 R. Fusek and E. Sojka

datasets, the proposed detectors achieved smaller errors than all tested methods
(4.09 and 4.35). This situation can also be seen in Fig. 5.

In summary, our results show that the proposed method outperforms the
main competitors: the original method presented in [6] and the iris detectors
based on CNN. The proposed method that combines CNN with the distance-
based preprocessing also achieved the promising time needed for processing one
eye region (9 ms in proposeds). Figure 6 shows several cases in which our method
works better compared to other tested methods (namely, the main competitors:
CN Ny and Dist). Based on the results in Fig. 6, it may be said that the com-
mon errors are caused by the presence of glasses and reflections. However, the
proposed method is better in such cases than the other tested methods.

5 Conclusion

In this paper, we proposed a new approach for iris center localization. The
approach combines the geodesic distance with a convolutional neural network.
Firstly, the geodesic distance is used to determine the areas possibly containing
the iris. CNN is then used for the final decision. The proposed approach was eval-
uated and compared with the state-of-the-art methods on two publicly available
datasets. Based on the experimental results, we can conclude that the proposed
method achieved better recognition performance and a reasonable computational
time when compared to the existing methods. We leave the deeper experiments
with another architectures of CNN for future work.

Acknowledgments. This work was partially supported by Grant of SGS No.
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