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Abstract. It is commonly known the natural tendency of artificial neu-
ral networks to completely and abruptly forget previously known infor-
mation when learning new information. We explore this behaviour in the
context of Face Verification on the recently proposed Disguised Faces in
the Wild dataset (DFW). We empirically evaluate several commonly
used DCNN architectures on Face Recognition and distill some insights
about the effect of sequential learning on distinct identities from differ-
ent datasets, showing that the catastrophic forgetness phenomenon is
present even in feature embeddings fine-tuned on different tasks from
the original domain.
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1 Introduction

Deep Convolutional Neural Networks (DCNNs) have achieved remarkable suc-
cess in various cognitive applications such as image recognition, facial detec-
tion, signal processing, on supervised, unsupervised and reinforcement learning
tasks through feature representations at successively higher, more abstract lay-
ers. Computational complexity and the time needed to train large networks is
one of the major challenges for convolutional networks. It is common to pretrain
a DCNN on a large dataset and then use the trained network as an initialization
or as a fixed feature extractor for a particular application [24]. A major downside
of such DCNNs is the inability to retain previous knowledge while learning new
information. This problem is called Catastrophic forgetting.

Catastrophic forgetting is a term, often used in connectionist literature, to
describe a common problem with many traditional artificial neural network mod-
els. It refers to forgetting what has been learned upon learning new or different
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information. For instance, when a network is first trained to convergence on one
task, and then trained on a second task, it forgets how to perform the former.

There are some approaches to improve the performance of models when learn-
ing new information that benefit from previously learned information, for exam-
ple fine-tuning [6], where the old task parameters are adjusted to adapt to a new
task. Other approaches well known are feature extraction [5] where the param-
eters of the old network are unchanged and the parameters of the outputs of
one or more layers are used to extract features for the new task. There is also
a paradigm called joint train [4] in which parameters of old and new tasks are
trained together to minimize the loss in all tasks.

Overcoming the problem of catastrophic forgetting is an important step.
Some methods have already been developed to overcome this problem [8,17,27].
But even with these and other methods, the problem of catastrophic forgetting
is still a key problem within the Artificial Intelligence (AI) community and it is
time to move towards algorithms that can learn multiple tasks over time [25].

The novel approaches have been developed specifically for the tasks of visual
face recognition and verification in order to boost performance on public datasets
such as Labeled Faces in the wild (LFW) [11]. However, the performance on
completely unconstrained datasets like Youtube Face (YTF) [30], and UMDFaces
[1] remains subpar at low false alarm rates. These datasets contain significant
variations in illumination, pose, expression, aging and tend to have low resolution
and clutter filled images. This indicates that the problem of face recognition is far
from solved. The recently announced Disguised Faces in the Wild (DFW) dataset
aims to study another covariate of the face verification pipeline - disguises.

Disguise and impersonation are part of a sub-field of face recognition where
the subjects are non-cooperative and are actively trying to deceive the system.
A disguise involves both intentional or unintentional changes on a face through
which one can either obfuscate his/her identity. This means that the subject is
trying to adopt a new identity in order to hide his/her own. A subject might
impersonate someone else’s identity. Obfuscation increases the inter-class varia-
tions whereas impersonation reduces the inter-class dissimilarity, thereby affect-
ing face recognition/verification task and making it non-trivial. This is a very
challenging face verification problem and has not been studied in a comprehen-
sive way, primarily due to the unavailability of such a dataset. The aim of a
face verification system in such cases is to identify a given subject under vary-
ing disguises while rejecting impostors trying to look like the subject of interest
in an uncontrolled setting. From the point of view of an automated computer
vision method, it is important to extract rich face features in-order to distinguish
among the identities and verify them correctly.

In this paper, we explore catastrophic behaviour in the context of Face Ver-
ification on the DFW dataset. We empirically evaluate several commonly used
DCNN architectures on Face Recognition and distill some insights about the
effect of sequential learning on distinct identities from different datasets which
are explained in the following sections.
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2 Related Work

In this section we briefly review some recent related work and proposed methods
on face recognition/verification and catastrophic forgetting.

Disguised faces recognition focuses on recognizing the identity of disguised
faces and impersonators. There is limited research focus on this topic. MiRA-
Face [31] uses two CNNs networks one for aligned input and the other for
unaligned input to perform generic face recognition. Then, Principal Compo-
nent Analysis (PCA) is used to find the transformation matrix for face recog-
nition adaptation. Another work is Deep Disguise Recognizer (DDRNET) [14]
uses an Inception Network along with Center loss [29] followed by classification
using a similarity metric. DisguisedNet [28] proposed a Siamese-based approach
using the pretrained VGG-Face [20] and after that, cosine similarity is applied
for performing classification of the learned features. AEFRL [26], performs face
detection and alignment on the input images using Multi-task Cascaded Convo-
lutional Networks(MT-CNN) [32] followed by horizontal flipping. An ensemble
of five networks is used to obtain features for original and flipped images. The
concatenation of these features are used to perform classification using cosine
similarity. UMDNets [2] is another work which uses All-in-One [21] to align
the images using facial landmarks. They performs feature extraction using two
networks, followed by independent score computation. Then, classification is per-
formed by averaging the scores obtained via the two feature sets. Table 1 provides
a list of the proposed approaches on DFW dataset for face verification.

The problem of catastrophic forgetting is a big issue in machine learning and
artificial intelligence if our goal is to build a system that learns through time,
and is able to deal with more than a single problem. According to [18], without
this capability we will not be able to build truly intelligent systems, we can only
create models that solve isolated problems in a specific domain. There are some
recent works that tried to overcome this problem, e.g., domain adaptation that
uses the knowledge learned to solve one task and transfers it to help learning
another, but those two tasks have to be related. This approach was used in [12]
to avoid the problem of catastrophic forgetting, in order to do so they use two
properties. The first property was to keep the decision boundary unchanged and
the second one, was that the feature extractor from the source data by the target
network should be present in a position close to the features extracted from the
source data by the source network. As was shown in the experiments, by keeping
the decision boundaries unchanged new classes cannot be learned, making this
approach unable to deal with related tasks that present a different number of
classes. Early attempts to alleviate catastrophic forgetting often consists of a
memory system that store previous data and replays the sampled old examples
with the new data [22], and similar approaches are still used today [16]. [23]
learns a generative model to capture the data distribution of previous tasks, and
both generated samples and real samples from the current task are used to train
the new model so that the forgetting can be alleviated for continual learning.
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In our work, we will show that the intrinsic forgetness property of neural
networks not only present when performing classification on new problems but
also when extracting features even for tasks whose domain is the same.

Table 1. Different approaches to face verification

Model Brief description

AEFRL MTCNN + 4 Networks for feature extraction + Cosine distance

DDRNET Weighted linear combination of ensemble of 3 CNNs

DisguiseNet VGG siamese architecture + Weighted Loss + Cosine Distance

MiRA-Face MTCNN + RSA + Ensemble of CNNs Text follows

UMDNets All-in-One + average across scores obtained by 2 networks

Fig. 1. Some example images of Disguised Faces in the wild (DFW) dataset. The
dataset contains four kinds of images: normal, validation, disguise and impersonator
(figure taken from [15])

3 Methodology

In this section we describe the DFW dataset [15] along with the evaluation
protocols it presents. We comment on the different architectures we use for
our experiments and explain the identity overlap between the datasets used
for training and the DFW test set.

3.1 Dataset

In our experiments we evaluate the performance of different models in the
face verification task using the DFW dataset. This dataset has been created
to address the issue of disguised and imposter faces in the wild. The dataset
consists of 11,157 images belonging to 1000 different subjects. Images pertaining
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to 400 subjects form the training set, while the remaining 600 subjects constitute
the test set. Each subject has at least five face images, and can have four types
of images: (i) normal, (ii) validation, (iii) disguised and (iv) impersonator.

Normal images correspond to non-disguised frontal face images. Validation
images are used to generate a non-disguised pair within a subject. Disguised
images correspond to a face image of the same subject having intentional or
unintentional disguise. Impersonator images correspond to a face image of indi-
viduals who intentionally or unintentionally look similar to a different subject.
An example of each is shown in Fig. 1.

Three verification protocols have been provided with the DFW dataset to
understand and evaluate the effect of disguises on face recognition.

– Protocol-1 (Impersonation) evaluates the capacity of the system to dif-
ferentiate genuine users from impersonators. Genuine pairs for this protocol
are created by combining a genuine image and a validation image from the
same subject. Impostors pairs are created by combining impersonator images
with normal, validation and disguised images from the same subject. This
protocol is made up of 25,046 possible pairs.

– Protocol-2 (Obfuscation) evaluates the robustness of the system when it
comes to detecting when a subject is unintentionally or intentionally trying to
hide his identity. The genuine set for this protocol comprises pairs formed by
(normal, validation), (validation, disguise) and (disguise1, disguise2) images
from the same subject. Where disguisedn corresponds to the nth disguised
image of a subject. Impostor pairs are generated by creating cross-subject
pairs, combining normal, validation and disguised images of one subject with
their counterpart from another subject. This protocol consists of 9,041,283
possible pairs.

– Protocol-3 (Overall Performance) is a the combination of the previous
two and evaluates the overall performance of the system. A valid genuine
or impostor pair for this protocol can be any genuine or impostor pair from
protocols 1 and 2. This protocol comprises 9,066,329 possible pairs.

3.2 Neural Network Architectures

In order to carry out the experiments we used three neural network architectures:
(i) VGG-Face [20] (ii) ResNet-50 [9] (iii) Se-ResNet-50 [10]. The training and
testing details will be explained in the following section.

VGG-Face. In our first experiment, we use a pretrained implementation of the
VGG-Face CNN which is one of the top performing deep learning models for
face recognition, this will act as our baseline for the rest of the experiments. The
network was trained on the VGG-FACE dataset [20].
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Table 2. Datasets used for the training of each model. The last column refers to the
number of different identities present in the training set of each dataset that can also
be found in the DFW test set.

Dataset VGG Resnet50 Resnet50-ft Senet Overlapping identities

VGG-Face � 203 (33%)

VGG-Face2 � � � 122 (20%)

MS-Celeb-1M � � 348 (58%)

DFW (non-overlapping) 143 (24%)

ResNet-50. In the next experiment, we use two residual networks for our face
verification system, concretely two Resnet-50. One network is trained on MS-
Celeb-1M [7] and then fine-tuned VGG-Face2 [3], while the other one is just
trained on VGG-Face2. The architecture comprises 50 convolutional layers fol-
lowed by a fully connected layer of dimension 2048.

Se-ResNet-50. Lastly we use a pretrained Se-Resnet-50 in our last experiment.
This network is trained on MS-Celeb-1M. The only difference between the archi-
tecture of this model and ResNet-50 is that ‘Squeeze-and-Excitation’ (SE) block
is added to the convolutional layers of the ResNet-50 followed by an embedding
of 256 dimension. SE block can be used with any standard architecture. The
SE block tries to use global information to selectively emphasize informative
features and suppress less useful once.

3.3 Dataset Overlap

The datasets that were used to pretrain the models we are evaluating present
overlapping identities with the DFW test set. Despite containing the same identi-
ties, the face images do not need to be the same. Studying how each architecture
performs when evaluated on these identities will provide us with insight into the
ability of statistical models to retain and generalize previously acquired knowl-
edge when fitting a new distribution. Table 2 shows which dataset was used to
train each of the models we evaluate. Note that there are also identities from
DFW that overlap in more than one dataset: VGG-Face ∩ MS-Celeb-1M = 145,
and VGG-Face2 ∩ MS-Celeb-1M = 71.

4 Experiments and Results

In this section we present the different experiments and results obtained on every
DFW protocol over every overlapping set. We also present some hard examples
and an embedding visualization.
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Table 3. Verification accuracy (%) of the different approaches and our results (last 4
rows). Models are evaluated on protocol-1 (P1), protocol-2 (P2) and protocol-3 (P3).
Senet + Resnet50-ft represents an embedding of these two models

Algorithm GAR-P1 GAR-P2 GAR-P3

1% FAR 0.1% FAR 1% FAR 0.1% FAR 1% FAR 0.1% FAR

Baseline (VGG-Face) 55.29 28.91 34.32 17.58 36.25 19.35

AEFRL 96.08 57.64 87.82 77.06 87.90 75.54

DDRNET 84.20 51.26 71.04 49.28 71.43 49.08

MIRA-Face 95.46 51.09 90.65 80.56 90.62 79.26

UMDNets 94.28 53.27 86.62 74.69 86.75 72.90

DisguiseNet 1.34a 1.34b 66.32 28.99 60.89 23.25

Resnet50 81.18 49.92 75.63 55.16 75.92 54.26

Resnet50-ft 83.70 53.45 77.91 58.37 78.00 56.98

Senet 86.72 50.92 78.93 60.39 79.07 58.92

Senet+Resnet50-ft 86.89 55.63 80.71 63.02 80.89 61.12
aGAR@0.95%FAR
bThe smallest FAR value is 0.95% for DisguiseNet

4.1 Performance on DFW

First, we evaluate and compare the different models on the standard dataset.
We use the Genuine Acceptance Rate (GAR) at False Acceptance Rate of 1%
and 0.1% (FAR), as defined in the original paper [15]. Table 3 shows the results
obtained by several algorithms in each of the DFW evaluation protocols. The
top performing methods do so well because they use models pretrained with over
5M images and fine-tune them on the DFW dataset for the face verification task.

Figure 2 shows the results of our experiments on each DFW protocol. It is
clear that the models obtain competitive results despite none of them being
specifically trained for this task, or fine-tuned in the DFW training set. This is,
of course, due to the aforementioned identity overlap and the high capacity of
the models used.

4.2 Dataset Overlapping Study

As presented on Sect. 3.3 the datasets that were used to pretrain the models
have overlapping identities with the DFW test set.

Model performance can vary significantly when evaluated on different sub-
sets of the data, mainly due to the difficulty of the image pairs from each sub-
set. Despite this, the overall performance is directly correlated with the model
capacity and the quantity of images seen during training. Table 4 presents the
performance of every evaluated model across different overlapping sets of iden-
tities. Scores on overlapping sets of identities seen by the architecture during
training are presented in bold. It is easy to understand that the models will
perform better on these subsets of the data.
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(a) Protocol-1 (b) Protocol-2

(c) Protocol-3

Fig. 2. ROC Curves for every evaluated model on each DFW protocol

Catastrophic forgetting in neural networks occurs because of the stability-
plasticity dilemma [13]. The model requires sufficient plasticity to acquire new
tasks, but large weight changes will cause forgetting by distributing previously
learned representations. A concrete example of catastrophic forgetting is when a
network is training on new tasks or categories, a neural network tends to forget
the information learned in the previous trained tasks from different domains.
This usually means a new task will likely override the weights that have been
learned in the past, and thus degrade the model performance for the past tasks.
In this work we show that as the domain of two task remains unchanged, the
weight changes are small, therefore the improvement ratio of the fine-tuned
ResNet over the original model (Resnet50-ft vs Resnet50 ) remains constant
(∼3%) across different overlapping sets. This effect indicates that the fine-tuned
network is not able to retain specific knowledge from the first distribution it was
trained on (the Ms-Celeb-1M dataset). If this were not the case, the fine-tuned
network would perform much better than the original model on this overlapping
set. Therefore, the overall improvement seems to arise solely from the increase
in seen images.
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Due to the intrinsic forgetness property of statistical models learning multiple
task from mutually exclusive domains, without forgetting all but one of them,
is unfeasible. However, this experiment shows that even when the domain of the
learned tasks are the same, the catastrophic forgetness problem persists. There-
fore, the forgetness problem seems to not only affect the fully connected layers
acting as classifiers, but also the deepest layers in charge of feature extraction.

Table 4. Performance (GAR@1%FAR) of every evaluated model across different over-
lapping sets of subjects. The scores in bold indicate the performance of the model on
identities seen during training

Overlapping set VGG Resnet50 Resnet50-ft Senet

VGG-Face 39.63 73.79 74.71 76.25

VGG-Face2 36.59 77.70 80.65 84.70

Ms-Celeb-1M 35.34 73.97 75.64 76.66

VGG-Face ∩ Ms-Celeb-1M 41.28 76.85 80.03 79.94

VGG-Face2 ∩ Ms-Celeb-1M 28.59 77.64 79.70 81.16

None Overlapping 35.14 75.84 77.60 78.79

All sets 36.25 75.92 78.00 79.07

(a) Resnet50-ft (b) Resnet50

Fig. 3. Embedding representation of Genuine and impostor subjects that overlap with
the MS-Celeb-1M dataset

4.3 Face Embedding Representation

The forgetness property can also be analyzed by projecting the face image
embeddings of impostors and genuine subjects into a 2d space using t-SNE [19].
All the face images were created by padding the provided face coordinates and
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resizing the resulting bounding box maintaining aspect ratio with shorter side
of 256 and then center cropped to 224 × 224.

Note on Fig. 3, how the embeddings of both Resnet50 architectures struggle
similarly to separate impostors from genuine subjects further evidencing our
hypothesis stating that the fine-tuned architecture has forgotten the faces it was
originally trained on. The apparently random distribution of both embeddings
also demonstrate the high level of complexity that the face verification task
represents.

Fig. 4. The pairs consistently misclassified by every model. These are genuine pairs that
were labeled as an impostor pair (false negatives). All the pairs have been extracted
from Protocol-3, since it is the one that comprises every possible pair.

4.4 Visualizing Hard Examples

To shed some light into the difficulty of the face verification task in the DFW
dataset, we show some examples of pairs commonly misclassified by every archi-
tecture on Protocol-3. Figure 4 shows some hard genuine pairs. Note how often
the misclassified genuine pairs represent drastic changes in face structure, pose
and texture. This makes it notoriously hard, even for humans, to correctly clas-
sify these pairs.

5 Conclusions

In this study we show that the intrinsic forgetness property of neural networks is
not only present when performing classification but also when extracting features
for similar tasks sharing the same domain. After the fine-tuning process, even
powerful architectures like Resnet50 will fail to remember the distribution they
first learned.

In our experiments, we observe that the model that has been pretrained on
MS-Celeb-1M and then fine-tuned on VGG-dataset-2, has a relatively constant
improvement across different overlapping subsets of identities. This behaviour
indicates that the model has forgotten some specifics about the previously fitted
distribution to accommodate a new one. The consistent gain in accuracy across
different overlapping subsets is solely due to the larger amount of seen images.
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