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Abstract. CAPTCHA is an automated test designed to check if the
user is human. Though other approaches are explored (such as object
recognition), the text-based CAPTCHA is still the main test used by
many web service providers, to separate human users from bots. In this
paper, a sparse Convolutional Neural Network (CNN) to break text-
based CAPTCHA is proposed. Unlike previous CNN solutions, which
mainly use fine-tuning and transfer learning from pre-trained models,
the proposed framework does not require a pre-trained model. The spar-
sity constraint deactivates connections between neurons in the CNN fully
connected layers that leads to improved accuracy compared to the base-
line approach. Visualization of the spatial distribution of neuron activity
shed light on the internal learning and the effect of the sparsity con-
straint.

Keywords: Text-based CAPTCHA · Convolutional Neural Networks ·
Sparsity constraint · Neuron activity visualization

1 Introduction

CAPTCHA (Completely Automated Public Turing Test to tell Computers and
Humans Apart) is an automated test designed to check if the user is human.
The test is made using a challenge-response approach, where the challenge is
easy for a human to solve, but hard for a machine. If the response is correct, the
machine assumes that the user is human. CAPTCHAs are used by most service
providers, such as email or online shopping, to prevent bots from abusing their
online services. For example, to prevent a botnet to create hundreds of new email
accounts per second, a CAPTCHA can be used to assure that the users creating
the email accounts are humans.
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The construction of CAPTCHAs is not an easy task because it is difficult
to create challenges hard for machines but easily solvable by humans. Over the
years, the most used CAPTCHAs are based on visual-perception tasks. Distorted
characters are presented that must be typed correctly by the user. Background
and foreground noise is usually added, making it almost impossible for a com-
puter to automatically recognize the characters. However, for humans, the char-
acters are relatively easy to recognize, due to our brain’s capacity for recognizing
patterns. There are three characteristics for a modern text-based CAPTCHA to
be resilient:

– The large variation in the shape of letters. While there is an infinite variety
of versions for the same character that the human brain can recognize, the
same is not true for a computer. If all the versions of a character are different,
it is hard for a computer to recognize any version not previously seen.

– Due to the large variation in the shape of characters, it can also be hard to
perform segmentation for each character, mainly when the characters have
no space in between.

– In specific CAPTCHAs, the context may be the key to answer correctly to
the task. When the word is taken into context, it is easier for a human to
answer what are the characters in the challenge, even if some of them are
dubious.

The conjugation of these three characteristics makes a CAPTCHA hard to solve
by a machine. However, over the last few years a number of techniques to break
the text-based CAPTCHA have been proposed, [1]. Most of the solutions are
based on deep (neural network) learning models trained on millions of images
using clusters of computers or alternatively using fine-tuning and transfer learn-
ing from pre-trained models. The models are usually designed with huge number
of parameters to account for the complexity of large scale data that they learn
from. However, when it comes to production deployment on embedded or mobile
devices, the network size, speed, and power consumption become an issue.

In this paper, we propose a strategy for limiting the neuron activity and show
that this improves and speed up the learning compared to the baseline approach.
The strategy is illustrated on Kaggle text-based CAPTCHA data set.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 explains the proposed sparse CNN framework. Simulation results and
discussions are presented in Sects. 4 and 5 summarizes the work.

2 Related Work

In 2014, the authors of [2] for the first time stated that text distortion-
based CAPTCHAs schemes should be considered insecure due to technolog-
ical advances. They presented a general framework for solving text-based
CAPTCHAs, with a multi-step algorithm based on reinforcement learning
with joint phases of segmentation and text recognition. Since then, alterna-
tive CAPTCHA schemes based on object recognition have been proposed, [3],
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[4], making it harder for machines to solve them, but remaining easily solvable
by humans. However, there are still many implementations of insecure text-
based CAPTCHAs on the web. In [5], the authors propose two approaches for
text-based CAPTCHA recognition, based on pattern matching and hierarchical
algorithms. Both approaches attempt to find the shape of the objects by defining
key points in their structure using the Canny Edge Detector and then comparing
it to the structure of each character in a local database. The first approach tries
to find words in images starting with visual cues, and incorporates lexical infor-
mation later (the CAPTCHAs texts are words from the dictionary). The second
approach searches for entire words at once using a dictionary with all 411 words
that the considered CAPTCHAs contain. The second algorithm achieved better
results, with an accuracy of 92% on the EZ-Gimpy dataset. This study showed
that, algorithms that deal with the whole CAPTCHA at once tend to output
higher accuracy than algorithms that deal with each character separately.

In [6], the authors break the Microsoft CAPTCHA, used for systems such
as MSN or Hotmail, with image segmentation and pattern matching. The seg-
mentation and recognition combined achieved 60% accuracy. Other approaches,
such as [7] or [8], also use image segmentation and pattern matching to break
specific CAPTCHAs datasets.

In [9], the authors propose a two-step approach to recognize text-based
CAPTCHAs. The data include CAPTCHAs from the most visited websites, like
MSN, Yahoo, Google/Gmail or TicketMaster. First, segmentation is applied to
separate the characters and then a Convolutional Neural Network (CNN) to rec-
ognize them. It is shown that most of the errors derive from a bad segmentation.
The highest accuracy is close to 90%.

In [10], a CNN is used for CAPTCHA recognition. The network is composed
by three convolution layers, three pooling layers and two fully-connected layers.
The network recognizes the sequence without pre-segmentation, and with a fixed
size of six characters. The problem of CNN requiring a very large training set is
solved with an Active Learning mechanism. To prevent from feeding the neural
network with millions of CAPTCHAs, each CAPTCHA is recognized with a
certain measured uncertainty. Only the most uncertain CAPTCHAs on the test
set are used for retraining the model. The algorithm reaches an accuracy of
almost 90%.

In [11], a novel approach is taken to break text-based CAPTCHAs. It intro-
duces the Recursive Cortical Network (RCN), a hierarchical probabilistic gener-
ative model with an outstanding capacity of generalization based on the human
brain, designed to be trained with few examples. This model achieved an accu-
racy of 94.3% on character recognition on the reCAPTCHA algorithm, created
and currently used by Google.

Neural networks are often over-parameterized with significant redundancy
among the weights and the CNNs do not make an exception. To address this
problem we propose in this paper sparsity constraint approach originated in
deep autoencoders training. The idea is to limit the neuron activity and enforce
learning of non-redundant information.
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Fig. 1. CNN framework

3 The Proposed Framework

CNN combined with large-scale labeled data has become a standard recipe for
achieving state-of-the-art performance on computer vision tasks in recent years.
The general architecture of the CNN is given in Fig. 1). Typically, a CNN alter-
natively stacks convolutional (C) and sub-sampling (e.g. max-pooling) (M) lay-
ers. In a C layer, small feature extractors (kernels) sweep over the topology
and transform the input into feature maps. In a M layer, activations within a
neighborhood are abstracted to acquire invariance to local translations. After
several C and M layers, feature maps are flattened into a feature vector, and
followed by fully-connected (FC) layers. In this paper Rectified Linear Units
(ReLU) are applied in the convolutional layers [12]. ReLU is formally defined
as f(x) = max(0, x). It has become very popular in the past couple of years
since it improves significantly the convergence speed and avoids the vanishing
gradient problem. The inputs of the last FC layer are passed through a softmax
function, to compute the class probabilities. Given an input x(i) with a label
y(i), the softmax function estimates the probability that this example belongs
to each of the class labels j = 1, 2, . . . c

p(y(i) = j|x(i); θ) =
eθT

j x(i)

∑c
j=1 eθT

j x(i) (1)

The network outputs c dimensional vector of the estimated probabilities, where
θ is a matrix of parameters connecting the softmax layer with the previous
(hidden) layer.

ŷcnn(x(i)) =
1

∑c
j=1 eθT

j x(i)

⎡

⎢
⎢
⎢
⎣

eθT
1 x(i)

eθT
2 x(i)

...

eθT
c x(i)

⎤

⎥
⎥
⎥
⎦

(2)
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The denominator in Eq. (2) normalizes the distribution to sum to one. Given a
batch of m training examples, the baseline softmax cost function to be minimized
is

J(θ) = − 1
m

[
m∑

i=1

c∑

j=1

1{y(i) = j} log
eθT

j x(i)

∑c
j=1 eθT

j x(i) ]. (3)

We propose a strategy for limiting the neuron activity in the FC layers which
is imposed by sparsity constraints on the hidden units.

Let ak denotes the activation of hidden unit k and ak(x) denotes the acti-
vation of hidden unit k when the network is given a specific input x. Further,
let ρ̂k = 1

m

∑m
i=1[ak(x(i))] be the average activation of hidden unit k (averaged

over the training set). We would like to (approximately) enforce the constraint
ρ̂k = ρ, where ρ is a sparsity parameter, typically a small value. In other words
we would like the average activation of each hidden unit j to be close to ρ.
This is enforced by an extra penalty term in the cost function that penalizes
ρ̂k if deviating significantly from ρ. Many choices of the penalty term will give
reasonable results, here we choose the Kullback-Leibler (KL) divergence which
is a standard function for measuring how different two distributions are [13].
KL-divergence measure between a Bernoulli random variable with mean ρ and
a Bernoulli random variable with mean ρ̂k is given as

KL(ρ||ρ̂k) =
s∑

k=1

ρ log
ρ

ρ̂k
+ (1 − ρ) log

(1 − ρ)
(1 − ρ̂k)

(4)

Here s is the number of the units in the hidden layer, and the index k is summing
over the hidden units of the network. The choice of ρ expresses the desired level
of sparsity, here we set it to a common value of 0.1.

In the sparse cost function Jsparse, β controls the importance of the sparsity
penalty term KL(ρ||ρ̂k)

Jsparse = J + βKL(ρ||ρ̂k)] (5)

The intuition behind this optimization framework is to specialize the neurons in
learning specific patterns and as a consequence enforce compression to happen.

4 Experiments and Results

4.1 Dataset

The Kaggle CAPTCHA dataset has been used to evaluate the proposed frame-
work1. A few examples are given in Fig. 2(a). Each image consists of five random
characters from a set of 19 characters: 2, 3, 4, 5, 6, 7, 8, b, c, d, e, f, g, m, n, p,
w, x, y. The characters have the same font but rotated in different angles. Since

1 https://www.kaggle.com/fournierp/captcha-version-2-images.

https://www.kaggle.com/fournierp/captcha-version-2-images
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(a) Examples of Kaggle text-based CAPTCHA images.

(b) CAPTCHA sample denoising. On the top, from left to right: the original image,
the image after Otsu thresholding, the image after one dilation. On the bottom, from
left to right: the image after the erosion, the image after the second dilation and finally
the contouring of the characters.

(c) Samples of single character images.

Fig. 2. CAPTCHA images and prepossessing

the images have been heavily corrupted by noise (black lines over the charac-
ters), a few denoising steps are taken to remove or alleviate the noise as shown
in Fig. 2(b). First, the Otsu method [14] is applied to perform clustering-based
image thresholding and transform the CAPTCHA into a binary image. Next,
morphological transformations are applied to the image. A dilation and an ero-
sion are applied sequentially with 3×3 kernel, followed by a second dilation with
3×1 kernel, in an attempt to eliminate the horizontal lines that create the noise
in the image. Single character images were then extracted by segmentation as
shown in Fig. 2(c).
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Since the original dataset has been small (1070 images) we applied rotation
and shifting operations to augment it. Combinations of rotations (−10◦, 0◦, 10◦),
vertical (−3 px, 0 px, 3 px) and horizontal (−3 px, 0 px, 3 px) shifts were applied
to generate 27 variations of each original single character training image. After
the augmentation, data grew to 5350 images per single character and 87048
examples in total. For the training 69638 items were randomly selected and the
test set was limited to 17409 items.

4.2 Performance Evaluation

CNNs with varying depth have been trained, with architectures shown in Table 1.
Stochastic gradient descent optimization was applied with learning rate of 0.0001
and dropout step of 0.5 to prevent overfitting. Figures 3, 4 and 5 illustrate the
performance of the proposed method (with sparsity constraint) and the baseline
approach (without sparsity constraint) in terms of training and testing accuracy.
The testing accuracy is evaluated in each training epoch with new test data.
Some observations can be made from the figures. The sparsity constraint makes
the learning models less sensitive to the network dimension compared to the
baseline approach. Note the similar behavior of the right side plots in Figs. 3, 4
and 5. In contrast, the left side plots show lack of learning (CNN1), overfitting
(CNN2) and finally achieved a good performance while increasing the CNN
complexity. The maximum testing accuracy in the baseline is 90.2 % (for CNN3).
The maximum accuracy of the proposed framework is 95.7% (for CNN2). The
performance of the lower complexity model (CNN1) is significantly more affected
by the sparsity constraints.

The capability of CNN to model highly nonlinear functions comes with high
computational and memory demands both during the model training and infer-
ence. The sparsity constraints impose connection between the neurons in the
FC layers, which enforces the neurons to learn non redundant information and
therefore reduces the amount of information processed, [15].

4.3 Neuron Activity Visualization

One way to understand what the CNN is learning and to asses the effect of the
sparsity constraint on the internal learning process, is to visualize the represen-
tations captured by the hidden units, [16]. These representations are not always
easy to understand [17], therefore we illustrate here only those that we found
interpretable.

The matrix of weights between the flatten layer (256 units) and the first
hidden FC layer (512 units) is denoted as θ(1) (dimension 256×512). We visualize
the weights collected in θ(1) as representation images. Each column of θ(1) is
reshaped into a square 16 × 16 pixels image and visualized on one cell of the
visualization panel shown in Fig. 6. Figure 6 illustrates the representation images
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Table 1. CNN architectures

Layer type Neurons Kernel size

CNN1

2 Conv layers & pooling layers 256 3 × 3 & 2 × 2

2 Fully-connected (FC) layers 512

Softmax layer 19

CNN2

4 Conv layers & pooling layers 256 3 × 3 & 2 × 2

2 Fully-connected (FC) layers 512

Softmax layer 19

CNN3

6 Conv layers & pooling layers 256 3 × 3 & 2 × 2

4 Fully-connected (FC) layers 512

Softmax layer 19

Fig. 3. CNN1: left (baseline), right (proposed framework)

of all 512 hidden units for a given visible input (the image of the character 4) as
a visualization panel of 32 by 16 cells. On the left side of Fig. 6 are the results
from the CNN trained with the baseline cost function J (Eq. 3) and on the right
side the weights obtained after training with the sparse cost function Jsparse

(Eq. 5). The proposed framework resulted in more “blank” cells which means
that those neurons are not activated by the input image. Since the weights are
fit in such a way not to violate the constraints on the neuron activity, the ‘blank’
neurons are not specialized in the specific patterns of the character ‘4’ image.
The sparsity constrain acts as an inhibitor/promoter for particular stimulus and
therefore favor a non-uniform distribution of the neuron activity over training
examples. This hypothesis (in agreement with [18]), may explain the uniform
spatial distribution of the neuron activity with the baseline training.
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Fig. 4. CNN2: left (baseline), right (proposed framework)

Fig. 5. CNN3: left (baseline), right (proposed framework)

Curiously, results that support the inhibitor/promoter effect of the sparsity
constraint were observed also with the convolutional filters. We applied the same
strategy for visualizing as before and the visualization panels (8 by 8 cells) of
the 64 filters in the 3rd and the 4th convolutional layers are illustrated in Figs. 7
and 8. The differences are more distinct applying gray heat map. The rough
granulated cells indicate specific features learned by the filters, while the smooth
gray cells indicate inactivate filters. Though the convolutional filters were not
explicitly constrained in Eq. (5), the constrained neuron activity in the FC layers
backpropagate this effect and force the convolutional filters to be more selective
to a particular stimulus. There are much more inactive filters to the specific
patterns of the image of the character ‘4’ in the right plots of Figs. 7 and 8
compared to the baseline trained filters in the left plots of the same figures.
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Fig. 6. CNN2. Features learning in the 1st hidden FC layer given image of character
‘4’: left (baseline); right (proposed method)

Fig. 7. CNN2. Filter patterns in 3rd conv layer: left (baseline); right (proposed frame-
work)

Fig. 8. CNN2. Filter patterns in 4th conv layer: left (baseline); right (proposed frame-
work)
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5 Conclusions

In this paper, CNN learning framework with sparse cost function has been
proposed to demonstrate a possible attack that can be made to a text-based
CAPTCHA. The proposed model has a low complexity which makes its training
transparent and fully controlled. Although the quantity and quality of the image
dataset is not very high, the framework shows good results. The concept of spar-
sity, widely applied in deep autoencoders, is a good alternative to account for
parameter redundancy and compressed sensing. The outcomes of experiments
suggest that adding sparsity constraint can improve the network accuracy and
convergence speed. Future extension of this work would be upgrading this frame-
work to non-text based CAPTCHAs also.
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