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Abstract. Advances in genomics have driven to the recognition that
tumours are populated by different minor subclones of malignant cells
that control the way the tumour progresses. However, the spatial and
temporal genomic heterogeneity of tumours has been a hurdle in clinical
oncology. This is mainly because the standard methodology for genomic
analysis is the biopsy, that besides being an invasive technique, it does
not capture the entire tumour spatial state in a single exam. Radio-
graphic medical imaging opens new opportunities for genomic analysis
by providing full state visualisation of a tumour at a macroscopic level,
in a non-invasive way. Having in mind that mutational testing of EGFR
and KRAS is a routine in lung cancer treatment, it was studied whether
clinical and imaging data are valuable for predicting EGFR and KRAS
mutations in a cohort of NSCLC patients. A reliable predictive model
was found for EGFR (AUC = 0.96) using both a Multi-layer Perceptron
model and a Random Forest model but not for KRAS (AUC= 0.56).
A feature importance analysis using Random Forest reported that the
presence of emphysema and lung parenchymal features have the highest
correlation with EGFR mutation status. This study opens new oppor-
tunities for radiogenomics on predicting molecular properties in a more
readily available and non-invasive way.
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1 Introduction

Lung cancer is the most common cause of cancer death in the world, respon-
sible for nearly 1.6 million deaths annually [10]. The main contributing factor
for the high death rate of lung cancer is the late diagnosis [19]. Once diagnosed,
lung cancer is often in an advanced stage, with 15% or less chance of a 5-year
survival [15]. At that stage, tumours are already composed by multiple clonal
subpopulations of cancer cells and, consequently, the treatment must be shaped
based on the individual tumour heterogeneity. Precision medicine is the medical
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field that tailors practices and/or therapies to individual patients by taking into
account the individual variability of genes. The traditional method of analysing
the tumour is by extracting tumour tissue in a biopsy, which is then characterised
using genomic-based approaches. In spite of being a successful approach in clin-
ical oncology, repeated biopsies tend to increase medical complications. Further,
tumour characterisation usually demands several biopsies, since the results can
vary depending on the part of the tumour that is analysed [23].

In Non-small cell lung cancer (NSCLC), which accounts 85% of all lung
cancers [5], mutational testing of selected genes is a standard practice to deter-
mine how affected patients will respond to targeted therapy [9]. This includes
determining the mutation status of epidermal growth factor receptor (EGFR),
a cell receptor that activates growth and survival [24], and Kristen rat sar-
coma viral oncogene homolog (KRAS), which activates the same pathway as
EGFR when mutated [21]. Patients with mutant EGFR are sensitive to tyrosine
kinase inhibitors (TKIs) gefitinib and erlotinib. Hence, patients with mutated
EGFR lung cancer, who receive treatments with targeted TKIs are expected
to have a longer progression-free survival in comparison to chemotherapy treat-
ment. However, if gefitinib is administered in cases with non-mutated EGFR, the
patient will undergo a shorter progression-free survival [18]. KRAS mutation sta-
tus is also helpful for treatment planning. It has proven to be correlated with
response to chemotherapy since patients with mutated KRAS which undergo
chemotherapy have revealed inferior responses and shorter survival compared
to patients with no KRAS mutation [13,26]. On that basis, identifying patients
with mutated EGFR and KRAS is highly important in precision medicine.

As a less invasive technique compared to biopsy, radiographic medical imag-
ing opens new opportunities for tumour characterisation. Images exhibit strong
phenotypic differences between tumours, such as tumour size, presence of emphy-
sema and/or fibrosis. Those differences normally fail to be recognised by the
naked eye, thus they may have the potential to be valuable predictors of ther-
apeutic benefit. Moreover, a great advantage of medical imaging is its ability
to provide a full state visualisation of a tumour at a macroscopic level. There-
fore, radiogenomics, the fusion of medical images and genomics, offers attractive
opportunities for non-invasive treatment planning.

Given the relevance of the problem, in this paper, we propose predictive mod-
els for EGFR and KRAS mutation status, using a set of clinical and radiologist-
observed qualitative imaging features, taking advantage of the learning capabil-
ities of machine learning techniques.

The remainder of this paper is as follows. In Sect. 2, we present the related
work which has been done so far. In Sect. 3, we present the proposed approach,
while in Sect. 4 we detail and discuss the experimental results. We conclude the
paper with Sect. 5, summarising its main contributions and findings.

2 Related Work

A thorough search of the relevant literature yielded only one related article
which investigated whether EGFR and KRAS mutation status can be predicted
using qualitative features obtained from imaging data. Gevaert et al. [11] used
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89 qualitative image features of NSCLC patients tumours, annotated by a tho-
racic oncologist, to create models to predict EGFR and KRAS mutation sta-
tus. A univariate correlation study was performed between mutation status and
the qualitative imaging features and, afterwards, the most correlated features
were used in a multivariate analysis using decision trees. Emphysema, airway
abnormality, the percentage of ground glass component and the type of tumour
margin reached the significance threshold of correlation with EGFR mutation
status and they were used to build a decision tree model, which achieved an
area under the ROC curve (AUC) of 0.89. With regard to KRAS mutation, no
features reached the significance threshold of correlation and, consequently, the
models built for KRAS were not considered useful (AUC = 0.55). Furthermore,
some studies have investigated the association between EGFR mutation status
and quantitative features, rather than qualitative features [7,16,17].

With a view on the advances that have been made, in this study, we propose
different experimental methodologies that take advantage of powerful machine
learning techniques to create predictive models using a new set of features. By
using a different cohort of patients, as well as different features, one can further
evaluate the relation between EGFR and KRAS mutation status and radio-
graphic imaging data.

3 Methodology

This study aimed to investigate whether clinical and qualitative imaging features
are advantageous mutation status predictors and build predictive models using
two algorithms: Random Forest (RF) [3] and Multi-layer Perceptrons (MLP) [22]
networks. The data was divided into a training set (80%) and a test set (20%),
ensuring that each set maintains an equal proportion of instances of each class.
It is important to mention that the set of subjects used for training and testing
were kept constant for all the performed experiments. Hyper-parameters were
chosen applying grid-search with 5-fold cross-validation to the training data and
selecting the set of hyper-parameters of the model with the highest F-measure.
The developed code and used data are available on Github.1

3.1 The Dataset

The study included a subset of 158 NSCLC patients tested for EGFR mutation
status and 157 NSCLC patients tested for KRAS mutation status, characterised
by qualitative and clinical features. The data was obtained from the open-access
NSCLC-Radiogenomics dataset available at the cancer imaging archive (TCIA)
database [2,6,12].

The qualitative features were obtained from an analysis of pre-treatment
computed tomography (CT) images using a controlled vocabulary. The used
terms are commonly used in radiology clinical practice and derive from descrip-
tions in the radiology literature [1]. Definitions of some of the terms used in this
1 https://github.com/catfdias/MutationStatus.git.
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description can be found in [14]. The template of semantic terms was developed
exclusively for nodules since it is the most prevalent expression of lung can-
cer. Therefore, other manifestations of lung cancer besides nodules (e.g. central
obstructive tumours) are not included in this study.

From the 30 qualitative features available in the NSCLC-Radiogenomics
dataset, some were discarded due to a large number of not applicable values
(e.g. the fibrosis type field in a patient that has fibrosis absent), thus, a subset
of 18 qualitative features was used in this study. The used set includes nodule
and parenchymal features, which describe the nodules geometry, location, inter-
nal features and other related findings. Additionally, the patient’s gender and
smoking status were considered due to its significant association with mutation
status prevalence, confirmed in recent studies [8,20,25]. From this point forward,
gender and smoking status are designated as clinical features and the qualitative
features extracted from the images as imaging features. Table 1 shows detailed
information regarding the data distribution and the nomenclature used to clas-
sify the tumours.

The dataset comprises percentages of 26% and 25% mutated cases for EGFR
and KRAS, respectively. Before feeding the data into the model, features were
converted to binary vectors following a one-hot encoding strategy. Thereafter,
the number of features increased from 20 to 73.

3.2 Random Forest

RF models were implemented for predicting EGFR and KRAS mutation status.
As an algorithm based on ensemble learning, RF makes the predictions taking
advantage of a group of models, instead of a single model. Random Forest sam-
ples both observations and features of training data in order to build independent
decision trees which contribute by voting for the ensemble prediction. Bearing
in mind that a decision tree is an unstable algorithm, by averaging the results of
all decision trees, the variance component of the model will be minimised, which
approximates the ensemble to an ideal model.

Due to the ability of RF to recognise the importance of the features for the
problem in mind, it was conducted an analysis of the most valuable ones.

3.3 Multi-layer Perceptron

By virtue of the remarkable ability of MLP to extract patterns and detect trends,
its performance on predicting the genes mutation status was tested.

The MLP assumes the distribution of classes is similar, which in this case
would result in a model biased towards the negative class. However, in this study,
the correct classification of both classes is equally important, since the classifi-
cation of a patient with the wrong mutation status could lead to the administra-
tion of a less suitable treatment and, consequently, to shorter progression-free
survival. To overcome class imbalance, it was conducted a Synthetic Minority
Over-sampling Technique for Nominal and Continuous (SMOTE-NC) data app-
roach, in which new instances are created based on the 5 nearest neighbours of
the feature space that belong to the minority class. In comparison to traditional
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Table 1. Distribution of the data used for KRAS and EGFR mutation status prediction
experiments.

Feature KRAS
(%)

EGFR
(%)

Clinical Features
Gender
Female 35.0 36.1
Male 65.0 63.9
Smoking Status
Former 61.1 62.0
Non-smoker 24.2 22.8
Current 14.6 15.2
Imaging Features
Axial Location
Central 21.7 20.9
Peripheral 78.3 79.1
Nodule Attenuation
Solid 56.1 57.6
Partially solid 40.8 39.2
Ground glass 3.2 3.2
Nodule Margins Primary Pattern
Irregular 17.2 15.2
Lobulated 30.6 32.2
Spiculated 25.5 26.6
Poorly defined 16.6 15.8
Smooth 10.2 10.1
Nodule Margins Secondary
Pattern
Irregular 37.6 39.9
Lobulated 31.2 31.0
Spiculated 3.8 3.2
Poorly defined 16.6 15.2
Smooth 10.8 10.8
Nodule shape
Complex 58.0 57.0
Round 29.3 29.7
Oval 12.1 12.7
Polygonal 0.6 0.6
Nodule calcification
Peripheral 6.4 7.0
None 93.6 93.0
Nodule’s findings
Pleural retraction 10.2 10.1
Vascular convergence 20.4 20.3
Septal thickening 18.5 21.5
None 9.6 8.9
Attachment to pleura 7.6 7.6
Entering airway 21.7 20.3
Attachement to vessel 9.6 8.9
Bronchovascular bundle 2.5 2.5
Satellite Nodules in Primary Lesion Lobe
(>4mm noncalcified)
Absent 77.1 75.9
Solid 7.6 8.2
Partially-solid 5.1 5.1
Non-solid 10.2 10.8

Feature KRAS
(%)

EGFR
(%)

Imaging Features
Nodules in Non-Lesion Lobe Same Lung
(>4mm noncalcified)
Absent 82.8 81.6
Solid 5.7 6.3
Partially-solid 1.9 2.5
Non-solid 9.6 9.5
Nodules in Contralateral Lung
(>4mm noncalcified)
Absent 76.4) 75.3
Solid 5.1 5.7
Partially-solid 7.6 7.6
Non-solid 10.8 11.4
Centrilobular Nodules
Absent 87.3 88.6
Present 12.7 11.4
Emphysema
absent 47.8 48.7
present 52.2 51.3
Fibrosis
absent 89.8 88.6
present 10.2 11.4
Nodule Internal Features
Not applicable 50.3 51.3
Cavitated 8.9 8.2
Internal air bronchogram sign 28.0 27.8
Reticulation 7.0 7.0
Necrosis 3.2 3.2
Nodule cysts 2.5 2.5
Lung Parenchyma Features
Bronchial wall thickening 33.8 32.9
Tree-in-bud sign 1.9 2.5
Airway ectasia 9.6 9.5
Mosaic oligemia 5.1 5.1
Bronchial prominence 0.6 1.3
Bronchiectasis 3.8 4.4
Normal 45.2 44.3
Primary Emphysema Pattern
Paraseptal 12.7 12.0
Centrilobular 37.6 38.0
Panacinar 1.9 1.3
Not applicable 47.8 48.7
Secondary Emphysema Pattern
Paraseptal 17.2 17.1
Centrilobular 8.3 7.6
Panacinar 0.6 0.6
Not applicable 73.9 74.7
Nodule Periphery
Emphysema 26.1 26.6
Normal 70.1 69.6
Fibrosis 3.8 3.8

over-sampling, SMOTE-NC has the advantage of building a more general deci-
sion region of the minority class [4]. After applying SMOTE-NC, the training
set contains the same number of mutated and wildtype samples. On the premise
of keeping the fed data constant among the two algorithms, SMOTE-NC was
applied to all the performed experiments.

4 Results and Discussion

The same experimental set-up was followed regarding EGFR and KRAS muta-
tions. Interestingly, the average results were quite different, in a sense that it was
possible to achieve models that reliably predict EGFR mutations but not KRAS
mutation presence. From the experiments conducted, the predictive model for
KRAS mutation with the best performance had an AUC of 0.56, having the RF
as the classifier. Therefore, the following results are exclusively regarding EGFR.
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4.1 EGFR Mutation Status Prediction

Three experiments were conducted in order to achieve the greatest set of features
to predict EGFR mutation status: using clinical features, imaging features and
both imaging and clinical features. Clinical features were only attempted with
MLP, since the RF is not an ideal model for a set of 2 features, due to the lack
of feature combinations. The range of values used in the grid search for RF and
MLP for each hyper-parameter is presented in Tables 2 and 3, respectively.

Table 2. Set of hyper-parameter values used in the grid search for RF.

Hyper-parameter Values

Maximum depth 3, 5, 10, 15, 20, 25, 30, n (n: number of features)

Maximum features log2 n,
√
n, n (n: number of features)

Minimum samples split 2, 3, 5, 7, 9

Minimum samples leaf 1, 3, 5, 7

Number of estimators 30, 50, 70, 100, 300, 500, 700

Bootstrap True, False

Table 3. Set of hyper-parameter values used in the grid search for MLP.

Hyper-parameter Values

Alpha 0, 0.00001, 0.0001, 0.001, 0.01

Hidden layers 1, 2, 4, 6, 8, 10, 12

Learning rate 0.0001, 0.001, 0.01, 0.1

Momentum 0.0001, 0.001, 0.01, 0,1, 0.5, 0.9

The hyper-parameters of the models which achieved the highest F-measure
in the 5-fold cross-validation for RF and MLP are included in Tables 4 and 5,
respectively, for each experiment.

Table 4. Hyper-parameters of the RF model which achieved the highest F-measure in
the 5-fold cross-validation.

Experiment Maximum

depth

Maximum

features

Minimum

samples split

Minimum

samples leaf

Number of

estimators

Bootstrap

Imaging features 5 log2 n∗ 2 3 300 False

Imaging + Clinical features 15 log2 n∗ 7 1 30 False
∗n: number of features
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Table 5. Hyper-parameters of the MLP model which achieved the highest F-measure
in the 5-fold cross-validation

Experiment Alpha Hidden layers Learning rate Momentum Activation Optimiser

Clinical features 0.0 2 0.01 0.9 ReLU SGD∗

Imaging features 0.0 10 0.0001 0.9 ReLU SGD∗

Imaging + Clinical features 0.0 8 0.001 0.0001 ReLU SGD∗
∗Stochastic Gradient Descent

Table 6 shows the results obtained on the test set by the RF and MLP mod-
els which provided the best results in the training set, in the three performed
experiments.

Table 6. Results obtained in the different experiments.

Experiment Recall Precision F-measure AUC

Clinical features

MLP 0.56 0.50 0.53 0.68

Imaging features

RF 1.00 0.80 0.89 0.96

MLP 1.00 0.73 0.84 0.94

Imaging + Clinical features

RF 1.00 0.80 0.89 0.96

MLP 1.00 0.80 0.89 0.96

On average, a better performance was achieved when both clinical and imag-
ing features were used. The RF model achieved an equal performance using both
clinical and imaging features or just imaging features; however, MLP reached a
higher performance (AUC = 0.96) when clinical features were added to the fea-
ture set.

Focusing on the MLP experiments, clinical features achieved a satisfactory
performance when predicting EGFR mutation status (AUC = 0.68), whereas,
when using imaging data a reliable predictive model is obtained (AUC = 0.94).
Further, when imaging and clinical data were combined, it was created a model
which further increases the imaging data performance (AUC = 0.96). The RF
model achieved the same performance in the two experiments potentially due to
its intrinsic feature subsampling.

The ROC curves for the RF and MLP models using imaging and clinical
features are presented in Fig. 1. The confusion matrix obtained by the two models
using imaging and clinical features was identical, and it is presented in Fig. 2.

Feature Importance. Taking advantage of the RF ability to recognise features
importance, it was conducted an analysis in order to find the most valuable
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Fig. 1. ROC curve of the RF model (left) and MLP model (right).

Fig. 2. Confusion matrix of the RF model and MLP models.

predictors amongst the used set of features. The RF model outputs a score for
each feature which sums to one, and it describes the average decrease in impurity
over trees.

Since the one-hot encoding approach was used to convert from categorical
data to binary vectors, there is an importance score associated with each feature
value and not a single score to the feature itself. Therefore, the feature score
was considered to be the sum of the scores of each of its values. For instance, if
having emphysema present had a score of 0.10 and emphysema absent a score of
0.08, the feature emphysema has a score of 0.18. Figure 3 shows the importance
scores as a result of this analysis. Emphysema is plainly the feature with the
highest score (0.18) followed by lung parenchymal features (0.16).
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Fig. 3. Features importance scores.

5 Conclusions and Future Work

In this work, we report a radiogenomics model that is able to predict the
mutation status of EGFR (AUC = 0.96) from CT scans in a less invasive pro-
cedure, compared to repeated biopsies during treatment. To the best of our
knowledge, this work was the second attempt to create predictive models for
EGFR and KRAS mutation status using qualitative radiographic image features.
Even though our model outperforms the model created by Gevaert et al. [11]
(AUC = 0.89), the present work did not use the same dataset as the first attempt
and, consequently, results cannot be directly compared.

The results of this study suggest that an image signature exists that accu-
rately predicts EGFR mutation status but not KRAS. Considering the fact that
class proportions are similar in EGFR (26% mutated, 74 % wildtype) and KRAS
(25 % mutated, 75% wildtype), the most reasonable hypothesis for this result is
that KRAS mutations are not evident through radiographic qualitative features
in the same extent as EGFR mutations, which appear to have particular pat-
terns. Gevaert et al. [11], which was also able to create a predictive model for
EGFR mutations but not for KRAS, also hypothesised that the results might
result from different class proportions between EGFR and KRAS; however in
the present study class proportions are similar, which enhances the hypothesis
that KRAS mutations do not manifest through qualitative imaging features.

When clinical and imaging data were combined, the performance slightly
increased, on average. These results have shown that, although the limited
amount of data, images and clinical data combined are potential predictors of
EGFR mutation status. However, it is important to further validate the results
with a larger dataset, to clarify these features importance.

From the total set of features used in this work, emphysema and lung
parenchymal features were the ones that presented a higher correlation with
EGFR mutation status.



344 C. Dias et al.

The model created in this study for the prediction of EGFR mutation status
opens interesting opportunities for a better treatment planning and supports
oncologists and radiologists with additional information at diagnosis. Key issues
to be investigated in the future is whether quantitative features extracted directly
from the image have the same predictive ability or even exceed qualitative fea-
tures.
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