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Abstract. Traffic surveillance through vision systems is a highly
demanded task. To solve it, it is necessary to combine detection and
tracking in a way that meets the requirements of operating in real time
while being robust against occlusions. This paper proposes a traffic mon-
itoring system that meets these requirements. It is formed by a deep
learning-based detector, tracking through a combination of Discrimina-
tive Correlation Filter and a Kalman Filter, and data association based
on the Hungarian method. The viability of the system has been proved
for roundabout input/output analysis with near 1,000 vehicles in real-life
scenarios.
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1 Introduction

Detection and tracking of vehicles in a video allows to estimate every vehicle
trajectory while they remain in the scene. This has applications in a wide range
of tasks: vehicle counting, accident detection, roundabout entry/exit analysis or
assisted traffic surveillance. In a real-life scenario speed and robustness are a
must, which translate to the requisites of real-time performance and occlusion
handling.

In terms of the current tracking solutions we can distinguish two types:
low-level and high-level trackers. The former exploits the visual information in
the current frame to find the object of interest while the latter can use more
complex information to estimate the new object position (probabilistic models,
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environment maps, etc.). Current low-level trackers [2,5,7] cannot handle total
occlusions and do not provide a framework for multiple object tracking. In addi-
tion, the best current solutions require a high end GPU or do not operate in real
time with multiple objects on CPU [7,20].

In recent years, the high-level tracking problem has been focused as a
tracking-by-detection approach [1]. This framework considers the tracking task
as a data association problem between detections and trackers over time. This
assumes the existence of reliable detections in every frame of a video, some-
thing that in a real-life scenario is not a valid option as current state-of-the-art
deep-learning based detectors operate above 75 ms per frame [17].

In this paper, we present a traffic monitoring system that performs multiple
object detection and tracking in a video in real-time handling total occlusions.
The system is composed of a deep-learning based detector, a low-level Discrimi-
native Correlation Filter (DCF) based tracker, a high-level Kalman Filter based
tracker and data association based on the Hungarian algorithm. The contribu-
tions of our proposal are:

– A traffic monitoring system that can process more than 400 vehicles
simultaneously in videos with HD resolution in real-time.

– The system also handles occlusions by detecting the upcoming occlusion
and searching the occluded vehicle in a zone called ROI (Region-Of-Interest)
that is proportional to the error degree in the tracking process. We provide a
metric for on-line tracking failure detection by estimating the distance
between two independent tracking methods allowing us to update the system’s
tracking error accordingly.

– We extend our system for solving a real-life traffic application: roundabout
I/O (Input/Output) with near 1,000 vehicles.

The rest of this paper is structured as follows. Section 2 gives an overview of
closely related work. In Sect. 3 we explain the details of our approach. In Sect. 4
we discuss the implementation details of our system and introduce the traffic
application developed. Finally, conclusions are given in Sect. 5.

2 Related Work

Traffic monitoring systems detect and track all the vehicles in a video sequence.
This task presents two main challenges: to manage total occlusions and to oper-
ate in real-time with multiple vehicles.

The work in the field of object detection is mainly based on deep convo-
lutional neural networks (ConvNets). One of the first works in this area was
R-CNN [12] which uses a region proposal algorithm (such as selective search
[23] or edge boxes [25]) and applies a classification network to each of them.
Improving the previous approach, Fast-RCNN [11] introduces the regions in an
intermediate stage of the network, thus, saving a lot of computing time. Finally,
becoming the milestone in the object detection field, Faster-RCNN [22] intro-
duces a region proposal algorithm based entirely on a neural network called the
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Region Proposal Network (RPN). The RPN uses the information from interme-
diate layers of a standard classification network to provide different locations in
which an object may appear.

To improve the performance of the proposal of regions in all possible scales,
Lin et al. [18] replicate the RPN from Faster-RCNN in several layers of the
network in which deeper feature maps are combined with shallower ones. The
shallower the layer the smaller the object it will locate. This approach, called
Feature Pyramid Network (FPN) obtains outstanding results as shown in the
COCO detection challenge 2016 [19]. All these approaches present a high level of
performance but, their main limitation is their computational cost, which makes
them harder to use in applications that demand real-time performance.

In the last years, top trackers from the Visual Object Tracking (VOT) chal-
lenge [15] are based on two approaches: Discriminative Correlation Filters (DCF)
based trackers, and deep-learning based trackers. On the one hand, DCF based
trackers predict the target position training a correlation filter that can dif-
ferentiate between the object of interest and the background [5,6,13]. On the
other hand, deep-learning based trackers use ConvNets. SiamFC [2] is one of the
first approaches of this kind. This tracker consists of two branches that apply
an identical transformation—deep features extractor—to two inputs: the search
image and the exemplar. Then, both representations are combined through cross-
correlation, generating a score map that indicates the most probable position of
the object.

Due to the increase in performance of deep learning detectors in recent years,
the task of tracking is increasingly being seen as a data association problem,
i.e. tracking-by-detection. In this approach, the primary concern is to assign
detections to trackers over time. Some international challenges [1] have emerged
to rank solutions to this problem, evaluating precision, robustness and speed
among other performance metrics. In the past few years, complex solutions to
this tracking approach that obtain outstanding results have appeared. Some of
them focus on extending traditional high-level tracking approaches. As an exam-
ple, Kim et al. [14] and Chen et al. [4] propose extensions to the classical multiple
hypotheses tracking (MHT) [21]. The former introduces on-line appearance rep-
resentations while the latter enhances the classical MHT by incorporating a
detection model that includes detection-scene and detection-detection analysis.

All these approaches have demonstrated good performance in classic multiple
object tracking metrics as commented before. Their fundamental limitation is the
speed, as none of the work discussed in this section shows performance metrics
above 2.6 Hz even without accounting for the detection time. Also, they assume
the existence of detections in every frame of a video without taking into account
high performance object detectors inference time.

Some work in the traffic monitoring field has been done in the recent years
[8]. In [10], vehicle counting is performed employing an environment segmen-
tation strategy. In [9] a tracking approach using background subtraction and
Kalman filter tracking to tackle the data collection in roundabouts is proposed.
These approaches usually run at real-time speed due to the use of background
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subtraction for detecting mobile objects. These object identification methods
could represent a limitation in scenarios that present camera movement (on-
board cameras), shadows, image artifacts, or objects that appear very close to
each other since they usually are identified as only one by the background sub-
traction algorithm.

3 Video Traffic Monitoring

We propose a complete traffic monitoring system that combines tracking and
detection and can operate as a baseline for multiple applications.

Fig. 1. Architecture of our traffic monitoring system. It is formed by three modules:
detection (yellow), tracking (red) and data association (blue). (Color figure online)

Our system is made up of three blocks (Fig. 1): detection, tracking and data
association. To detect vehicles in an image, we use a deep learning based detec-
tor. For tracking, we combine a DCF-based tracker with a Kalman-based one,
which enables to calculate a failure detection metric to identify occluded vehi-
cles. Finally, in the data association module, we assign each detection with its
correspondent tracker through the Hungarian method [16,24] and perform an
update of the trackers.

Algorithm 1 presents the main steps of the system. The inputs to the system
at every time instant t are the new frame (Imt) of the video, and the set of
trackers in the previous time instant (Φt−1). First, the trackers positions in
the new image (Imt) are estimated. We start calculating the new position of
the object with a DCF tracker (Algorithm 1, line 3—Algorithm 1:3—). Tracking
based just on DCF trackers has two limitations: (i) we cannot handle occlusions
(Fig. 3); (ii) it does not provide a robust tracking failure detection (i.e. knowing
when the tracking fails) as the PSR (Peak to Sidelobe Ratio) value [3], which
measures the spread degree of the convolution operation of the correlation filter,
is not a reliable measure. As shown in Fig. 4, the PSR takes different threshold
values for different videos and scenarios, which makes difficult to identify when
a tracker is lost.
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Algorithm 1: Traffic Monitoring System
Require:
(a) Imt : Image frame at current time t
(b) Φt−1 = {ϕ1

t−1, ϕ
2
t−1, . . . , ϕ

n
t−1}

1 Function Main(Imt , Φt−1):
2 for i=1 to n do
3 dcf roiit =DCF Track (ϕi

t−1)
4 kf roiit = Kalman Predict (ϕi

t−1)
5 ϕi

t ←< roiit >=Estimate ROI (dcf roiit, kf roiit)

6 if time elapsed > τ then
7 Ψt ← {ψ1

t , ψ2
t , . . . , ψm

t } =ConvNet Detect()

8 for i=1 to n do
9 for j=1 to m do

10 IOU i,j
t = ϕi

t

⋂
ψ

j
t

ϕi
t

⋃
ψ

j
t

11 {< ϕα
t , ψβ

t >} =Hungarian (IOUt)
12 for every α, β in {< ϕα

t , ψβ
t >} do

13 update tracker (ϕα
t , ψβ

t )

14 for i=1 to n do
15 if not updated (ϕi

t) then
16 check tracker deletion (ϕi

t)

17 for j=1 to m do
18 if not updated (ψj

t ) then
19 new tracker (ψj

t )

20 Φt = Φt

21 return (Φt)

To provide a solution to both problems, we introduce a Kalman Filter (KF)
tracker that, by modeling the movement of the object can handle occlusions and,
in combination with the DCF tracker, can estimate the error in the tracking
process. So, once the vehicle’s new position is calculated by the DCF tracker, we
estimate the position using the Kalman filter. We use a linear constant velocity
model in the KF, so the state of each vehicle is modeled as:

μ := [x, y, vx, vy] (1)

Here x and y are the position of the object, and vx and vy represent the
linear velocity in both axes. We perform Kalman prediction in Algorithm 1:4.
With the bounding boxes proposed by both methods, we estimate the region of
interest (ROI) in which the object might be located (Algorithm 1:5). The larger
the difference between the two trackers, the larger the ROI. Occlusions can
be determined in cases where both predictors propose very different bounding
boxes, since the bounding boxes provided by DCF will remain static, while those
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Fig. 2. Creation of a search ROI for occlusion handling. (a) Both tracking methods
agree on the object position. (b) As the DCF fails to track the occluded object, the
distance between both estimations increases and so it does the search ROI. Finally in
(c), when the detector finds the vehicle at the other side of the road and the tracker
recovers. Images courtesy of Aplygenia S.L.

(a) DCF Tracker

(b) DCF+KF Tracker

Fig. 3. (a) The low-level DCF tracker (in green) cannot recover the identity of the
object once occluded as it only relies on appearance. (b) The combination of a DCF
and a KF manages occlusions, as it also takes into account the object motion model.
Images courtesy of Aplygenia S.L. (Color figure online)

from the Kalman filter will follow the previous movement pattern of the object
(Fig. 2).

Our system is robust enough so we do not need to call the detector in every
frame. The aim of the detection component is twofold. First, it initializes every
tracker or object of interest in the scene. Second, it refines the location and size
of the bounding boxes of the trackers along their trajectories through the data
association component (see Fig. 1), improving tracking performance metrics. If
the time elapsed since the previous detection is greater than or equal to τ ,
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Fig. 4. PSR values are poor predictors of tracking failures for the DCF tracker. The
image shows a case in which the object is being tracked successfully but the PSR value
changes and shows a high degree of dispersion. The opposite case, a tracking failure
not detected by the PSR values, is also frequent. Images courtesy of Aplygenia S.L.

detection is performed using a convolutional neural network (Algorithm 1:6–7),
which returns a set of detections Ψt. In practice, this is performed with a fully
convolutional network called FPN [18], which uses feature maps information
at different scales to locate from small to large objects, through a pyramidal
architecture with lateral connections between them. The FPN provides high
precision at a high computational cost, taking about 130 ms to perform a full
detection in an HD image. If no detection is performed at current time t, tracking
prediction alone (Φt) determines the current trackers state (Φt, Algorithm 1:20).

The data association block aims to assign each detection to its corresponding
tracker and to identify objects that enter or leave the scene. In so doing, we
build up the cost matrix IOUt (see Algorithm 1:8–10), where every entry is
the Intersection Over Union (IOU) between a tracker ϕi

t and a detection ψj
t .

That association is solved by the Hungarian Method (Algorithm 1:11). For every
successful assignation (<ϕα

t , ψβ
t >), tracker ϕα

t is updated with detection ψβ
t

(Algorithm 1:13). Finally, trackers not updated in the data association phase are
candidates for being deleted, and detections not assigned are initialized as new
trackers (Algorithm 1:14–19).
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4 Results

The proposed system (Fig. 1) runs on a server with an Intel Xeon E52623v4 2.60
GHz CPU, 128 GB RAM and an Nvidia GP102GL 24 GB [Tesla P40] as GPU.
Table 1 shows the times of the two most computational expensive operations of
our system: detection and tracking—computing times of other tasks are negligi-
ble. In a 30 fps video, we have 0.03 seconds per frame for the tracking task. Using
15 threads for parallelization, theoretically, the system is able to process up to
148 objects in the image while maintaining real-time performance, i.e. 30 fps. As
mentioned before, detection is the slowest part of our system, taking an average
0.135 s in an HD image and 0.075 s in VGA resolution. These values are below
the 0.2 threshold required by the system for the detection module, as we only
perform detection 5 times every 30 frames.

Table 1. Computational times for the detection and tracking modules of the traffic
monitoring system.

Tracking

Frames processed by second 30 frames of 30

Total max. time with parallel computing 0.0121 s (60 objects, 15 threads)

Max. number of objects in 0.03 s 148 objects

Detection

Frames processed by second 5 frames of 30

Average time per HD image 0.135 s

4.1 Roundabout Monitoring

In this section, we analyze our complete system (Fig. 1) for roundabout moni-
toring. The objective of the system is to identify the entry and the exit a vehicle
takes, maintaining its identity while it remains in the roundabout. The final goal
is to provide the I/O matrix R, in which every element (R(i, j)) represents the
number of vehicles that joined the roundabout taking entry i and exit j. If a
vehicle enters the roundabout and exits it with the same ID we count that as a
tracking success. On the contrary, if the identity changes along the video, then
we count that vehicle as a tracking failure.

For performing the metrics, we use a video dataset which consists of five
videos of roundabouts recorded from an Unnamed Aerial Vehicle (UAV) at 30 fps
with HD resolution1. The videos have different conditions that are challenging for
traffic monitoring: shadows, total occlusions (two level roads), camera movement,
etc. Figure 5 shows a snapshot of some of these videos2.

1 These videos where recorded by the company Apligenia S.L.
2 A demonstration video can be downloaded from: http://bit.ly/roundabout samp

le video.

http://bit.ly/roundabout_sample_video
http://bit.ly/roundabout_sample_video
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Table 2. Computational times for the fast version of our traffic monitoring system.

Tracking

Frames processed by second 10 frames of 30

Total max. time with parallel computing 0.0121 s (60 objects, 15 threads)

Max. number of objects in 0.1 s 492 objects

Detection

Frames processed by second 5 frames of 30

Average time per HD image 0.135 s

As explained before, the robustness of our system allows us to avoid calling
the detector at every frame. This led us to develop a fast version that performs
tracking in one of every 3 frames and detection in one of every 6 frames, without
degrading the performance metrics for roundabout monitoring. Table 2 shows
the times for this version fast version.

Table 3. Results in the video dataset for roundabout monitoring. The columns are:
video, number of occlusions (#occ), number of vehicles occluded (#vocc), duration of
video, total number of vehicles (#vehicles) and success rate obtained by our tracking
system.

Video # occ #vocc Time (min:sec) #vehicles Success

usc vr 1 308 160 05:11 320 86,50%

usc pl 1 – – 11:12 138 88%

usc rb 1 – – 11:48 230 95%

usc sx 1 – – 09:26 255 91%

usc ou 1 22 11 02:49 52 96%

Total 330 171 40:26 995 91,30%

Table 3 shows the results obtained from processing the I/O matrix of five
videos with 995 vehicles in total. We have used the fast version of our traffic
monitoring system to highlight the robustness of the proposal even when pro-
cessing just 10 of each 30 frames. Theoretically, the system can track up to 492
objects, although in these videos the maximum number of concurrent objects was
60. An average success rate of 91% is obtained. Results also show our system’s
ability to handle occlusions as two of the videos are scenarios with a high rate
of total occlusions: in one of them the 50% of the vehicles are totally occluded
nearly twice on average.
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Fig. 5. Example frames of some videos of the roundabout monitoring dataset. These
videos are recorded from an UAV flying over a roundabout. Images courtesy of Aply-
genia S.L., their distribution is restricted.

5 Conclusions

We have presented a traffic monitoring system that combines a convolutional
neural network detection, DCF and Kalman trackers, and a Hungarian data
association. The system is able to track hundreds of objects in real-time while
being robust to occlusions. The combination of the DCF and Kalman filters
allows to estimate the error of each tracker, thus increasing the robustness and
reliability of the system. We have applied the traffic monitoring system to the
problem of roundabout monitoring. Our system achieves a 91% success rate for
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the I/O matrix, even in cases with high occlusion rates, shadows and movement
of the UAV onboard camera.
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