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Abstract. Rat’s gait analysis plays an important role in the assess-
ment of the impact of certain drugs on the treatment of osteoarthritis.
Since movement-evoked pain is an early characteristic of this degener-
ative joint disease, the affected animal modifies its behavior to protect
the injured joint from load while walking, altering its gait’s parame-
ters, which can be detected through a video analysis. Because commer-
cially available video-based gait systems still present many limitations,
researchers often choose to develop a customized system for the acqui-
sition of the videos and analyze them manually, a laborious and time-
consuming task prone to high user variability. Therefore, and bearing in
mind the recent advances in machine learning and computer vision fields,
as well as their presence in many tracking and recognition applications,
this work is driven by the need to find a solution to automate the detec-
tion and quantification of the animal’s gait changes making it an easier,
faster, simpler and more robust task. Thus, a comparison between dif-
ferent methodologies to detect and segment the animal under degraded
luminance conditions is presented in this paper as well as an algorithm
to detect, segment and classify the animal’s paws.
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1 Introduction

Osteoarthritis is a common degenerative disease that has a significant inci-
dence worldwide, resulting in a considerable economic and social impact [1].
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This disorder damages the joints, structures responsible for the movement of the
body, causing pain, stiffness and functional impairment which as a tremendous
impact on the patients’ routines. Although there are some treatments that aim
to relieve osteoarthritis’ symptoms, these therapeutic strategies remain unsat-
isfactory once they fail to relieve pain or they trigger undesirable side-effects.
Consequently, several researchers have attempted to develop more efficient drugs
for the treatment of osteoarthritis by relying on the use of animal experimen-
tation [2]. Among the animal species used in research, mice and rats are the
most widely used models to study the pathophysiological mechanisms underly-
ing osteoarthritis and to test the therapeutic efficacy of targeted drugs [3]. One
of the experimental approaches consists on inducing osteoarthritis in the ani-
mal, and afterwards administering a drug and quantifying the changes in the
behavioral signs of the animal over several time points of the treatment and/or
disease progression. Since movement-evoked pain is a common characteristic of
osteoarthritis, the affected animal usually modifies its behaviour after the induc-
tion of the model as an attempt to protect the injured joint from load while walk-
ing, and therefore decrease pain [4]. As consequence, the gait’s parameters will
vary over time and will differ between a normal (not ill) and an arthritic rodent.
The analysis of these differences can be an useful tool to evaluate, through a
continuous monitoring, the therapeutic impact of distinct approaches, namely
drugs, on osteoarthritis treatment.

The gait changes can be assessed through the use of videos, which can be
analyzed manually or automatically. The manual observation and quantification
of the gait changes is a laborious and time-consuming intensive task that is
prone to high user variability [5]. Currently, there are some commercially avail-
able video-based gait systems capable of detecting and identifying the animal’s
limbs and automatically compute spatial, temporal, kinematic and dynamic gait
parameters. However, they are often expensive closed solutions and some even
induce stress to the animal by forcing it to walk on a treadmill at a certain speed
in a certain trajectory, which might affect the results [6]. Thus, researchers often
select different gait pattern descriptors to report in the literature and some opt
for the development of a customized system for the acquisition of the videos
and their manual analysis. One approach to do so is to carefully examine videos
and choose a set of frames with the animal walking (two paws on the platform)
and with the animal standing still (four paws on the platform). After selecting
the frames, a software like ImageJ1 may be used to extract the metrics of inter-
est: the footprints are manually selected and a threshold value is defined by the
user, above which the number and intensity of pixels are quantified, allowing the
comparison of the area and mean intensity applied by each paw [7].

In order to automate this task and make the system more robust, flexible
and able to solve problems related not only with the time and cost but also
with the reproducibility inherent to the assessment process conducted by the
researchers, a demand for an automated system of gait analysis in laboratory
animals like rats and mice arises naturally. Moreover, the availability of such

1 imagej.nih.gov/ij/.

https://imagej.nih.gov/ij/
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systems opens the possibility to rethink gait analysis itself, since the typical
testing time scale can be easily extended, thus diversifying the gait parameters
extracted and the context of evaluation. In this way, this paper contributes with
the development of an automated, quantitative tool for rat gait assessment using
recent computer vision techniques. A comparison between different methodolo-
gies to detect and segment the animal under degraded luminance conditions is
made and an algorithm to detect, segment and classify the animal’s paws is
proposed. Furthermore, in order to evaluate the proposed methodologies, it was
created a database with the rats’ gait and its manual annotation which is made
available to the community.

2 Related Work

Advances in the fields of computer vision and machine learning have been pro-
viding the detection, recognition and tracking of objects. Since mice and rats
are the most used animal models in the studies of the mechanisms related with
human diseases, some sophisticated algorithms have been proposed for mice and
rats detection and tracking to ease and optimize time-consuming and laborious
tasks usually done manually. The majority of these studies are, however, related
with mouse behaviour analysis having a different goal and a different setup from
the one addressed in this work [8–11]. On those studies, the camera records the
animal from above in normal light conditions.

As previously mentioned, there are some commercially available video-based
gait systems which combine video-tracking technology with image analysis
methodologies to quantify and characterize mice and rats gait [12–16]. Besides
all the commercial systems quoted, it is also worth to mention the work of
Mendes et al. who developed the MouseWalker, an open source software which
aims to evaluate mice gait [17]. This work has the same acquisition procedure
as the one used in this paper but it has a much more controlled environment
since there are not background movements and the trajectory of the animal is
restricted to a walkway, being the mouse always within the frame and walking
in the same direction. Another work found, authored by Leroy et al., proposes
an automated gait analysis for laboratory mice with the same setup but dif-
ferent lighting conditions [18]. In this study, a background subtraction method
is applied to segment the mouse and a motion analysis is performed. Unlike
the setting of our work, their hardware allows them to detect the footprints by
resorting to a color filter, enhancing the pixels that correspond to the region of
the paws with a strong red color component.

Nonetheless, as much as is possible to ascertain, there is no work that meets
the same degraded luminosity conditions and works robustly in open field plat-
forms.
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3 Methodology

3.1 Data Acquisition

Animal Model. The data used for this study was acquired at Faculdade de
Medicina da Universidade do Porto, Portugal. All experimental procedures were
performed in compliance with all ethical norms required [19] and appropriate
measures were taken to minimize pain or discomfort of the animals. All the
conditions were assured in order to maintain reliable results without external
interference. Under brief anaesthesia, the osteoarthritis model was induced on
the right hind knee of adult male rats [7]. In order to have a control of the
disease, a similar number of animals were injected with saline, under the same
conditions.

CatWalk Test. This paper focuses on data acquired by a custom-made gait
analysis system that allows the animal to walk freely on an open field platform
located in a darkened room, with no stressors or rewards. The hardware config-
uration used is based on the CatWalk system, illustrated in Fig. 1 (adapted
from [20]). A fluorescent light beam is sent through a glass platform being
reflected internally in all the plane with the exception of the areas where the
paws are placed, where light is refracted (A); images are recorded by a video cam-
era placed under the glass platform in which animals are allowed to walk freely.
The video camera is connected to a computer equipped with video acquisition
software (Ulead Video Studio, Freemont, CA) (B); the signal intensity depends
on the contact area of the paw with the surface and increases with the pressure
applied by the paw (C); an example of the obtained images is represented in (D).

After recording the animal’s gait, the analysis of the CatWalk behavior con-
sists on measuring the mean intensity and the contact area of each paw with the
glass platform, to evaluate the disability induced by the model over time [7].

3.2 Dataset

The dataset is composed by 15 videos of 4 different animals in different time
points of the experience, each one with different duration, averaging about 5 min
each. The videos have a resolution of 640 horizontal× 480 vertical pixels and a
frequency of 25 frames per second. All these videos had already been analyzed
by an expert researcher, who had already selected the frames of interest (approx-
imately 9 frames per video) and the associated threshold used to compute the
area and the mean intensity of the paws in each frame.

In order to evaluate the algorithm’s performance, 130 frames, selected by
experts, were annotated using LabelMe, an open source graphical image anno-
tation tool. Six classes were used to annotate all the body parts of interest of
the rat: the body, the tail and right-hind, left-hind, right-fore and left-fore paws.
All these classes were annotated using polygons. The detailed masks of the paws
(Fig. 2(C)) were obtained by applying the threshold defined by the experts. Rat
and tail annotations were thereafter confirmed by an expert researcher.
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Fig. 1. Principle of the CatWalk setup.

The dataset is available for the community.2

Dataset Heterogeneity. Some artifacts and variations from video to video,
and even within each video, hinder the automation process. Since the videos
were acquired in the dark, degraded luminosity conditions is a feature of the
dataset. Furthermore, although the data was acquired using a static camera in
a slightly controlled environment, it is clear the presence of noise in the back-
ground, whether due to the interference of researchers with the animal or simply
due to contamination of the platform by the animal. Since the platform area is
larger than the area captured by the camera, periods when the animal leaves
completely the field of view are also present in the dataset. Moreover, as the rat
is a non-rigid object, its shape varies during the video sequence, making it more
difficult to track. Some natural behaviors such as sitting, lying, scratching, get-
ting up, among others, hinder the detection and segmentation of the paws since
these behaviors promote the contact of the body with the platform, enhancing
some non-paws derived pixels.

2 To access the videos and the annotations, please contact the author Joana Ferreira-
Gomes through the email jogomes@med.up.pt.
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Fig. 2. A. input frame; B. White: ground truth rat’s body; Gray: ground truth tail;
C. ground truth paws: LH: left-hind; RH: right-hind; LF: left-fore; RF: right-fore.

3.3 Methodologies

Based on the current state of the art, automated recognition of the animal’s gait
pattern can be done by using different computer vision techniques. The generic
video-based gait framework is presented in Fig. 3 and it may be briefly described
as follows: rat detection and segmentation, paws detection, segmentation and
classification and gait features extraction. We did not adopt the current trend of
deep learning approaches since the dataset is small, not favouring deep learning
solutions, and the strong field knowledge about the setting facilitates the feature-
engineering approach.

Fig. 3. The generic video-based gait framework.

Rat Detection and Segmentation. The goal of this first step is to robustly
detect and segment the body of the animal. This operation is key in the adopted
methodology since its success will impact the following steps. Several segmen-
tation techniques were performed, evaluated and compared. Before the segmen-
tation, a pre-processing step was applied to all frames in order to remove noise.
This operation results in a smoother image and is performed by computing a
simple convolution between each frame (f) and a 3-by-3 box linear kernel (k).

Since one of the dataset characteristics is the presence of background fluctua-
tions, three different approaches were tested to model the background. The first
consisted on averaging the whole video sequence (v), which was previously pre-
processed (Eq. 1). In the second, because the animal is ideally the only bright
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object in motion, the minimum value of each pixel (pij) in the entire video
sequence was computed (Eq. 2).

BG(v) =
1
|v|

∑

f∈v

K ⊗ f (1)

BGij(v) = minf∈v(pijf ) (2)

Both of these offline approaches result in a static background image which
is subtracted to each frame to obtain the foreground, the animal in motion
(Eq. 3). A threshold operation is performed to obtain the mask of the rat and
morphological operations are applied to remove some background noise.

FG(v, f) = |f − BG(v)| (3)

The third tested approach to model the background was presented by
Candès et al. [21] and it considers the data matrix (M) a sum of a low-rank
component (L) with a sparse component (S). Each column in M corresponds
to a frame of the video, properly vectorized. The intuition is that the observed
data is the sum of the background information and the objects’ data. Since
the background is essentially static, it should lead to a low-rank matrix; since
the objects tend to be small, they should correspond to a sparse matrix. The
low-rank matrix can be then representative of the background, being able of
comprising small fluctuations on it and on the other hand, the sparse matrix
can formulate the objects in motion, in this case the rat, which can be seen as
an outlier. In this method, the principal component pursuit is used to solve the
robust principal component analysis (RPCA) following the Eq. 4, where ‖ A ‖1
denotes the vector l1 norm of the matrix A and ‖ A ‖ ∗ denotes the nuclear norm,
the sum of the singular values of A. Morphological operations were applied to
the sparse matrix to remove small blobs of the background by filtering it.

min(‖ L ‖∗ +λ ‖ S ‖1) subject to M = L + S (4)

K-means was another of the methodologies used to segment both rat body
and paws. This clustering algorithm aims the partitioning of the image into
homogeneous regions containing pixels with similar characteristics. The number
of clusters was set to three, where one represents the background, other the
body of the rat and the third one the paws. This technique was applied to the
foreground after a pre-processing algorithm that aims to improve the frames’
quality, facilitating the segmentation process. This algorithm was divided in two
main steps: a contrast enhancement, achieved by normalizing the frame his-
togram between zero and its maximum value, followed by a convolution between
the enhanced image and a sharpening filter (S) (Eq. 5) which resulted in a well-
defined image.
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S =

⎡

⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 +1 +1 +1 −1
−1 +1 +9 +1 −1
−1 +1 +1 +1 −1
−1 −1 −1 −1 −1

⎤

⎥⎥⎥⎥⎦
(5)

In all the mentioned methodologies the tail was removed by resorting to
an opening morphological operation with a square structuring element of size
13 × 13. The convex hull of the result of the opening operation was computed,
obtaining thus a mask of the body of the rat. This was done to standardize the
output of this step since the tail is not always detected and segmented together
with the body of the animal.

Paws Detection, Segmentation and Classification. As mentioned before,
K-means was the algorithm used to segment the paws. This methodology was
performed to the foreground with and without the pre-processing algorithm men-
tioned above in order to test its efficacy. After having the paws segmented, their
classification as left-hind (LH), right-hind (RH), left-fore (LF) and right-fore
(RF) must occur. For this purpose, the animal’s orientation must be first deter-
mined. As the body of the animal can be represented by an ellipse, this shape
was used to fit the rat’s body mask, the output of the rat segmentation step.
Two approaches were performed to obtain the tail point, the extreme point of
the ellipse nearest to the tail. The first consisted on a simple subtraction method
between the mask obtained before the tail removal in the rat segmentation stage
and after. By this way, when the tail is segmented simultaneously with the body
there will exist a considerable difference in one of the ellipse’s sides. However,
as already referred, sometimes the tail is not visible on the frame, not being
detected in the first place. In these cases, the difference between both images
is not substantial and the tail point is computed by resorting to the second
methodology. This second approach computes the minimum difference between
the mean of the rat (region inside the ellipse) and its neighborhood in an exten-
sion of 250 pixels. A spatial distribution of the minimum points is obtained and
each one of the points is associated to the nearest extreme point of the ellipse.
The tail point is computed based on the median distance and on the standard
deviation between the grouped points and its associated extreme. After deter-
mining the tail point, the ellipse is splitted by quadrants which are classified as
LH, RH, LF and RF and each paw is assigned to the respective quadrant. This
association is made based on euclidean distances.

4 Results

The algorithm was implemented in Python with the exception of the RPCA
algorithm, which was implemented in MATLAB being available via the GitHub
library of Sobral [22].
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Rat Detection and Segmentation. In order to evaluate the different segmen-
tation methods, the intersection level Af between the ground truth bounding
box of the animal’s body GT and the tracked bounding box T , was computed to
each frame (f) according to the expression Af = Area(GTf ∩Tf )/Area(GTf ∪Tf ).
A known measure to evaluate the performance on a video sequence is to count
the number of successful frames whose Af is larger than a defined threshold.
According to the PASCAL criterion [23], this threshold value is 0.5, however, as
the use of an unique threshold value may not be representative enough of this
measure, the success plot showing the ratios of successful frames at thresholds
ranging from 0 to 1 was computed for each of the methodologies (Fig. 4).

Fig. 4. Rat segmentation successful plot for the 130 frames manually labelled.

In general, all the methodologies are capable of detecting correctly the animal
in the majority of the frames. The Mean BM methodology demonstrated to be
the most robust, presenting the most similar results with the ground truth.
The RPCA methodology showed to be the less vigorous due to the presence of
the animal in the low-rank matrix. Since the algorithm was applied to the input
video, without any previous processing and computed at intervals of 2000 frames
due to computational costs, if the animal stays in the same place for a while, it
will be assumed as belonging to the background, hindering its segmentation. The
Min BM method showed also good results, being less able, however, of handling
large background fluctuations and failing completely the detection of the rat in
frames where the researcher interferes with the animal, for example, or when
there is a contamination of the platform. Figure 5 shows two examples of the
obtained bounding boxes for each methodology.
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Fig. 5. Rat segmentation examples for the proposed methodologies: White: Ground
truth; Blue: K-means; Yellow: Min BM; Green: Mean BM; Red: RPCA; (Color
figure online)

Paws Segmentation. As the ultimate goal of this work is to quantify the
rat’s gait metrics, such as the area and the mean intensity of the paws, it is
important to evaluate paws segmentation by using pixel-based metrics since the
algorithm must be meticulous enough to return the referred gait metrics effi-
ciently. While the true positives (TP) return the number of correctly detected
paws pixels, the true negatives (TN) give the number of background pixels cor-
rectly detected. In contrast, the false positives (FP) and the false positives (FN)
are pixels that are falsely recognized as foreground and background, respectively.
From these metrics, the true positive rate (TPR), false positive rate (FPR) and
F-score were computed. The TPR reports how frequently the algorithm cor-
rectly detects the paws pixels, being given by TPR = TP/(TP + FN). The FPR
refers to the number of times the paws are falsely detected and it is given by
FPR = FP/(FP + TN). The F-score measure combines TPR and precision (P),
given by P = TP/(TP+FP), by their harmonic mean being a measure of the
algorithm’s accuracy.

The results of paws’ segmentation are present in Table 1. Comparing both
non pre-processed and pre-processed data, it can be concluded that this step
introduces an improvement in the algorithm’s performance. A visual example of
this pre-processing step can be found in Fig. 6 and two examples of the K-means
output applied to the pre-processed frames are present in Fig. 7.

Table 1. Results of paws’ segmentation.

Method TRP FPR F-score

K-means (with pre-processing) 0,85 ± 0,06 0,00 ± 0,00 0,77 ± 0,09

K-means (without pre-processing) 0,61 ± 0,15 0,00 ± 0,00 0,73 ± 0,10
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Fig. 6. Right: input frame; Left: output from the pre-processing step.

Fig. 7. Paws’ segmentation examples: White: TP pixels; Black: TN pixels; Blue: FP
pixels; Red: FN pixels (Color figure online)

Paws’ Classification. The results obtained for the paws’ classification are
presented in Table 2. In the same way that the pre-processing improves paws’
segmentation, it also improves their classification. A frame is only considered
well classified when it detects exactly the same paws as the ones present in the
GT image in the same region of the image. From the 32% of frames that the
classification of frames fails, about one-third is because the algorithm fails in
detecting the animal’s orientation. This happens when the rat is occluded, when
the rat segmentation is not meticulous, when the tail is not well removed or when
the animal is near a bright object. The remaining frames’ classification fails when
the rat has its belly or other part of the body in contact with the platform,
enhancing some non-paws derived pixels, or when the two fore paws are very
close to each other and the algorithm assumes that it is only one footprint. When
comparing the obtained results for each paw, the RH and LH paws’ classification
is correct in 82% and 85% of the frames, respectively, while RF and LF are
successfully classified in 78% and 76% of the frames, respectively.

Table 2. Results of paws’ classification.

Method Frames well classified Paws well classified

K-means (with pre processing) 68% 81%

K-means (without pre processing) 48% 75%
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5 Conclusions

In this paper, an automated method for the assessment of the rat’s gait is pre-
sented, with the aim of not only providing data that is less prone to user vari-
ability but also alleviating the work of scientists who resort to the analysis of
the gait of animal models to evaluate the effectiveness of drugs used in the treat-
ment of osteoarthritis. The contributions include an annotated dataset publicly
available to the scientific community and a framework capable of detecting the
animal, segmenting its body and detecting, segmenting and classifying its paws
under degraded lighting conditions.

In between the proposed methodologies to segment the rat, modeling the
background and subtract it from each frame gave the best results. Averaging the
entire video sequence demonstrated to be the best approach to model the back-
ground. Quantitative and visual inspections of the results of paws’ segmentation
demonstrate a good performance of the algorithm. The proposed algorithm to
classify the paws showed promising results.

Future work will focus on the development of an algorithm to select the
frames of interest, and on the extraction of more complex gait metrics. We aim
to keep extending our dataset and evaluating deep learning methodologies as
an alternative to the adopted framework. We also plan the development of a
web platform deploying the proposed framework as a free service available to
researchers.
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