
ASTracer: An Efficient Tracing Tool
for HDFS with Adaptive Sampling

Yang Song, Yunchun Li, Shuhan Wu, Hailong Yang(B), and Wei Li

School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

{yangsoon,lych,wushuhan,hailong.yang,liw}@buaa.edu.cn

Abstract. Existing distributed tracing tools such as HTrace use static
probabilistic samplers to collect the function call trees for performance
analysis, which may fail to capture important but less executed function
call trees and thus miss the opportunities for performance optimization.
To address the above problem, we propose ASTracer, a new distributed
tracing tool with two adaptive samplers. The advantage of adaptive sam-
plers is that they can adjust the sampling rate dynamically, which is able
to capture comprehensive function call trees and in the meanwhile main-
tain the size of trace file acceptable. In addition, we propose an auto-
tuning mechanism to search for the optimal parameter settings of the
adaptive samplers in ASTracer. The experiment results demonstrate the
adaptive samplers are more effective in tracing the function call trees
compared to probabilistic sampler. Moreover, we provide several case
studies to demonstrate the usage of ASTracer in identifying potential
performance bottlenecks.

Keywords: HDFS · Distributed tracing tool · Adaptive sampling

1 Introduction

With the rapid development of the computing technologies, cloud computing
has been widely adopted in large scale applications. Understanding the behav-
ior of distributed systems and tracing the performance bottlenecks is becoming
more complicated in the scenario of cloud computing. This is because services
are deployed on different nodes, which is particularly difficult to locate abnor-
mal behaviors within the massive volume of log files. Therefore, the distributed
tracing tools are proposed to solve the above problems, which can be used to
trace function calls in distributed systems to help users understand the system
behaviors and analyze performance bottleneck. Currently, distributed tracing
tools are widely used inside the large Internet service providers.

Moreover, popular big data analyzing frameworks such as Spark and Hadoop
universally use distributed file systems such as HDFS [5] to store the large
amount of data. Targeting HDFS, Htrace [1] is a distributed tracing tool for

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 107–119, 2019.
https://doi.org/10.1007/978-3-030-30709-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_9

108 Y. Song et al.

guiding the performance analysis and optimization of HDFS. Although tracing
every function call within HDFS seems ideal for performance analysis, the huge
volume of trace data generated would make the data analysis infeasible. There-
fore, Htrace relies on probabilistic samplers to collect a subset of all possible
traces. The sampler used in Htrace determines the way how the function calls
are collected based on probability.

The drawback with Htrace probabilistic sampler is that it determines to
sample a call tree at the root node based on probability, therefore it decides
either to sample the entire call tree or nothing. In some cases, such design
of probabilistic sampler leads to low sampling rate, and thus fails to pro-
vide enough information of the function calls for the developers, especially the
information of the abnormal functions. For instance, Table 1 shows the execu-
tion statistics of several functions for nweight in Hibench [8]. Some functions
(e.g., DFSOutputStream#writeChunk) are executed for a large number of times,
but take a quite short time to execute. Whereas, some functions (e.g., FileSys-
tem#createFileSystem) are executed for only a few times, but take a long time to
execute, which are more likely to be the performance bottlenecks. However, when
using probabilistic samplers in Htrace, the low sampling rate is more likely to
ignore these functions. At the same time, some function calls may be called more
frequently than others, which may generate very large the trace file that buries
the abnormal behaviors with tremendous less useful information. For instance,
Table 2 shows the number of calls of several function for kmeans in Hibench. The
function DFSInputStream#byteArrayRead has been executed for a large number
of times, which greatly increases the size of the trace file.

Table 1. The execution statistics of several functions in nweight.

Function name Number of callsTimemean(ms)Timestd(ms)

DFSOutputStream#writeChunk 3489 0.042 0.350

DFSOutputStream#write 400 1.520 1.882

BlockSender#sendPacket (transferTo) 177 31.717 75.610

BlockSender#doSendBlock 48 121.145 156.751

DFSOutputStream#close 40 267.175 229.670

FileSystem#createFileSystem 20 1244.350 641.715

Table 2. The number of calls for several functions in kmeans.

Function name Number of calls

DFSInputStream#byteArrayRead 1644123

DFSOutputStream#writeChunk 4963

BlockReaderRemote2#readNextPacket 251

ClientNamenodeProtocol#getFileInfo 219

DFSInputStream#fetchBlockAt 131

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 109

To solve the above problems, we propose a new tracing tool ASTracer for
HDFS. The ASTracer extends HTrace with two adaptive samplers, which records
the number of function calls at the root node of the call tree in the sampler, and
generates sampling decisions for different root nodes based on the recorded infor-
mation. For instance, ASTracer limits the sampling rate of the call tree that is
executed frequently, and ensures that the call trees that are executed less fre-
quently have at least the minimum number of samples. Because the sampling
decision is made for each call tree, it guarantees to capture the execution infor-
mation of more functions. Moreover, ASTracer reduces the number of samples
from the frequently executed call trees, which is effective to compress the size of
the trace file. In addition, we propose several metrics from various aspects such
as efficiency, storage and sampling quality to evaluate the effectiveness of the
proposed samplers. Compared to the probabilistic samplers, ASTracer is able to
capture more function call relationships while maintaining a small size of trace
file.

Specifically, the main contributions of this paper are as follows:

– We propose ASTracer, a new distributed tracing tool with two adaptive sam-
plers for increasing the coverage of function call sampling, as well as main-
taining the size of the trace file acceptable.

– We design an auto-tuning mechanism to search for the optimal parameter
settings within ASTracer, which eliminates the overhead of human effort and
time cost of exhaustive search.

– We present several important metrics from various apsects, including effi-
ciency, storage and sampling quality to evaluate the effectiveness of the pro-
posed samplers in ASTracer.

– We provide a case study by applying ASTracer to analyze representative
workloads, which identifies potential performance bottlenecks and gives guid-
ance for performance optimization.

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground of distributed tracing tools as well as the motivation of this paper.
Section 5 presents the related work on the samplers of distributed tracing sys-
tems. We present the design and implementation of our ASTracer with two adap-
tive samplers, as well as the automatic tuning method for the sampler parameters
in Sect. 3. We evaluate the effectiveness of ASTracer in Sect. 4, and conclude this
paper in Sect. 6.

2 Background and Motivation

2.1 HDFS

HDFS is a distributed file system proposed in Hadoop, but it is also used in other
distributed computing frameworks such as Spark. HDFS is highly fault-tolerant
and suitable for deployment on commodity clusters. It provides functionalities
such as error checking and automatic data recovery. The HDFS cluster adopts

110 Y. Song et al.

the master-slave model, which consists of a NameNode and several DataNodes.
The NameNode is responsible for managing the namespace, storing metadata,
etc., whereas the DataNode performs operations such as creating, deleting, and
copying the blocks under the scheduling of the NameNode in order to meet the
requests from the Client.

2.2 Distributed Tracing Tool

To cope with the complicated tracing demand in the distributed systems, Google
proposes Dapper [14] that builds the tracing tool based on call tree and span.
Another typical tracing tool is Xtrace [7], which is able to provide a compre-
hensive view of the system service behaviors. However, it is incapable to handle
distributed systems at very large scale. Currently, the widely used distributed
tracing tools include Zipken [2], Jaeger [3] and Htrace [1]. Among them, Htrace
is a tracing tool specially designed for HDFS. The design of Htrace is based on
the following concepts: (1) a Span object represents a function being traced. (2)
TraceScopes manages the life time of Span objects, and the Tracers are responsi-
ble for creating a TraceScope. Tracer determine whether to sample a function call
by calling Sampler. (3) Spanreciver is a collector, which is responsible for receiv-
ing Span objects sent from Tracer and serializing trace data. In this paper, we
leverage the LocalFileSpanReciver to periodically write sampling data to trace
files.

2.3 Motivation

Certain call trees in HDFS application may be executed frequently. Sampling
such call trees is not only unnecessary, but also consumes significant computa-
tion and storage resources. In addition, generating large trace files could severely
degrade the performance of the running application. Moreover, the huge volume
of the trace data is also difficult to analyze. However, there are few research
works focusing on the design of adaptive samplers in distributed tracing tools,
especially in the field of big data application. The samplers in Dapper [14] all
adopt a global sampling rate. Zipkin [2] supports more samplers such as counting
sampler and boundary sampler, however it fails to consider the execution behav-
iors of different call trees. Jaeger [3] also misses the dynamic sampling functions
in its current implementation [4]. Htrace [1] only provides probabilistic sampling
and equidistant sampling that are infeasible to change during the tracing.

It is clear that there is still much work to do for improving the effectiveness of
samplers used in distributed tracing tool. For instance, how to improve the cov-
erage of call trees during sampling, and in the meanwhile reduce the size of the
trace file. With detailed function call trees sampled, especially when abnormal
behaviors happened during the execution, the developers can effectively iden-
tify the performance bottlenecks and optimize accordingly. All the above needs
motivate this paper.

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 111

3 The Design and Implementation of ASTracer

3.1 The Design Overview

The design overview of ASTracer is shown in Fig. 1. First, the HDFS application
is instrumented. When the application is executed, ASTracer decides whether
to sample certain call trees. The samplers in ASTracer make sampling decisions
for the root nodes of each call trees, which can be approximated as sampling the
call tree. In ASTracer, we use the record table to record how many times each
call tree has been called. The sampler determines whether to sample a call tree
based on the number of occurrences of the call tree.

Sampler

Application

ASTracer

Sampler

source
call tree

SpanReciver

update

decision maker

record
A 12

B 213

C 3417sampled
call tree

Instrumentation

Fig. 1. The design overview of ASTracer.

To solve the problem of missing call tree with global sampling rate, ASTracer
adjusts the sampling rate dynamically according to the number of occurrences
of the call trees. The workloads that contain a large number of iterations, the
number of occurrences of different call trees could differ by even 5 to 6 orders of
magnitude. Sampling such workloads requires dynamically adjusting the sample
rate in order to capture enough call trees without generating too large trace files.

The sampler works in the following way within ASTracer. The sampler is
consulted for sampling decision when the root node of a function call tree is
traced by the Tracer in ASTracer. The sampler updates the record and then
generates a sampling decision based on the record.

3.2 Bump Sampler

Bump sampler uses the bump function to generate the sampling decision with
probability. The advantage for using the bump function is that the sampling
probability changes significantly when the input variable exceeds a certain
threshold. With this property, we can guarantee that each function has a high
probability of being sampled before a specified threshold. However, after exceed-
ing the threshold, the sampling rate drops dramatically.

The bump function used in the bump sampler is shown in Eq. 1, where x
represents the number of times a function is being called. The property of the

112 Y. Song et al.

bump function is that when the number of occurrence of a function is small, the
sampling probability is almost 1. However, when a function is being called more
often, the sampling rate starts to decrease rapidly. In order to avoid the non-
sampling problem with the functions that are being called for a large number
of times in the later, we set a minimum sampling rate. Moreover, in order to
prevent the frequently executed functions being sampled too less, we create a
new thread when instantiating the sampler, and reset the number of function
calls in the record table to be 0 every second.

f(x) = 1 − e− λ2

x2 (1)

The bump sampler works as follows. It first checks whether the record of
the function already exists in the record table. If not, a new entry is created,
in which the number of function calls is initialized to 0. If there is a record of
the function, the bump function is used to generate a new sample rate based
on the number of function calls. Then, the number of calls to this function is
increased by one and the record is updated. The algorithm determines whether
the sampling rate is lower than the lowest sampling rate. If so, the sampling rate
is set to the lowest. The threshold for the number of function calls as well as the
lowest sampling rate can be customized by the users.

3.3 Token Bucket Sampler

Token bucket sampler is based on the idea of token buckets [9]. The design of
token bucket sampler is to maintain a bucket with a certain number of tokens.
The number of tokens in the bucket only vary within the range of 0 and bucket
capacity. Each time a function is called, the tokens in the bucket are decremented
by one. The tokens are replenished to the bucket at a certain rate.

In our token bucket sampler, we set a bucket for the root node of each call
tree during workload execution. When the sampler is consulted, it first looks up
the bucket to see if there are any tokens left, updates the tokens according to
the policy of the token bucket, and decides whether to sample. Instead of using
the static sampling rate, it decides whether to sample based on the remaining
tokens in the bucket. The advantage of this sampler is that frequently occurring
call trees are suppressed, and the call trees that occur less frequently are almost
always taken. In particular, when a function call occurs in a burst for a short
time period, the sampler can effectively compress the number of samples taken.

The token bucket sampler works as follows. It first checks whether there is an
entry for the function in the table. If not, a new entry is created and initialized.
Based on whether there is at least one token for the function remained in the
token bucket, the token is updated according to the time elapsed from the last
execution, however without exceeding the bucket capacity. The bucket capacity
as well as the rate for replenishing tokens can be customized by the users.

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 113

3.4 Auto Tuning the Sampler Parameters

Since the optimal parameter settings for the samplers vary across different appli-
cations as well as distributed systems, it is more effective to use an auto-tuning
mechanism to search for the optimal parameter settings for the samplers in
ASTracer. Therefore, we propose an auto-tuning mechanism using the simulated
annealing algorithm [10].

The objective function f(x) as shown in Eq. 2. For bump sampler,
x = (λ, threshold), whereas for token bucket sampler, x = (bucket size,
increase step). The entropy(x) represents the information entropy of the sam-
pling result. The larger the entropy is, the more information the trace col-
lects. The dist(x) measures the similarity between the sampled results and the
full instrumented results, which uses the Euclidean distance. The smaller the
Euclidean distance is, the higher the similarity is.

f(x) =
dist(x)

entropy(x)
(2)

The constraints to the objective function f(x) is shown in Eq. 3, where Sp0.1

indicates the trace size sampled using 0.1 probability, and S represents the trace
size sampled by the adaptive sampler after the parameter auto-tuning. That is,
while ensuring a small size of compressed trace file, it will not lose too much
information.

0.1 · Sp0.1 ≤ S ≤ Sp0.1 (3)

The parameter auto-tuning using the simulated annealing algorithm works as
follows. First, it generates a random initial solution x and calculates its objective
function f(x). A new solution x′ is then proposed by adding a perturbation,
and then a new objective function f(x′) is calculated. If the constraint is not
met, a new solution x′ is re-proposed. In order to choose a better solution, let:
δf = f(x)−f(x′) , if δf ≤ 0, replace x with x′. However, in order to prevent the
algorithm trapping in a local optimal solution, it is necessary to accept a sub-
optimal solution with certain probability. The simulating annealing algorithm
accepts x′ with probability p = e− δf

T , where T is the current temperature to
control the acceptance probability of a sub-optimal solution. The above process
iterates until the upper limit is reached. Then the temperature T is decreased
and the number of iterations is reset. The above procedure is repeated until the
condition is met.

The optimal parameter settings of the samplers after auto-tuning using the
simulated annealing algorithm are shown in Sect. 4.1.

4 Evaluation

4.1 Experimental Setup

Our experiments are conducted on a cluster with five nodes, which includes
one master node, three slave nodes, and one client node running HDFS v2.8.3.

114 Y. Song et al.

Each node is equipped with 2 Intel Xeon E5-5620 processors and 16 GB DDR3
memory. The operating system on each node is 64 bit CentOS v6.5. We collect
trace file from the Client and Namenode for result analysis. Representative work-
loads are selected in Table 3 to demonstrate the robustness of ASTracer. To the
best of our knowledge, there is no public tracing tool available on HDFS except
for Htrace. Therefore, we compare with the static samplers in Htrace with the
sampling rate set to 0.1 and 0.01, which is commonly used in literature [14]. The
parameter settings for the samplers in ASTracer are also shown in Table 3.

Table 3. The parameter settings in ASTracer.

Probability sampler Bump sampler Token bucket sampler

Sampling rate λ Threshold Bucket size Replenish rate

dfsioe read 0.1 128 0.022 1047 21

dfsioe write 0.1 215 0.020 2595 9

terasort 0.1 552 0.014 3728 12

wordcount 0.1 1034 0.013 5002 14

kmeans 0.1 3490 0.010 21035 19

pagerank 0.1 102 0.021 1083 116

4.2 Evaluation Metrics

To better evaluate the samplers in ASTracer, we propose the five metrics includ-
ing execution time (ET), trace file compression ratio (TFCR), sampling coverage
(SC), sample similarity (SS) and information entropy (IEn), to measure the effec-
tiveness of the samplers from different aspects. We provide a brief description
about SS and IEn in the following subsections.

Sample Similarity represents the similarity to the trace results with call trees
all sampled. The calculation of SS is as follows: for a sampler B, assume that
it samples function m and function n. Then we use the feature vector FB =
((meanm, stdm), (meann, stdn)) to represent the sampling characteristics of the
sampler, and FA represents the feature vector with call trees all sampled. After
that, we calculate the Euclidean distance between FA and FB as shown in Eq. 4,
where n represents the number of all functions. A closer Euclidean distance
means higher similarity.

SS = dist(FA ,FB)

=

√
√
√
√

n∑

k=1

[

(Ak.mean − Bk.mean)2 + (Ak.std − Bk.std)2
] (4)

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 115

Information Entropy can be used to describe the information uncertainty in
a system [13]. The higher uncertainty means higher information entropy. IEn is
calculated using Eq. 5. The three properties of information entropy are mono-
tonicity, non-negativeness and additivity. According to monotonicity, the more
likely a sample occurs, the less information it carries. In other words, the sam-
ples with low probability to occur are more valuable to us. Whereas the non-
negativity and additivity ensure that we should focus on high-value samples.

H(X) = −
∑

x∈X
p(x) log p(x) (5)

The calculation information entropy is as follows: for a sample result, it
calculates the execution time (countx) for each function as well as the total
number of calls for all functions (C =

∑

x∈X countx,). Then, it calculates the
frequency of each function p(x) = countx/C and applies p(x) to Eq. 5.

4.3 Sampler Evaluation

To reduce the impact of system noise, we run each workload for 10 times under
each evaluating metric and report the mean of the results. The results are shown
in Fig. 2.

Fig. 2. The evaluation results with different samplers under different metrics. The leg-
end always, p0.01, p0.1, bump and tbuckt mean the methods of sampling all functions,
with probability 0.01, with probability 0.1, bump sampler and token bucket sampler
respectively. The execution time, trace file compression ratio, function and call tree of
all sampling methods are normalized to always.

In terms of execution time, because our sampler uses ConcurrentHashMap
to store information for parallel accesses, it has less impact on the performance
of the workload. Compared to the workload execution time without the sampler,

116 Y. Song et al.

the average sampling latency with bump sampler and token bucket sampler is
6.99% and 5.49% respectively across different workloads, whereas the average
sampling latency with probability sampler (rate = 0.1) is 7.92%.

In terms of trace file compression ratio, compared to collecting all samples,
the trace file size generated by ASTracer is compressed to about 5%, probability
sampler (rate = 0.1) is approximately 10%. ASTracer significantly reduces the
number of samples of functions that performs too many times, so the size of the
trace is also reduced considerably. Note that reducing the number of samples
seldom leads to insufficient information about such functions. In addition, we
can adjust the sampler parameters to achieve the optimal results.

In terms of sampling coverage, our samplers can capture more functions and
call trees, whereas probabilistic samplers fail to capture more functions as the
sampling rate decreases. Compared to collecting all samples, both bump sampler
and token bucket sampler can achieve close to 100% coverage across different
workloads, whereas the average coverage of the probabilistic sampler is 72%.

In terms of information entropy, our adaptive samplers reduce the sam-
pling rate of some high-probability functions and improves the sampling rate
of some low-probability functions, therefore it can obtain more information. The
average information entropy of the bump sampler and token bucket sampler
across different workloads is 2.03 and 2.02, whereas the probabilistic sampler
(rate = 0.1) only achieves 1.21.

In terms of sample similarity, when comparing to itself, the SS is 0 when
all call trees are sampled. Therefore, the sampler with SS close to 0 is better.
The average SS of the bump sampler and token bucket sampler across different
workloads is 5.20 and 5.40 respectively, whereas the SS of probabilistic sampler
(rate = 0.1) is 6.80. Therefore, the adaptive samplers preserve more statistical
characteristics of the samples than probabilistic sampler.

4.4 Case Study

In this section, we provide several case studies using AStracer to identify several
abnormal function calls with workloads in Hibench.

In general, all calls to the DFSInputStream#byteArrayRead function in
Hibench are considered as abnormal. After analyzing the execution time dis-
tribution of this function, we observe that the 75% percentile of execution time
is less than 0.1 ms, however the maximum execution time is as long as 100 ms.
This indicates that when the workloads read data, the size of data block is
extremely unbalanced.

The machine learning algorithm such as kmeans requires multiple iterations,
and thus calls the DFSInputStream#byteArrayRead function frequently. Table 4
shows the sampled function information of kmeans. We can see that the DFSIn-
putStream#byteArrayRead function is called more often and the execution time
is unbalanced. Therefore, the problem of data skew has a significant impact on
the performance of such workload.

Pagerank is an algorithm for measuring the importance of a particular web
page. In particular, pagerank is a computation intensive workload. A lot of work

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 117

Table 4. The sampled functions of kmeans and pagerank.

Workload Function Number

of calls

Timemean

(ms)

Timestd

(ms)

Timemedian

(ms)

Timemax

(ms)

kmeans DFSInputStream#byteArrayRead 22635 0.041 1.042 0.1 120

ClientNamenodeProtocol#getFileInfo 219 1.01 4.712 1 70

ClientNamenodeProtocol#addBlock 22 12.10 9.310 12.5 52

pagerank DFSInputStream#byteArrayRead 1713 0.149 0.804 0 24

DFSOutputStream#write 1726 0.162 0.417 0 5

ClientNamenodeProtocol#create 247 8.846 12.022 7 106

is used to build directed graphs through link relationships. The number of func-
tion calls to DFSInputStream#byteArrayRead and DFSInputStream#write is
much fewer than other workloads as shown in Table 4. In addition, the execu-
tion time is quite even across function calls. Therefore, the I/O operations are
unlikely to become a performance bottleneck.

We also observe that the execution time of the Client (e.g., ClientNamenode-
Protocol#create and ClientNamenodeProtocol#getFileInfo) varies significantly
as shown in Table 4, which obtains the metadata from NameNode via RPC.
Although such function is only called for a few times, its execution time is usu-
ally long and thus could become the potential performance bottleneck. Whereas,
Htrace fails to capture the above information and thus loses the opportunity for
performance optimization.

5 Related Work

In the design and optimization of samplers for distributed systems, the Dapper
experience from Google [14] emphasizes the dynamic adjustment of the sampling
strategy for different workloads, which reduces the sampling rate under high load
conditions, and increases the sampling rate under low load conditions to ensure
that the coverage of the trace. In addition, Liu et al. [11] use Htrace to analyze
the performance of HDFS, and propose a compressed tree algorithm to reduce
the size of the trace file, however their algorithm can only be used for offline
compression.

Jaeger [3] is a distributed tracing system developed by Uber. It is used to
monitor the health of the system. Its implementation is based on Dapper. Jaeger
is mainly composed of jaeger-client, jaeger-agent and jager-collector. The jaegar-
agent is responsible for forwarding the recorded data to the jaegar-collector. And
it can dynamically adjust the sampling frequency.

Adaptive features are widely studied in performance analysis and tracing sys-
tems [6,12,15]. The main idea of these works is based on the runtime information,
dynamically adjusting the pre-set parameters to achieve a certain purpose. How-
ever, there is little research work on sampling. Therefore, this paper attempts to
introduce adaptive sampling into the tracing system in order to achieve better
sampling results.

118 Y. Song et al.

Different from existing works, this paper proposes adaptive samplers by
extending the tracing system Htace. Each time the sampler is called, the number
of calls to the function (the root node of the call tree) is recorded. According to
this record, the sampler can adjust its sampling rate according to the dynamic
strategies.

6 Conclusion

In this paper, we propose a new distributed tracing tool ASTracer with two
adaptive samplers that adjusts the sampling rate dynamically to improve the
effectiveness of function tracing from various aspects. The experiment results
show that our proposed samplers are better than the probabilistic sampler under
various evaluating metrics. Moreover, we provide several case studies to apply
ASTracer in identifying the performance bottlenecks with representative work-
loads.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Program of China (Grant No. 2016YFB1000304) and National Natural Science
Foundation of China (Grant No. 61502019). Hailong Yang is the corresponding author.

References

1. https://github.com/apache/incubator-retired-htrace/
2. https://zipkin.io/
3. https://www.jaegertracing.io/
4. https://github.com/jaegertracing/jaeger/issues/365/
5. Borthakur, D.: The hadoop distributed file system: architecture and design.

Hadoop Project Website 11(2007), 21 (2007)
6. Ehlers, J., van Hoorn, A., Waller, J., Hasselbring, W.: Self-adaptive software system

monitoring for performance anomaly localization. In: Proceedings of the 8th ACM
International Conference on Autonomic Computing, pp. 197–200. ACM (2011)

7. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Stoica, I.: X-trace: a pervasive
network tracing framework. In: Proceedings of the 4th USENIX Conference on
Networked Systems Design & Implementation, p. 20. USENIX Association (2007)

8. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops, ICDEW 2010, pp. 41–51.
IEEE (2010)

9. Humayun, F., Babar, M.I.K., Zafar, M.H., Zuhairi, M.F., et al.: Performance anal-
ysis of a token bucket shaper for MPEG4 video and real audio signal. In: 2013 IEEE
International Conference on Smart Instrumentation, Measurement and Applica-
tions (ICSIMA), pp. 1–4. IEEE (2013)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

11. Liu, Y., Li, Y., Zhou, H., Zhang, J., Yang, H., Li, W.: A fine-grained perfor-
mance bottleneck analysis method for HDFS. In: Zhang, F., Zhai, J., Snir, M., Jin,
H., Kasahara, H., Valero, M. (eds.) NPC 2018. LNCS, vol. 11276, pp. 159–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05677-3 17

https://github.com/apache/incubator-retired-htrace/
https://zipkin.io/
https://www.jaegertracing.io/
https://github.com/jaegertracing/jaeger/issues/365/
https://doi.org/10.1007/978-3-030-05677-3_17

ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling 119

12. Mos, A., Murphy, J.: COMPAS: adaptive performance monitoring of component-
based systems. In: Proceedings of 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems. Citeseer (2004)

13. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

14. Sigelman, B.H., et al.: Dapper, a large-scale distributed systems tracing infrastruc-
ture (2010)

15. Wert, A., Schulz, H., Heger, C.: AIM: adaptable instrumentation and monitoring
for automated software performance analysis. In: Proceedings of the 10th Interna-
tional Workshop on Automation of Software Test, pp. 38–42. IEEE Press (2015)

	ASTracer: An Efficient Tracing Tool for HDFS with Adaptive Sampling
	1 Introduction
	2 Background and Motivation
	2.1 HDFS
	2.2 Distributed Tracing Tool
	2.3 Motivation

	3 The Design and Implementation of ASTracer
	3.1 The Design Overview
	3.2 Bump Sampler
	3.3 Token Bucket Sampler
	3.4 Auto Tuning the Sampler Parameters

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Sampler Evaluation
	4.4 Case Study

	5 Related Work
	6 Conclusion
	References

