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Abstract. Extreme classification consists of extreme multi-class or
multi-label predictions, whose objective is to learn classifiers that can
label each data point with the most relevant labels. Recently, some
approaches such as 1-vs-all method have been proposed to accomplish the
task. However, their training time is linear with the number of classes,
which makes them unrealistic in real-world applications such as text and
image tagging. In this work, we are motivated to present a two-stage
thread-level parallelism which is based on Partitioned Label Trees for
Extreme Classification (Parabel). Our method is able to train the tree
nodes in different parallel ways according to their number of labels. We
compare our algorithm with recent state-of-the-art approach on some
publicly available real-world datasets which have up to 670,000 labels.
The experimental results demonstrate that our algorithm achieves the
shortest training time.

Keywords: Extreme multi-label classification ·
Thread-level parallelism · OpenMP

1 Introduction

Extreme classification was coined by John Langford1 and Manik Varma2 in 2013.
It is the emerging research field in machine learning which solves classification
problems in presence of a large number of categories (which are also called classes
or labels) [8]. And the number of these categories is often more than 105. To be
specific, extreme classification consists of extreme multi-class (only one label is
correct) or multi-label predictions (more than one label is relevant to the given
item).

In this work, we focus on extreme multi-label classification where the label
set has dimensionality of the order of hundreds of thousands or even millions,
1 http://hunch.net/∼jl/.
2 http://manikvarma.org/.
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because this task has been of more and more significance in real-world applica-
tions such as text tagging. The goal in extreme multi-label classification is to
learn a classifier which can annotate a new instance with relevant labels from
the extremely large label set. Take web tagging as an example, the pages in
Wikipedia are all tagged with several relevant labels. Extreme multi-label clas-
sification can be used to learn a classifier to automatically label new pages by
training on the existing pages. Furthermore, extreme multi-label classification
can effectively address machine learning problems in web-scale data mining, such
as recommendation systems and ad landing pages’ queries [1,10,11]. Due to its
capability for dealing with web-scale data, extreme multi-label classification has
attracted more and more attention in recent years.

The popular approaches to extreme multi-label classification can be divided
into two categories, namely 1-vs-all approaches [2,9,12,13] and tree-based
approaches [5,6,10,11]. 1-vs-all approaches train a classifier for each label and
they usually take months to train on large datasets on a standard desktop [11].
It is intolerable since extreme multi-label classification has been applied in
real-world applications such as recommendation systems and ad landing pages’
queries which are required to quickly predict the labels of items and give users
an immediate answer. To overcome this, DiSMEC [2] and PPDSparse [12] take
advantage of distributed systems and partition the training jobs on several com-
puting nodes. Although it is effective, the cost of hardware is heavy. Taking
dataset, WikiLSHTC-325K3, as an example, it has 1,778,351 training instances
and 325,056 categories. On this dataset, DiSMEC needs 3 h train on 1000 cores.
While for PPDSparse, it takes much shorter training time (i.e. 353 s on 100
cores). If we reduce the hardware cost and train on a single core, tree-based
approaches can train much faster. For example, PfastreXML [5] only needs 7.42 h
on a single core relative to 749 h for DiSMEC. However, tree-based approaches
have not been parallel to accelerate the training process. So is Parabel which is
the fastest 1-vs-all approach built with tree structure [11]. To overcome this, we
analyze the data independence between nodes and propose PParabel method to
accelerate the training process which is the fastest method on one core [11].

Our contributions are shown as follows:

• We analyze the hierarchy of Parabel and find that each label only exists in
one node on the same level which means nodes on the same level have data
independence. With data independence, we can make the training process
parallel at each level.

• We parallelize the training process in two stages. In the first stage, we par-
allelize the training process of nodes on the same level. In the second stage,
we parallelize the k-means in nodes with OpenMP according to the number
of labels in nodes.

• We conduct our training process in a thread-level parallelism way and apply
OpenMP to accelerate our training. We can enable PParabel work on stan-
dard desktops to minimize hardware costs.

3 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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• We shorten the training time from one day to just one hour without appending
more machines.

The rest of the paper is organized as follows. Section 2 introduces the existing
approaches to extreme multi-label classification. Section 3 describes the detail of
our proposed PParabel method. Section 4 reports our experiments and we will
analyze the results. At the end of this paper, we conclude our work and indicate
future directions.

2 Related Work

The existing approaches to solving the extreme multi-label classification task
can be divided into four categories, namely 1-vs-all approaches [2,9,12,13],
label-embedding approaches [3,4,14], tree-based approaches [5,6,10,11] and deep
learning based approaches [7].

1-vs-all approaches: 1-vs-all approaches train a separate classifier per label
on the whole dataset. This kind of approach leads to training time linear in the
number of classes. Therefore, when it comes to big datasets, the training costs
can be heavy [11]. But this kind of method ignores the relevance between labels
which makes each label independent and easy to be parallelized. DiSMEC [2]
and PPDSparse [12] took advantage of the irrelevance between labels and scaled
the training progress in large-scale distributed settings. Despite it can make the
method easy to be parallelized, the cost of hardware is heavy.

Label-embedding approaches: Label-embedding approaches make the
assumption that label matrix is low-rank. Therefore, it can be projected into
low dimensional space. In this way, effective number of labels can be reduced.
However, since the training points follow a power-law distribution, it will lead to
low accuracy [2]. Moreover, embedding approaches need long time for training
and prediction even on small embedding dimensions, let alone large datasets.

To overcome these limitations, SLEEC [3] was proposed. It learned local
embedding instead of global embedding. To be specific, it used kNN method
to preserve nearest neighbors in the label space. However, SLEEC ignores to
model the label structure. [15] proposed a deep embedding method for extreme
multi-label classification to overcome this. The deep embedding method uses
label graph to depict the label structure. In the label graph, an edge exists if
the two labels are active at the same sample. With the label graph established,
DeepWalk method is used to make word2vec representation for all nodes in the
graph. Then the distance between features and labels can be computed and all
the training points can be clustered.

Tree-based approaches: Tree-based approaches usually have two types: deci-
sion trees and label trees. FastXML [10] is a state-of-the-art classifier for extreme
multi-label classification. It recursively partitioned a parent’s feature space
between its children. To learn the hierarchy, FastXML optimizes the normal-
ized Discounted Cumulative Gain (nDCG).

Another popular tree-based approach is PfastreXML [5]. The algorithm
replaces the nDCG loss with its propensity scored variant. It also assigns higher
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rewards for accurate tail label predictions. In this way, it can improve tail
label prediction which is the most challenging factor of extreme multi-label
classification.

Unlike the above two methods, Parabel [11] learned a few balanced label
hierarchies. The root node of each hierarchy contains the whole set of labels.
Each label tree recursively partitions the nodes into two balanced nodes until
the number of labels in the leaf nodes is smaller than a threshold. When it comes
to leaf nodes, a classifier will be learned for each label. It can be conducted on a
single core with the shortest training time while matching its prediction accuracy
with other methods. Although Parabel learned balanced label trees in a parallel
way, it didn’t optimize the node partition process in a parallel way to save time.

Deep learning based approaches: Deep learning based approach is a new way
for extreme multi-label classification. Although it has achieved great success in
other areas, it has not been applied to extreme classification until 2017. The first
attempt is XML-CNN [7]. It utilizes the CNN model to learn a rich number of
feature representations. Unlike the traditional CNN model, XML-CNN adopts
a dynamic max pooling scheme to get more than one feature. Therefore, it can
capture more fine-grained features.

Nowadays, the most popular approach is 1-vs-all approach since we can make
log-time training and prediction. But how can we reduce the hardware cost and
accelerate the training process is still a problem. Therefore, we are motivated to
propose our solution in the next section.

3 Methodology: Parallel Partitioned Label Trees
(PParabel)

Our method is designed to accelerate the node partition process parallel. There
are two main components in our method, label trees and idle threads. Label
trees are used for training the model. Internal nodes in label trees are processed
parallel in idle threads. Figure 1 shows the main structure of PParabel. The pro-
posed method is described in the algorithmic format in Algorithm 1. Detailed
information is shown as follows. As we all know, every node in the tree which
is learnt by Parabel is partitioned into two groups, and not a single label can

Fig. 1. The main structure of PParabel.
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be appeared in two groups. In other words, the split of different nodes is inde-
pendent. Therefore, we can use its independence to make Parabel parallel. Each
node is carried on a single thread.

For each label tree, we load feature matrix X = x1, x2, . . . , xn and label
matrix Y = y1, y2, . . . , yn. Then we represent the label representation in the way
Parabel did. We average the feature vectors of instances which are positive to
the label as the representation of label. With all labels represented, we put all
label representations in the root node and start partitioning. We parallelize the
partition process in a two-stage way which will be discussed in Sects. 3.1 and
3.2. For each node partition, we apply k-means to split the node into two nodes.
We first randomly choose two label representations as centroids. After that, we
calculate the distance between centroids and labels. For nodes on top levels,
we parallelize the calculating distance with OpenMP. If it is not converged, we
calculate the new centroids and repeat the k-means clustering. When the k-
means clustering is converged, we split the labels into two nodes according to
the resulting clusters. All these child nodes will be sent to idle threads to further
split. The partition process will not stop until the number of labels in any leaf
nodes is smaller than a threshold.

We also implement a two-stage parallelization which executes different strate-
gies according to different nodes on different levels. In the following, we will
elaborate more details about the two-stage parallelization. The first stage par-
allelization is applied to all nodes. The second is applied to nodes on top levels.

Algorithm 1. PParabel - Parallel Partitioned Label Trees for Extreme Classi-
fication
Input: Feature matrix X, label matrix Y
Output: Balanced tree with the number of leaf nodes’ labels smaller than a thresh-
old

1: Load single copy of feature matrix X=x1,x2,...,xn and label matrix Y=y1,y2,...,yn
2: Compute the label representation by averaging the feature vectors of instances

which are positive to the label.
3: while the number of labels in any leaf node is larger than the threshold do
4: if node is on top levels then
5: Calculate the distance between the cluster centroids and labels with OpenMP.
6: else
7: Execute K-means in its own thread
8: end if
9: Partition the internal node into new nodes node1,node2,... according to the

resulting clusters.
10: Assign the new nodes node1,node2,... to idle threads
11: end while
12: Sort all nodes in an ascending order according to their numbers.
13: return balanced tree
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3.1 First-Stage Parallelization

In this stage, training process of each node is carried on a single thread. And we
parallelize the training process of nodes on the same level. The notion behind
is that each node is split into two nodes with totally different labels. When it
comes to splitting these two child nodes, they do not affect each other. In other
words, siblings do not have data dependency.

3.2 Second-Stage Parallelization

Since each tree node is halved, the training time of child nodes will also be
halved. In other words, the time child nodes take for training should be half of
the time their parent takes. We make the analysis to demonstrate this and we
will discuss this in Sect. 4.3. To maximize the usage of threads and speedup the
training process, we parallelize the k-means, which is used to split the parent
node into two parts, for the nodes on top layers with OpenMP. Here, we set the
first five layers as top layer. Since calculating the distance between labels and
cluster centroids is the most time consuming step in k-means, we parallelize this
process with OpenMP. For the rest nodes which are on the sixth or after sixth
layers, since their label sets are not large enough and there is no idle thread,
they do not need to parallelize the k-means.

4 Experiments

4.1 Dataset Description

Table 1. Dataset Statistics

Dataset Number of
train points

Number of
test points

Label
dimensionality

Feature
dimensionality

EURLex-4K 15,539 3,809 3,993 5,000

WikiLSHTC-325K 1,778,351 587,084 325,056 1,617,899

Wiki-500K 1,813,391 783,743 501,070 2,381,304

Amazon-670K 490,449 153,025 670,091 135,909

We carry out experiments on publicly available datasets from the Extreme Clas-
sification repository4. The detailed information of these datasets is shown in
Table 1. All these datasets are processed from their original sources such as
Wikipedia and Amazon. To figure out the effectiveness of the algorithm on dif-
ferent scale dataset, we choose one small dataset (EURLex-4K with 3,993 labels)
and three large scale datasets (WikiLSHTC-325K, Wiki-500K and Amazon-
670K) which include hundreds of thousands labels along with million train
points.
4 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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4.2 Evaluation Metrics

We use precision at k and speedup as the metrics for comparison. Precision
at k is a commonly used metrics in extreme multi-label classification to show
the classification accuracy. And speedup is used to show the effectiveness of the
parallelization. For a predicted score vector ŷ ∈ RL and the ground truth label
vector y ∈ {0, 1}L, the precision at k is defined as:

P@k :=
1
k

∑

l∈rankk (̂y)

yl (1)

The speedup is defined as:

S =
Ts

Tp
(2)

where Ts is the time that the experiment takes in a serial way and Tp is the
time that the experiment takes in a parallel way. Higher value of S means more
effectiveness of the algorithm.

4.3 Results

Fig. 2. Average training time of each tree level for four datasets.
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Figure 2 shows the average split time of each level. As we can see, the average
split time of second-layer nodes is about half of the root node. The average
split time of third-layer nodes is about half of the second-layer nodes. So are
the forth layer and fifth layer. When it comes to layers after fifth layer, the
split time is almost the same. The reason is that the original label set has been
divided into more than 32 parts and the k-means process in these nodes can be
quickly converged. As we can see, k-means process is the most time consuming
step in top level nodes. When it comes to other levels, a large number of node
partition is the most time consuming step. Therefore, we can parallelize the
k-means process with OpenMP on top levels to accelerate the training.

All experiments are run on two Intel Xeon E5-2620 v4 2.10 GHz CPUs. Each
CPU has 8 physical cores. There are no hyper threads per core. While the pro-
posed method is based on Parabel, the precision@k and speedup are calculated
between the Parabel, PParabel and fastXML. For Parabel and PParabel, the
number of balanced trees trained is three and two algorithms use squared hinge
loss. But fastXML trains fifty trees in order to achieve high accuracy. Table 2
shows the results on extreme classification datasets. It turns out that the pre-
diction accuracy of PParabel is almost the same as Parabel. It is much better
than fastXML which trains much more trees to increase the accuracy. Since we

Fig. 3. Speedup of different threads on four datasets.
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Table 2. Results on extreme classification datasets.

Method P1(%) P3(%) P5(%) Training

time (hr)

Method P1(%) P3(%) P5(%) Training

time (hr)

EURLex-4K Wiki-500K

fastXML 71.36 59.90 50.39 0.0590 fastXML 49.27 33.30 25.63 27.72

Parabel 82.25 68.71 57.53 0.0136 Parabel 68.52 48.42 38.55 6.37

PParabel-t=2 81.31 68.33 57.04 0.0070 PParabel-t=2 67.97 48.83 38.02 3.88

PParabel-t=3 0.0054 PParabel-t=3 2.75

PParabel-t=4 0.0041 PParabel-t=4 1.96

PParabel-t=5 0.0034 PParabel-t=5 1.53

PParabel-t=6 0.0029 PParabel-t=6 1.43

PParabel-t=7 0.0027 PParabel-t=7 1.30

PParabel-t=8 0.0024 PParabel-t=8 1.19

PParabel-t=9 0.0022 PParabel-t=9 1.09

PParabel-t=10 0.0019 PParabel-t=10 1.02

PParabel-t=11 0.0019 PParabel-t=11 0.96

PParabel-t=12 0.0018 PParabel-t=12 1.01

PParabel-t=13 0.0017 PParabel-t=13 0.995

PParabel-t=14 0.016 PParabel-t=14 1.09

PParabel-t=15 0.0015 PParabel-t=15 1.12

WikiLSHTC-325K Amazon-670K

fastXML 49.75 33.10 24.45 4.556 fastXML 36.99 33.28 30.53 2.263

Parabel 65.04 43.23 32.05 0.651 Parabel 44.90 39.81 35.99 0.302

PParabel-t=2 64.08 42.54 31.46 0.585 PParabel-t=2 44.38 39.28 35.44 0.174

PParabel-t=3 0.458 PParabel-t=3 0.117

PParabel-t=4 0.248 PParabel-t=4 0.109

PParabel-t=5 0.178 PParabel-t=5 0.082

PParabel-t=6 0.163 PParabel-t=6 0.071

PParabel-t=7 0.154 PParabel-t=7 0.065

PParabel-t=8 0.138 PParabel-t=8 0.059

PParabel-t=9 0.129 PParabel-t=9 0.055

PParabel-t=10 0.125 PParabel-t=10 0.051

PParabel-t=11 0.126 PParabel-t=11 0.049

PParabel-t=12 0.119 PParabel-t=12 0.047

PParabel-t=13 0.120 PParabel-t=13 0.0426

PParabel-t=14 0.119 PParabel-t=14 0.0428

PParabel-t=15 0.110 PParabel-t=15 0.040

just parallelize the partition process before learning classifiers, the precision@k
should be the same theoretically. However, choosing random starting points may
result in different clustering results. This may explain why precision@k of Para-
bel and PParabel are slightly different.

Table 2 also shows the training time of three algorithms which run on these
datasets. It can be seen that as the number of threads increases, the training
time of PParabel gets shorter and shorter. But when the number of threads
increases more than 10, the training time will not decrease much. We can also
reduce the training time from 27 h to 1 h just using one machine. It is great to
shorten the training time while using much fewer machines.



PParabel: Parallel Partitioned Label Trees for Extreme Classification 91

Figure 3 shows the speedup of different threads on four datasets. The number
of threads for PParabel varies from 2 to 15. Both Parabel and fastXML are run
with a single thread. We set the maximum threads 15 since we want to make
sure that every thread can work on different processor separately which make
parallelization happen. PParabel uses multi-threads, while Parabel and fastXML
use just one thread. And all these experiments are run in this situation.

The maximum speedup of Parabel is around 9 which is achieved in EURLex-
4K dataset. And the maximum speedup of fastXML is around 57 which is
achieved in Amazon-670K dataset. As it can be seen, the speedup gain per
thread is getting down with the number of threads increasing. The reason is
that to protect the data consistency, we need to block other completed threads
until the current thread finishes writing. When the number of threads increases,
the chance of being blocked is getting bigger and bigger which wastes a lot of
time to communicate. Therefore, the speedup gain per thread is getting down
with the number of threads increasing. But the speedup is achieved almost lin-
early with the threads number increasing. In this consideration, to maximize the
performance, the optimal number of threads is around 15.

5 Conclusion

In this paper, we have discussed the hardware cost and training time of four typ-
ical kinds of approaches to extreme multi-label classification. In order to reduce
the hard-ware cost and speedup the training process, we have proposed PPara-
bel algorithm based on Parabel. Our main contribution is employing a two-stage
thread-level parallelism. Moreover, we analyze the data independence of nodes
on the same level to make sure the training process can be successfully paral-
lelized. The experiment results show that our method is successful to accelerate
the training process. All our experiments are conducted on a standard desk-
top. However, the speedup is achieved almost linearly with the thread number
increasing. In the future work, we will study more sufficient approaches in thread
level.
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