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Abstract. Nowadays, low latency has become one of the primary goals
of congestion control in data center networks. To achieve low latency,
many congestion control algorithms have been proposed, wherein DX is
the first latency-based one. Specifically, DX tackles the accurate latency
measurement problem, reduces the flow completion time and outper-
forms the de facto DCTCP algorithm significantly in term of median
queueing delay. Although the advantages of DX have been confirmed by
experimental results, the behaviors of DX have not been fully revealed.
Accordingly, some drawbacks of DX under special environment are unex-
plored. Therefore, in this paper, we conduct fluid-flow analysis over DX,
deducing sufficient condition for the stability of DX and revealing the
behaviors of DX. Analytical results uncover two problems of DX: (1)
it has poor throughput when either the base RTT is very large or the
number of flows is relatively small; (2) it suffers from large queueing
delay when either the base RTT is relatively small or the number of
flows is very large. These results are instructive to the improvement and
deployment of DX. Simulation results based on NS-3 verify our analytical
results.

Keywords: Congestion control · Fluid-flow analysis · Stability ·
Latency

1 Introduction

Nowadays, low latency becomes one of the primary goals of designing conges-
tion control algorithms for the data center network. To achieve low latency,
accurate and fine-grained feedback signals are needed to represent the degree of
congestion. Recently, many congestion control algorithms have been proposed
[1,5,10,12]. Generally speaking, most of them employ the following feedback
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signals: the packet loss, the explicit in-network feedback like ECN, and the
latency-based feedback. Compared to the other two signals, latency-based feed-
back signals have the following advantages. The endpoint can detect the fine-
grained degree of congestion, or even estimate the switch queue-size [10,12] by
measuring the Round Trip Time (RTT) and the base RTT. Moreover, the in-
network support is never required.

However, the latency-based feedback signal is difficult to be measured accu-
rately [1]. This is because most kernel implementations can only track RTTs at
the granularity of 1ms [9], while the RTT is only a few hundreds of microseconds
in the data center network. Recently, DX, the latency-based congestion control
algorithm proposed for data center networks, tackles the measurement problem
of RTT and has good performance. By setting its operating point close to zero,
DX can reduce the flow completion time and outperform the de facto DCTCP
algorithm significantly in term of median queueing delay.

In this paper, we model and analyze the DX algorithm because (1) DX is the
up-to-date latency-based congestion control algorithm while other state-of-art
algorithms such as ExpressPass and NDP are not. As a latency-based algorithm,
DX has very good performance, which are validated by experimental results in
[6]. (2) Although some advantages of DX have been confirmed by experimental
results, the behaviors of DX have not been explored theoretically. (3) Moreover,
existing analytical work on congestion control cannot be applied to the window-
based latency-based DX algorithm. In details, we first model DX with the fluid-
flow method and linearize the fluid-flow model such that the Nyquist stability
criterion [6] can be applied to the model. Subsequently, we deduce the sufficient
condition for the stability of DX. In this way, the influence of some parameters,
such as the number of flows and the RTT, on the stability of DX can be exhibited.
Moreover, we theoretically uncover a special behavior of DX under the condition
of a large number of flows and small RTT. Finally, we implement DX in NS-3
simulator to confirm our analytical results.

In total, our analytical results mainly reveal two problems of DX. (1) DX has
poor throughput when the DX system is unstable when either the base RTT is
very large or the number of flows is relatively small. (2) DX suffers from large
queueing delay when either the base RTT is relatively small or the number of
flows is very large. Under these conditions, DX enters into the special stable state.
It implies that DX should not be employed under these kinds of environments.
We believe these results are instructive to the improvement and deployment of
DX in practical data center network.

2 Background and Related Work

In this section, we first introduce the DX algorithm in brief, and then present
the related work on the theoretical analysis of congestion control algorithms.
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2.1 The DX Algorithm

DX is a window-based congestion control algorithm, which uses the latency-
based feedback signal to determine the congestion window should be increased
or decreased. Similar to TCP, its congestion avoidance algorithm follows the
Additive Increase Multiplicative Decrease (AIMD) style. The DX algorithm is
characterized by dropping the queue size down to zero quickly as soon as it
observes congestion. In the following, we introduce the DX algorithm in detail.

The main DX algorithm is composed of two parts: one is measuring the
latency accurately, the other one is a congestion control algorithm for adjusting
the congestion window. For accurately measure queueing delay, [10] exhibits
sources of measurement errors and their magnitude and their elimination
technique.

The congestion control algorithm of DX works as follows. In each RTT, DX
measures the queueing delay, which is the difference between the base RTT
and a sample RTT. If the queueing delay is not 0, DX considers the network is
congested. Otherwise, DX considers that there is no congestion. Mathematically,
the window adaption algorithm of DX is as follows:

W (t + 1) =

{
W (t) + 1, if Q(t) = 0,
W (t)(1 − Q(t)

U(t) ), if Q(t) > 0,
(1)

where W (t) is the window size at time t, Q(t) represents the average queueing
delay measured by DX in current RTT. U(t) is a self-updated coefficient.

U(t) =
R0 · W (t)
W (t) − 1

, (2)

where R0 is the base RTT. The self-updated coefficient U(t) is deduced in con-
sideration of high utilization and the number of flows in the network.

According to Eq. (1), DX decreases the congestion window as soon as it
detects the network congestion according to Q(t). Therefore, DX keeps the near-
zero queueing delay.

2.2 Related Work

Although there are many theoretical works on congestion control algorithms,
such as those in [7,11,13], we focus on those works analyzing the state-of-art
congestion control algorithms for data center networks in this paper.

Analysis on Non-latency-Based Algorithms. DCTCP [1] is a famous con-
gestion control algorithm using ECN. In [2], Alizadeh et al. develop a fluid-
flow model of DCTCP and analyze its stability by the Bode Stability Criterion
[6]. The analysis insights guide the configurations of design parameters like the
threshold. DCQCN is the latest protocol which outperforms DCTCP in terms
of reducing the flow completion time. In [14], the authors analyze its stability
condition using the same method as DCTCP.
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All these algorithms for data center works are based on non-latency conges-
tion signals, while DX adopts the latency-based feedback signal. Therefore, the
theoretical analysis of these algorithms cannot be directly applied to DX.

Analysis on Latency-Based Algorithms. TIMELY [12] is an end-to-end,
rate-based congestion control algorithm that uses changes in RTT as a conges-
tion signal. In [14], the author finds that TIMELY has no unique fixed point.
To analyze the stability of TIMELY, they modify the algorithm. Its stability
condition is analyzed through the Nyquist Stability Criterion [6].

Similar to TIMELY, DX is also a latency-based transport protocol. Different
from TIMELY, DX is a window-based algorithm and adjusts the congestion
window according to the queueing delay. In [10], authors show that DX exhibits
very good performance by extensive experiments. However, to the best of our
knowledge, there is no theoretical work on the window-based latency-based DX
up to now, which motivates us to perform this investigation.

3 Analysis of DX

In this section, we first build a fluid-flow model for the DX algorithm and then
analyze its stability based on its linearized version.

3.1 Modeling

Considering the oversubscribed link and the applications like MapReduce [4],
we assume that the sources are homogeneous and flows arrive according to the
Poisson process, the same as [2,3,8]. In other words, we assume that all sources
have identical sending rates and RTTs, and the RTT equals to τ seconds.

Suppose that N sources share a single link of capacity C. Let W (t) denote
the congestion window, R0 represent the fixed base RTT, and Q(t) be the queue-
ing delay. Let p denote the probability of Q(t) > 0. Although in practice, the
probability p is time-varying. We find that p is close to a constant in the stable
state, as shown in the simulation results under the condition of varying p in
Sect. 4. Therefore, we assume that p is constant for the simplicity of analysis.
With this assumption, we plug the Eq. (2) into Eq. (1), and can model the DX
algorithm as follows by using the method of [11].

dW (t)
dt

=
seg ∗ (1 − p)

R0 + Q(t − τ)
− Q(t − τ)(W (t) − seg)

R0(R0 + Q(t − τ))
p, (3)

dQ(t)
dt

=

{
NW (t)

C(R0+Q(t−τ)) − 1 if Q(t) > 0,

max{0, NW (t)
C(R0+Q(t−τ)) − 1} if Q(t) = 0.

(4)

The Eq. (3) describes the dynamic evolution of the window size W (t). The Eq. (4)
models the evolution of the queueing delay Q(t).
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3.2 Stability Analysis

We analyze the stability of DX based on its fluid-flow model (3) and (4). Assume
that the equilibrium point of DX is (W0, Q0). At the equilibrium point, we have
Ẇ (t) = 0 and Q̇(t) = 0. Referring to Eqs. (3) and (4), we have

seg ∗ R0(1 − p) = pQ0(W0 − seg). (5)

NW0 = C(R0 + Q0). (6)

Substituting Eq. (6) into Eq. (5), we can get the following expression of Q0

Q0 =
p(N ∗ seg − CR0) +

√
Δ

2Cp
, (7)

where
Δ = (CpR0 − pN ∗ seg)2 + 4CpNR0 ∗ seg ∗ (1 − p). (8)

Next, we will linearize the fluid-flow model around the equilibrium point
(W0, Q0) to obtain

˙δW = a1δW + a2δQ(t − τ),
˙δQ = b1δW + b2δQ(t − τ),

(9)

where
δW =̇W − W0,
δQ=̇Q − Q0,

(10)

and
a1 = − Q0p

R0(R0+Q0)
, a2 = 2p∗seg−pW0−seg

(Q0+R0)2
,

b1 = N
C(R0+Q0)

, b2 = − NW0
C(R0+Q0)2

.
(11)

To obtain the characteristic equation, we compute the Laplace transform of
(9). Then we can obtain the transfer function of the linear time-delayed system

G(s) = e−sτ a1b2 − a2b1 − b2s

s(s − a1)
. (12)

Then, we apply the Bode Stability Criteria [6] to the transfer function (12).
Specifically, define the frequency characteristic function G(jω) = G(s)|s=jω of
the system, we have

G(jω) = A(ω)ejϕ(ω), (13)

where

|A(ω)|2 =
b22[ω

2 + (a1 − a2b1
b2

)2]
ω2(ω2 + a2

1)
, (14)

ϕ(ω) = −π

2
− ωτ + arctan

ω

a1
+ arctan

ωb2
a1b2 − a2b1

, (15)
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where A(ω) is amplitude - frequency characteristics and ϕ(ω) is phase-frequency
characteristic. Assume that ωc is the cross-over frequency which makes L(ωc) =
0, i.e., A(ωc) = 1. From Eq. (14), we have

ωc =

√
b22 − a2

1 +
√

(a2
1 − b22)2 + 4(a1b2 − a2b1)2

2
. (16)

Note that ϕ(0) = −π
2 . According to Bode Stability Criteria [6], the DX sys-

tem is stable when ϕ(ωc) > −π, i.e., we have the following theorem in summary.

Theorem 1. The DX system is stable if the delay satisfies

τ <
1
ωc

(arctan
ωc

a1
+ arctan

ωcb2
a1b2 − a2b1

+
π

2
), (17)

where ωc is defined in (16), and a1, b1, a2 and b2 are defined in (11).

(a) Varying N (b) Varying C (c) Varying R0

Fig. 1. The variation of the boundary of τ with different N , C, R0.

Theorem 1 implies that the stability of the DX system holds just when τ is
limited. The boundary of τ is associated with both the bottleneck bandwidth
C and the number of flows N . In fact, according to Eq. (17), the boundary
of τ decreases when either the bandwidth C increases or the number of flows
decreases. In order to verify the result, we assume that the value of p is 0.95, the
bandwidth C is 10 Gbps, the number of flows is 50, the packet size seg is 1500
and the base RTT R0 is 80 µs by default. Figure 1 shows the variation of the
boundary of τ with different N , C, R0 respectively. In Fig. 1(a), when N is small,
the boundary of τ is small and accordingly Theorem 1 is probably not satisfied.
Consider this condition, we do not know whether the DX system is stable. When
DX becomes unstable, it will suffer from large queue-size oscillation and poor
link utilization. However, when N is large, Theorem 1 is satisfied, i.e., the DX
system is stable. In Fig. 1(b) and (c), when C or R0 changes, similar results can
be obtained according to Theorem 1. This is also why the evaluation of DX in
[10] always shows good performance.

In total, Theorem 1 reveals the problem that DX may become unstable and
have poor throughput when either the base RTT is very large or the number of
flows is relatively small.
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3.3 A Special Stable State

When we conduct the stability analysis of the DX algorithm, we do not consider
the limitation on the congestion window size. In fact, the window size of the
DX cannot be less than a segment in real networks. When there are too many
flows, i.e., when N∗seg

R0
> C, the aggregated sending rate of all flows are always

larger than the bandwidth C. As a result, Q would be always greater than 0.
Meanwhile, the congestion window of every flow is already at the minimum value
1 and cannot be decreased again. In other words, although the queueing delay is
still greater than 0 in this scenario, the window size cannot be adjusted by the
congestion control algorithm.

To obtain the stable point in this situation, W (t) is kept invariant and its
value is always a segment, which can be plugged into the Eq. (4). We can get
the new model.

dW (t)
dt

= 0,

dQ(t)
dt

=

{
N∗seg

C(R0+Q(t−τ)) − 1 if Q(t) > 0,

max{0, N∗seg
C(R0+Q(t−τ)) − 1} if Q(t) = 0,

we can get the fixed point (W ∗, Q∗) as follows.

W ∗ = seg,

Q∗ =
N ∗ seg − CR0

C
.

We find that the system is absolutely stable when N ≥ CR0
seg , and this special

stable state is different from the stable state under N < CR0
seg . In the stable state,

the queueing delay will always drop to zero when N < CR0
seg , so the stable state

in this case still has the jitter. But if N ≥ CR0
seg , the window size does not change

and the queueing delay will increase with the increasing number of flows. We
can summarize this phenomenon as the following theorem.

Theorem 2. When the condition N ≥ CR0
seg is satisfied, the DX system enters

a special stable state where

(1) The system is stable;
(2) The congestion window of every flow is unchanged with size 1;
(3) The link is fully utilized.

Obviously, the queueing delay would increase under this case. In other words,
Theorem 2 reveals the problem that DX would suffer from large queueing delay
when either the base RTT is relatively small or the number of flows is very large.
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4 Evaluation

In this section, we validate our theoretical analysis by NS-3 simulations. First, we
evaluate the accuracy of our model by comparing the numerical solution of the
model conclusion by Matlab 2014a with NS-3 simulation results. Subsequently,
we validate our assumption about the probability p by simulations. Next, we
examine the conclusion on the special stable state in Theorem 2. Finally, the
theoretical conclusion in Theorem 1 is validated by several experiments with the
changing parameter.

We use a many-to-one network topology with 10 Gbps link capacity in our
experiments. The switch buffer is set to be 256 KB. To validate the stability of
a system, we use the metric of the link utilization. If a system is stable, the link
utilization keeps a high level since the queue length at switch cannot be zero.
We also show the queueing delay and queue size in a few experiments.

Note that in all experiments, we do not explore all values exhaustively for
a parameter due to practical consideration. Specifically, the concurrent number
of flows, which occupy the link fully, can not surpass the number of ports of a
switch (often less than 96). The commonly deployed maximum bandwidth is not
greater than 40 Gbps in data center networks, and the base RTT is less than
500µs [1].

Table 1. Probability of decreasing windows

RTT
N

10 20 30 40 50 60 70 80 90 100

80µs 0.79599 0.887787 0.934742 0.956067 0.973239 0.982844 0.995288 0.999902 0.999896 0.999891
200µs 0.782627 0.835583 0.869653 0.898591 0.914323 0.922147 0.933485 0.944501 0.953232 0.960271
400µs 0.743014 0.827145 0.876389 0.881062 0.889631 0.890585 0.898752 0.901909 0.913419 0.920201

4.1 Model Validation

Although we model the DX system in Sect. 3, how well the model can match the
behavior of practical DX is yet unknown. We answer this question by comparing
the queue length obtained by the model with that by running with the NS-3
code of DX. Before that, we first check the assumption that the probability of
decreasing windows or Q(t) > 0, i.e., p, is constant in the stable state.

We select the scenario where the system enters a stable state and a special
stable state, and test the change of p with N ranging from 10 to 100 when
the base RTT (R0) is 80µs, 200µs, 400µs, as shown in Table 1. According to
Theorem 1, we know that when R0 is 80µs, 200µs, or 400µs, the system stability
conditions are N > 30, N > 50 or N > 140, respectively. Meanwhile, if the R0 is
80µs and N is greater than 70, the system is in a special stable state. According
to our measurement of p, all values of p are greater than 0.9 when the system
is stable. When the system enters a special stable state, the value of p is even
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greater than 0.99. Using the average value 0.95, p represents those values in the
two states basically. This is the reason why we set p as a constant.

Next, we examine the accuracy of our whole model. Figure 2(a) and (b)
are respectively the evolution of the queue length under the condition of
N = 50, R0 = 20µs, where DX is in the special stable state, and N = 50,
R0 = 80µs, where the behaviors of DX are described by Eqs. (12) and (13).
The results of the fluid-flow model are close to the simulation results of NS-3.
Therefore, the accuracy of our model for DX is good.

4.2 The Special Stable State

Through the stability analysis in Sect. 3.3, there is a special stable state under the
condition of a large number of flows or small base RTT , according to N < CR0

seg in
Theorem 2. When the DX system enters the special stable state, the utilization
can even achieve 99.9% and the window size of each flow keeps 1. In this scenario,
we will verify this conclusion.

(a) Special stable case (b) The stable case

Fig. 2. Comparison of the numerical results of fluid flow model with NS-3 simulation.

(a) N = 50. (b) R0 = 80µs.

Fig. 3. The three states of DX.
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We first set the number of flows to be 50 and the bottleneck bandwidth
10 Gbps. Figure 3(a) shows the three states of DX including the special stable,
the stable and the unstable states with varying R0. In the special stable state,
the link utilization is 99.9%. We observe that the transition from the stable
state to the unstable state is smooth. In fact, the boundary between these two
states is not absolute. This is because of we model and analysis DX with some
assumptions, like homogeneous sources. In this case, the τ calculated according
to Theorem 1, corresponding to the boundary line, is not the absolute upper
bound of maintaining the stable state of DX.

Second, we set the base RTT to be 80µ s and test the link utilization with
varying N . When the number of flows exceeds the threshold (67 in Fig. 3(b)), the
system enters the special stable state. Although the window sizes of these flows
should be reduced due to the queueing delay, there is a limit on the window sizes,
which cannot be lower than 1. As a result, the injected traffic may be greater
than the bandwidth delay product, resulting in the queue at the switch cannot
be drained up and high utilization.

Next, we inspect the special stable state further by taking deep study into
the experiment detail. In Fig. 4(a) and (b), we show the dynamic change of the
average congestion window (cwnd) of flows with increasing N when R0 is 120µs,
and with increasing R0 when N is 50. We calculate the corresponding conditions
are N ≥ 100 and R0 ≤ 60 for entering the special stable state, respectively. From
Fig. 4, we can see that the average window size is indeed 1 when the conditions
are satisfied, which means that the system enters the special stable state. Besides,
according to our analysis, the queueing delay may increase with a larger number
of flows. Figure 5 shows the change of the queueing delay when N is larger
than 70. We omit the result of N < 70 since the DX system enters a special
stable state when N ≥ 67 in this scenario. These simulation results verify our
theoretical conclusions in Theorem 2, that is, the special stable state can lead to
high network utilization but possible high queueing delay. Further, we plot the
Cumulative Distribution Function (CDF) of the queue size in Fig. 6. When N is

(a) R0 = 120µs. (b) N = 50.

Fig. 4. Comparison of the size of the average congestion window.
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Fig. 5. The queueing delay changes with
increasing N in the special stable state

Fig. 6. The CDF of the queue size with
the different base RTT

fixed, the system will enter the special stable state for smaller R0, resulting in
that DX has the larger queue size or queueing delay for small R0. In this figure,
the queue size is constantly larger than 30 when R0 = 20µs.

4.3 Stability Criterion

According to the analysis in Sect. 3 and Theorem 1, the system stability is
affected by the number of flows N , R0 and C. Further, the larger N or the
smaller the R0 or the smaller the C, the more stable the system. To verify this
conclusion, we just change one parameter and keep other parameters invariant
to investigate its sole influence on the stability of DX in our simulations.

Varying R0 In this test, we fix the network parameter N as 50 and vary
the base RTT R0 from 20µs, 120µs to 320µs. According to Theorem 1, we
calculate the upper bound of R0 for keeping the DX system stable as 145µs.
We observe that the larger R0 is, the lower the link utilization is, which ranges
from 99.91%, 96.11% to 89.1%. The low link utilization means that the system
becomes more unstable. This is consistent with the theoretical result.

Varying N In this test, we vary N from 10, 50 to 100 with fixed R0 120µs.
The link utilization increases from 94.81%, 96.11% to 98.53% when N becomes
larger and larger. Our theoretical conclusion is that when N is larger than 42,
DX is stable according to Theorem 1. From the increase of the link utilization,
our theoretical analysis is basically correct.

Varying C In this test, the bottleneck bandwidth C is changed from 1 Gbps,
10 Gbps to 40 Gbps. We set N as 50 and the base RTT R0 as 120µs. In par-
ticular, the link utilization decreases from 99.86%, 96.11% to 86.44%. When C
is 40 Gbps, the utilization is lowest, which means that the system suffers from
unstable. This confirms the theoretical analysis that the larger bandwidth will
lead to the instability of the system in Sect. 3.
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5 Conclusion

In this paper, we perform a theoretical analysis of DX, which is the up-to-date
latency-based algorithm in data center network and has a better performance
than the well-known DCTCP. Current investigations on DX are based on exper-
iments and its theoretical analysis is spare. We establish the fluid-flow model of
the DX system. By linearizing the fluid model and using the stability criterion of
the linear system, we derive the stability condition of the DX system. According
to our analysis, we found that the stability of the system is proportional to the
number of flows, as well as inversely proportional to the propagation delay and
the bottleneck bandwidth. In particular, there is a special stable state when N
is too large or RTT is too small. Through the analysis, we find that DX has
poor throughput when either the base RTT is very large or the number of flows
is relatively small. Besides, DX suffers from large queueing delay when either
the base RTT is relatively small or the number of flows is very large. Finally, we
verify the conclusion in the NS-3 simulation. Our analysis takes a step forward
for understanding DX deeply and can be helpful to deploy DX in the data center
network or design new latency-based protocols built on DX.
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