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Abstract. With the increasing need for analyzing graph data, graph
systems have to efficiently deal with concurrent graph processing (CGP)
jobs. However, existing platforms are inherently designed for a single
job, they incur the high cost when CGP jobs are executed. In this
work, we observed that existing systems do not allow CGP jobs to share
graph structure data of each iteration, introducing redundant accesses to
same graph. Moreover, all the graphs are real-world graphs with highly
skewed power-law degree distributions. The gain from extending multiple
external storage devices is diminishing rapidly, which needs reasonable
schedulings to balance I/O pressure into each storage. Following this
direction, we propose GraphScSh that handles CGP jobs efficiently on
a single machine, which focuses on reducing I/O conflict and sharing
graph structure data among CGP jobs. We apply a CGP balanced par-
tition method to break graphs into multiple partitions that are stored in
multiple external storage devices. Additionally, we present a CGP I/O
scheduling method, so that I/O conflict can be reduced and graph data
can be shared among multiple jobs. We have implemented GraphScSh in
C++ and the experiment shows that GraphScSh outperforms existing
out-of-core systems by up to 82%.

Keywords: Graph processing · CGP jobs · Graph sharing ·
I/O scheduling

1 Introduction

In the past decade, graph analysis has become important in a large variety
of domains. Due to the increasing need to analyze graph structure data, it is
common that Concurrent Graph Processing (CGP) jobs are executed on same
processing platforms, in order to acquire different information from same graphs.
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Fig. 1. The number of CGP jobs.

Fig. 2. The utilization of map apps.

For example, Facebook uses Apache Giraph [6] to execute various graph algo-
rithms, such as the variants of PageRank [12], SSSP [10], etc. Figure 1 depicts
the number of CGP jobs over a large Chinese social network [17]. The stable
distribution shows that more than 83.4% of the time has at least two CGP jobs
executed simultaneously. At the peak time, over 20 CGP jobs are submitted to
the same platform. Also, Fig. 2 shows the usage of Chinese map Apps in a week
of 2017. We can observe that each map App is used by each user more than
five times within a week. Particularly, Amap App [2] ranks the first and handles
over 10 billion route plannings every week, that is to say, it is used more than
60 thousand times per minute on average.

The existing processing systems can process a single graph job efficiently.
They improve the efficiency either by fully utilizing the sequential usage of mem-
ory bandwidth, or by achieving a better data locality and less redundant data
accesses, like GraphChi [8], X-Stream [13], GridGraph [20] and Graphene [9],
PreEdge [11], etc. However, these systems are usually designed for a single graph
processing job, which are much more inefficient when executing multiple CGP
jobs. The inefficiencies include I/O conflict and repeated access to same graph
structure data.
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Fig. 3. Power-law degree distribution.

I/O Conflict: When multiple CGP jobs are executed over same graph, it is
commonplace that these jobs visit same partition data, resulting in I/O conflict
among multiple jobs. Fortunately, extending multiple external storage devices is
possible to reduce this conflict, which can distribute multiple I/O of CGP jobs to
multiple external storage devices. However, graphs derived from real-world phe-
nomena, like social networks and the web, typically have highly skewed power-
law degree distributions [1], which implies that a small subset of vertices connects
to a large fraction of the graph. Figure 3 depicts the pow-degree distribution of
graph from LiveJournal [14], which is a free online community with almost 10
million members. The highly skewed characteristic of graph challenges the above
assumption and make it more difficult. Although using multiple storage devices
reduces I/O conflict, this conflict is still the bottleneck of overall performance.

Data Access Problems: Graph processing jobs are usually operated on two
types of data [9]: graph structure data and graph state data. The graph structure
data mainly consists of vertices, edges, and the information associated with each
edge. The graph state data, such as ranking scores for PageRank, is computed
within each iteration and consumed in the next iteration. The graph structure
data usually occupies a large volume of the memory, whose proportions are
varying from 71% to 83% for different datasets [19]. However, existing graph
platforms do not allow CGP jobs to share the graph structure data in memory,
resulting in redundant access to the graph from external storage. Furthermore,
existing out-of-core systems leverage various mechanisms to utilize the sequential
usage of memory bandwidth and achieve a better data locality, such as PSW in
GraphChi, Edge-Centric in X-Stream and 2-level hierarchical partitioning in
GridGraph, etc. Unfortunately, CGP jobs destroy these optimized mechanisms
above, increasing overhead of randomized access significantly.

In this paper, we propose GraphScSh, a graph processing system based on
multiple external storage devices. Our design concentrates on reducing I/O con-
flict and sharing the graph structure data among CGP jobs. Specifically, the
graph structure data is divided into multiple external storage devices evenly by
CGP balanced partition method. The subgraph of each partition can match the
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size of memory well, which reduces the overhead of frequent swap operations.
Furthermore, we present a new CGP I/O scheduling method based on multiple
external storage and graph sharing, so that I/O conflict can be reduced and the
graph can be shared among multiple CGP jobs.

The system GraphScSh has been implemented in C++. To demonstrate the
efficiency of our solutions, we conducted extensive experiments with our system
GraphScSh and compared its performance with state-of-the-art systems Grid-
Graph over different combinations of CGP jobs. The experiments show that
overall performance of GraphScSh outperforms GridGraph by up to 82%.

The rest of this paper is organized as follows. The design details of GraphScSh
are presented in Sect. 2, including CGP balanced partition schema, and CGP I/O
scheduling method. Section 3 gives the specific implementation of our system
GraphScSh, followed by experimental evaluation in Sect. 4. We then describe
related work in Sect. 5 and conclude in Sect. 6.

2 Our Proposed Approach

To reduce the I/O conflict and the redundant access to graph efficiently, we
propose GraphScSh based on multiple external storage devices, which is designed
to reduce I/O conflict and share the graph structure data among CGP jobs.

2.1 CGP Balanced Partition

Partition 1 Partition 2 Partition 3 ... Partition n-1 Partition n

Vertex Set 1 Vertex Set 2 Vertex Set 3 Vertex Set
 n-1 Vertex Set n...

Edge Set 1 Edge Set 2 Edge Set 3 Edge Set 
n-1 Edge Set n...

Fig. 4. Partitioning schema of GraphScSh.

The existing partitioning methods are usually designed for a single job. When
CGP jobs are executed, we cannot make sure that partitioning size of all jobs
match the size of memory, resulting in frequently swap-in and swap-out opera-
tions. We propose a new partitioning method to process CGP jobs, as shown in
Fig. 4.

The graph is divided into n partitions, and each partition includes a vertex
set and an edge set. Within a vertex set, the index id of vertices is continuous.
The edge set of a partition consists of all edges whose source vertex is in the
partition’s vertex set. When GraphScSh executes graph algorithms, each parti-
tion size depends on both memory configuration and number of CGP jobs, so
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that data of each vertex set can be fit into memory. Additionally, GraphScSh
leverages multiple external devices to store the graph data. For the load bal-
ance, different partitions are stored in multiple storage devices and the number
of edges for each partition is same. The position disk id of each partition in
multiple external storage can be described as,

disk id = partition id%disk num (1)

where partition id is the id of graph partition, disk num is the number of exter-
nal storage.

2.2 CGP I/O Scheduling

Based on the above partitioning method, we break graph structure data into
multiple partitions evenly which are stored in multiple external storage devices.
To reduce the I/O conflict and share the graph among CGP jobs, we propose
a CGP I/O scheduling method based on CGP Balanced Partition method. The
scheduling method includes two strategies for load balance and graph sharing.

First, we count the total number of jobs in each external storage and select
one external storage that has the fewest jobs as the target, for loading balance.
During execution of CGP jobs, system records partition id that each job visits.
The position of graph partition is computed according to the mapping between
partitions and the external storage. For example, there are n jobs executed, where
m jobs visit the first external storage for graph, and (n− 1 −m) jobs access the
second external storage. If m > (n− 1)/2, the second one will be selected as the
target, otherwise the first will be targeted. Assume that the number of external
storage is k, where the number of jobs is n− 1, n− 2, ..., n− k, the storage with
the fewest jobs will be targeted.

Second, we leverage synchronous field to reduce total number of I/O as much
as possible to share the same graph, as Fig. 5 shows. The sync field mainly
records information about the mapping from graphs to memory, including map-
ping address mmap addr [18], the number edge num of edges, and the descriptor
fd of file. In addition, the field must include the total number unit num of jobs
and determines whether to remove the mapping of partition according to it.
Specifically, according to unit num, the system decides if partition data has
been mapped into the memory according to the sync field. If unit num = 0,
the partition is not visited by jobs and should be filled into memory through
mapping. Otherwise, the partition has been loaded into memory by other jobs,
and the current job visits partition by the address of field.

unit_num mmap_addr edge_num fd

Fig. 5. Sync field of graph.
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The specific process of CGP I/O scheduling method includes several steps.
Suppose that the number of the external storage is k, the concurrent graph job
is A, the I/O scheduling of CGP jobs contains the following steps:

– According to synchronous information of CGP jobs and mapping information
between partition and disk, the system counts the number of jobs executed
in each external storage as n1, n2, ..., nk, respectively.

– According to synchronous information of CGP jobs and mapping information
between partition and disk, the system counts the number of partitions in each
external storage, as s1, s2, ..., sk, respectively, and records partition id.

– The system sorts the external storage according to the values of n1, n2, ...,
nk. Then the corresponding id of the external storage is added into set U ,
where the number of jobs in each external storage is in ascending order.

– The system decides each external storage of U one by one. If the set si of
one external storage i contains a partition that has not been accessed, the
external storage i is selected as the target.

– If the partition data in memory has been processed by job A, A will visit each
storage in U to find the data which has not been used. If the data exists, the
corresponding external storage will be as the target and the current iteration
ends.

Assume that the total execution time of a graph job is T , its computation
time is Tc and its I/O wait time is Tw. When N jobs are executed on the same
graph, the computation time of jobs is TC1, TC2...TCN respectively, and I/O wait
time is Tw. The total execution time of existing systems can be described as,

To = max(TC1, TC2, ...TCN ) + NTw (2)

where TC−MAX = max(TC1, TC2, ...TCN ). So the total time can be described as,

To = TC−MAX + NTw (3)

Suppose that the number of external storage devices is D. Based on loading
balancing, the I/O pressure is balanced into each external storage. Therefore,
the number of jobs running on each device is N/D. The new total execution
time can be described as,

Tmulti−disks = TC−MAX + Tw ∗ N/D (4)

the total number of I/O is from NTW to N/D ∗ TW . The new total execution
time is described as,

TG = max(TC−MAX , Tw) (5)
We can see that the new I/O Scheduling outperforms the existing methods by
up to (N − N/D) theoretically.

3 GraphScSh Implementation

We have implemented our system GraphScSh in C++. Figure 6 illustrates the
modules of GraphScSh, including graph management, mapping management,
data structure, operation module, and graph algorithms. We mainly focus on
two parts in this section: operation module and graph algorithms.
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Fig. 6. Modules of GraphScSh.

3.1 Operation Module

The function of this module is achieved by operations of Scatter and Gather. In
Scatter phase, it accesses to graph in streaming way by function get next edge()
and generates the updated information according to state data. In Gather phase,
it read updated data and updates the state data. The Traversal operation is
the kernel operation and implements by the function get next edge(). First,
the function needs to determine partitions of graph whether to be visited. If
false, the next edge data will be accessed. Then, get next edge() decides all
partition of this iteration whether to be visited. If true, the next iteration will
be started. If false, the function findNextPartition() will be activated to find
the next partition to visit. The implementation details of FindNextPartition are
described in Algorithm 1.

Algorithm 1. Details of FindNextPartition
Input:

The partition set of graph unaccess partition;

The set of external storage U ;

The visited partition set of graph s1, s2, ..., sk;

Output:

The next partition to be visited partition index;

1: for i in U do

2: if ∃p ∈ unaccess partition, p ∈ si then

3: partition index = p ;

4: return;

5: else

6: continue;

7: end if

8: end for

9: for p in unaccess partition do

10: partition index = p ;

11: break;

12: end for
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3.2 Implementations of Graph Algorithm

We define Graph as the base class, which provides a programming interface
for graph algorithms. Class Graph defines five virtual functions, including
initUnit() for initialization, output() for outputting result, reset() for cleaning
after one iteration, Scatter(), and Gather(). The function initUnit() initializes
the related work of graph algorithms, for example, the out-degree of each ver-
tex in PageRank. The function reset() resets partition sets that workers have
visited, and the number of partitions that each external storage has accessed.
Algorithms 2 and 3 give examples to show how to implement graph algorithms
on GraphScSh, which uses edge-centric Scatter-Gather model to run graph
algorithms.

Algorithm 2. PageRank Scatter
1: for each edge e of graph do
2: update t upt;
3: if update bitset[e.dst]= false then
4: upt.id = e.dst;
5: upt.value = e.src.value/e.src.degree;
6: add upt to update buf ;
7: end if
8: end for

Algorithm 3. PageRank Gather
1: for each update u of upt buffer do
2: if update bitset[u.id]= false then
3: aux[upt.id].tmp+ = u.value;
4: end if
5: end for
6: for each element ele of aux do
7: if update bitset[ele.index − start]=false then
8: tmp = init wgt + 0.85 ∗ ele.tmp;
9: if fabs(ele.tmp − tm) < 0.00000001 then

10: update bitset[ele.index − start]=true;
11: else
12: ele.res = tmp;
13: end if
14: ele.tmp = 0;
15: end if
16: end for
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4 Experimental Evaluation

4.1 Experiment Environment and Datasets

The hardware platform used in our experiments is a single machine containing
6-core 1.60 GHz Intel(R) Xeon(R) CPU E5-2603. Its memory is 8 GB and has
two SSDs with 300 GB. The program is compiled with g++ version 11.0.

In our experiments, four popular graph algorithms are employed as bench-
marks: (1) breadth-first search (BFS) [3]; (2) PageRank (PR) [12]; (3) weakly
connected component (WCC) [7]; (4) single-source shortest path (SSSP) [10].
The datasets used for these graph algorithms are real-world graphs and gen-
erated graphs described in Table 1. Where Twitter [14] is from online social
networks and edges represent interactions between people. R-MAT, SW, and
ER are generated based on power-law [4], small-world model [15] and ER model
[5] respectively.

Table 1. Data sets properties

DataSets Vertexes Edges Average degree Description

Twitter 61.6 M 1.5 B 23.8 Social networks from Twitter

R-MAT26 67.1 M 1.1 B 16 Power-law degree distributions

ER26 67.1 M 1.1 B 16 Random degree distributions

Table 2. Execution time of algorithms on GridGraph(s)

Data Sets BFS WCC PageRank

Twitter 768.84 883.07 3630.38

R-MAT26 409.27 349.27 2389

ER26 482.22 223 596.33

4.2 Comparison with GridGraph

To compare the performance of GridGraph and GraphScSh, we simultaneously
submit multiple jobs to each system. The partition number of GraphScSh is set
same as GridGraph, and different datasets have a different number of partitions.
The execution time of various graph processing algorithms has been computed, as
Table 2 depicted. For better comparing the performance of systems, CGP jobs
consist of two graph algorithms with same converge speed based on different
datasets. To acquire better integrity, experiments are designed under different
degree of parallelism (DOP) [16].
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(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 7. The comparison of runtime on Twitter for GraphScSh and GridGraph

Twitter: First, for graph dataset Twitter, we evaluate the total execution time
and the speed-up ratio of various CGP jobs (e.g. the DOP is 2, 3 and 4, respec-
tively, as Fig. 7(a), (b) and (c). In general, for different combinations of CGP
jobs, the execution time of GraphScSh is less than that of GridGraph, and the
speed-up ratio grows up as DOP increases. Under the same DOP but a different
combination, the longer execution time of CGP jobs is, the greater GraphScSh
outperforms GridGraph. Specifically, when two systems are executed on dataset
Twitter, the combinations of 2WCC, 3WCC, and 4WCC are accelerated by
56.93%, 65.75%, and 70.8% respectively. Because CGP jobs are executed on the
GridGraph, resulting in the I/O conflict greatly.

RMAT26: Next, we execute different combinations of CGP jobs on RMAT26
to compare GridGraph and GraphScSh, as Fig. 8(b) and (c) show. When the
DOP is 3 or 4, the performance of GraphScSh is better than that of GridGraph.
In particular, with the increase DOP, the speed-up ratio grows up gradually. For
example, GraphScSh outperforms GridGraph by 34%, 40.5% and 45.6% under
the combinations of 2BFS, 3BFS, and 4BFS, respectively.

ER26: Besides, from Fig. 9(a), (b) and (c), we can observe that the total exe-
cution time of GraphScSh is much less than those of GridGraph over dataset
ER26. For example, for the combinations of 2PR, 3PR and 4PR, GraphScSh
outperforms GridGraph by 64.67%, 76.03% and 82%, respectively. Under the
same DOP, the difference that GraphScSh executes different combinations of
CGP jobs is smaller than that of GridGraph. It also means that GraphScSh
with GSSC and MSGL is suitable to cope with CGP jobs.

(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 8. The comparison of runtime on R-MAT26 for GraphScSh and GridGraph
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(a) The DOP is 2 (b) The DOP is 3 (c) The DOP is 4

Fig. 9. The comparison of runtime on ER26 for GraphScSh and GridGraph

5 Related Work

With the explosion of graph scale, lots of graph processing systems are created
to achieve high efficiency for graph analysis. They improve the efficiency either
by a prefetcher for graph algorithms, or by full utilizing the sequential usage of
memory bandwidth.

PrefEdge [11] is a prefetcher for graph algorithms that parallelises requests
to derive maximum throughput from SSDs. PrefEdge combines a judicious dis-
tribution of graph state between main memory and SSDs with an innovative
read-ahead algorithm to prefetch needed data in parallel. GraphChi [8] a disk-
based system for computing efficiently on graphs with billions of edges. By
using a novel parallel sliding windows method, GraphChi is able to execute
several advanced data mining, graph mining, and machine learning algorithms
on very large graphs, using just a single consumer-level computer. X-Stream [13]
is novel in using an edge-centric rather than a vertex-centric implementation of
this model, and streaming completely unordered edge lists rather than perform-
ing random access. GridGraph [20] is an out-of-core graph engine using a grid
representation for large-scale graphs by partitioning vertices and edges to 1D
chunks and 2D blocks respectively, which can be produced efficiently through a
lightweight range-based shuffling.

Unfortunately, when CGP jobs are executed on these systems above, they
incur the extra high cost (e.g., inefficient memory use and high fault tolerance
cost). Following this observation, Seraph [17] is designed to handle with CGP
jobs based on a decoupled data model, which allows multiple concurrent jobs
to share graph structure data in memory [19]. Based on this observation that
there are strong spatial and temporal correlations among the data accesses issued
by different CGP jobs because these concurrently running jobs usually need to
repeatedly traverse the shared graph structure for the iterative processing of each
vertex, CGraph [19] proposed a correlations-aware execution model. Together
with a core-subgraph based scheduling algorithm, CGraph enables these CGP
jobs to efficiently share the graph structure data in memory and their accesses
by fully exploiting such correlations.
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6 Conclusion

This paper introduces GraphScSh, a large scale graph processing system that can
support CGP jobs running on a single machine with multiple external storage
devices. GraphScSh adopts a CGP balanced partition method to break graphs
into multiple partitions that are stored in multiple external storage devices.
In addition, we present a CGP I/O scheduling method, so that I/O conflict
can be reduced and the same graph can be shared among multiple CGP jobs.
Experimental results depict that our approach significantly outperforms existing
out-of-core systems when running CGP jobs. In the future, we will research to
further optimize our solution with a snapshot mechanism for efficient graph
processing.
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