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Abstract. An image enhancer improves the visibility and readability of
the content of any input image by modifying one or more features related
to vision perception. Its performance is usually assessed by quantifying
and comparing the level of these features in the input and output images
and/or with respect to a gold standard, often regardless of the application
in which the enhancer is invoked. Here we provide an empirical evaluation
of six image enhancers in the specific context of unsupervised image
description and matching. To this purpose, we use each enhancer as
pre-processing step of the well known algorithms SIFT and ORB, and
we analyze on a public image dataset how the enhancement influence
image retrieval. Our analysis shows that improving perceptual features
like image brightness, contrast and regularity increases the accuracy of
SIFT and ORB. More generally, our study provides a scheme to evaluate
image enhancement from an application viewpoint, promoting an aware
usage of the evaluated enhancers in a specific computer vision framework.

1 Introduction

An image enhancer is an algorithm that takes as input an image and processes
one or more of its features in order to improve the visibility and readability of the
visual content. These features usually reflect perceptual quality properties, i.e.
visual characteristics that are highly significant for the human vision system, like
image brightness and contrast, entropy of the color/intensity distribution, level of
noise. The performance of an image enhancer is in general assessed by measuring
the level of the modified perceptual properties and/or their variations between
the input and output images or with respect to an ideal image, taken as gold-
standard. Many measures have been designed so far to characterize perceptually
image enhancement (see e.g. [9,11,19]), while to the best of our knowledge,
few work has been done to investigate the impact of the perceptual changes in
machine vision applications.

In this work we present an empirical evaluation of the image enhancement
in the specific context of unsupervised image retrieval. In this framework, image
enhancement is often needed to provide a rich and reliable description of the
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visual content to be matched under many different circumstances, including dif-
ficult conditions due for instance to a wrong set-up of the camera parameters
(e.g. low resolution or low exposure time) or to bad illumination (e.g low-light
or back-light) that may adversely affect the detail visibility. In our study, we
consider six image enhancers and two image retrieval algorithms. We use each
enhancer as pre-processing step of each retrieval routine and we study how the
enhancement affects the retrieval performance on a set of images with and with-
out enhancement. To this purpose, we analyze how improving a set of percep-
tual features (i.e. image brightness, contrast, regularity and color distribution
entropy) may influence the retrieval performance that is here measured in terms
of number of image descriptors, correct matches and their spatial distribution,
and retrieval dissimilarity score.

The enhancers considered here have been chosen among many others avail-
able in the literature since they are representative of three different method-
ologies: statistical local or global analysis (histogram equalization (HE) and
contrast-limited adaptive histogram equalization (CLAHE)), spatial color pro-
cessing with random or deterministic feature sampling (the Milano Retinex algo-
rithms Light-RSR [4] and STAR [13]), and reflectance/illuminance image decom-
position in constrained domains (LIME [8] and NPEA [20]).

The image description and matching algorithms used here are SIFT [14] and
ORB [5], two well known and widely employed methods that, just because based
on key-point extraction, require a good visibility of the image details.

We conducted our empirical analysis on the dataset MEXICO recently pub-
lished on the net [3]. This dataset consists of 40 scenes of real-world indoor and
outdoor environments characterized by issues challenging for both the enhance-
ment and retrieval tasks, like the co-existence of dark and bright regions at dif-
ferent proportions, back-light, shadows, chromatic dominants of the illuminant,
presence regions with different granularity, from uniform to highly textured.

Our study entails the following contributions: (1) it shows that image retrieval
benefits from image enhancement, that enables a richer and more uniform
description and matching; (2) it provides a general scheme to evaluate and char-
acterize any image enhancer from an application viewpoint; (3) it promotes an
aware use of enhancement techniques in the important field of image descrip-
tion and comparison; (4) finally, since carried out on a public image dataset, it
enables further comparison with other methods.

2 Evaluated Algorithms for Image Enhancement

In this Section we briefly describe the six image enhancers considered in our
empirical analysis. In the following, we grouped them in three classes upon the
methodology and the assumptions they use.

Statistic-Based Image Enhancers - The histogram equalization (HE) and
the contrast-limited adaptive histogram equalization (CLAHE) enhance any
input image by stretching the probability density functions of one or more image
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components in a given color space. In the RGB space, considered here, HE pro-
cesses the R, G, B channels separately and adjusts the channel intensities to
flatten as much as possible the intensity histogram. To this purpose, HE maps
any intensity value k of the channel I to the value T (k) given by:

T (k) = floor
(
255

k∑
i=0

h(i)
)
, (1)

where function floor rounds its argument to the nearest greatest integer value
and h is the histogram of I normalized tp sum up to 1. CLAHE is similar to
HE, but works on a set of image patches by redistributing their pixel intensities
so that their histogram bins do not exceed a pre-defined threshold (called clip
limit) that prevents the over-enhancement of uniform image areas.

Retinex Inspired Image Enhancers - Milano Retinexes [17] are spatial color
algorithms derived by Retinex theory [12] and thus related to human color vision.
They enhance any real-world image by processing spatial and visual features
extracted independently from each color channel, according to this equation:

L(x) =
I(x)
w(x)

, (2)

where L is the so-called lightness, i.e. the enhanced version of the channel I, x
is an image pixel and w(x) ∈ (0,+∞) is an intensity level named local reference
white at x. The value of w(x) is computed by processing a set of intensities
(in some implementations along with other features) sampled from a neighbor-
hood N(x) of x. Milano Retinexes provide different levels of image enhancement,
since the value of L(x) depends on the spatial sampling of N(x), on the features
selected from N(x) and on the mathematical expression of w(x). Here we con-
sider Light-RSR [4] and STAR [13] for their computational efficiency.

For each pixel x, Light-RSR samples N(x) by a random spray, i.e. by a set
of m pixels randomly selected with radial density around x. The value L(x) is
obtained by dividing the intensity I(x) by the maximum intensity over the spray
and by smoothing and blurring the result in order to reduce the chromatic noise
due to the random sampling.

STAR extracts the features contributing to w(x) from M regions R1, . . . , RM

obtained by segmenting I with [7]. Precisely, from each segment Ri, STAR selects
the maximum intensity I(Ri) and the set S(Ri) of pixels which are most internal
to Ri. For any x ∈ Ri, STAR computes the mean value u(x) of the intensities
I(Rj) > I(x), each of them weighted by a function inversely proportional to
the minimum Euclidean distance between S(Ri) and S(Rj). The value w(x) is
obtained by dividing u(x) by the sum of the weights contributing to w(x).

Image Enhancers Based on Illuminant Estimation - Both the algorithms
NPEA [20] and LIME [8] rely on the image formation model that represents the
color image I as the product of the reflectance R of the materials depicted in
the scene and the illumination I. Precisely, for any pixel x of I,

I(x) = R(x)I(x). (3)
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In this model, I and R express respectively the low- and the high- frequencies of
the image. Discounting I from I allows to retain significant image details while
smoothing unessential details, therefore it is a way to enhance the image. NPEA
and LIME are grounded on this principle. They estimate I in a constrained
domain, since in general the computation of I and R from I is an ill-posed prob-
lem. Both NPEA and LIME start from a coarse estimate of I as the maximum
intensity over the color channels, then they refine this estimation according to
different assumptions. Precisely, NPEA hypotheses that the reflectance is limited
to a specific range and that the local relative order of the image intensities (i.e.
the image naturalness) slightly changes over adjacent regions. LIME assumes the
dark prior channel hypothesis [10] along with slight variations of the illuminant
over the image. In addition, LIME imposes the fidelity between the coarse and
the final estimation of I. In NPEA, the enhanced image E is obtained as the
product E(x) = Re(x)σ(Ie) where Re is an estimate of R obtained by dividing
I by the estimate Ie of I and σ is a smoothing function introduced to preserve
image naturalness. In LIME, no reflectance is estimated, and E is computed
from Eq. (3) by as the pixel-wise ratio between I by the estimated illumination
I. Of course, division by zero is always prevented.

3 Evaluated Methods for Unsupervised Image
Description and Matching

This section describes the main principles and characteristics of SIFT [14] and
ORB [5]. The goal of these algorithms is to match the content of a set of images
to identify the common image regions. This is achieved in two phases: (a) feature
extraction, i.e. identification of salient and locally distinguishable regions of the
image, called key-points; (b) feature description, i.e. the computation and match-
ing of the descriptors, which are discrete representations summarising the local
structure around the detected key-points. The descriptors, in order to be effec-
tive, should be invariant to variations such as rotating, scaling and re-lighting.

Scale Invariant Feature Transform (SIFT) - Given an image I, SIFT builds
up a pyramid structure whose base level contains the image I at full resolution,
while the higher levels contain versions of I sequentially down-sampled. SIFT
smooths each down-sampled version Il of I by n Gaussian filters with increasing
variance and computes the so-called differences of Gaussians, which encode the
pixel-wise differences between the n − 1 pairs of subsequent Gaussian smoothed
versions of Il. The key-points are defined as the corners corresponding to local
maxima of the differences of the Gaussians within the pyramid. Every key-point
is then identified by the quadruple <p, s, r, f>, where p is the key-point position
in I, s is the scale (pyramid level), r is the orientation and f is the descriptor,
which is a vector of 128 elements encoding the distribution of the orientation
of the image gradients in the 16 × 16 window W (x) centered at p. To make
f invariant to rotations, the dominant orientation of the gradients in W (x) is
computed and used to rotate the image before computing f .
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In SIFT, the dissimilarity measure between two key-points is defined as the
L2-distance between their descriptors.

Oriented FAST and Rotated BRIEF (ORB) - ORB is a combination
of the feature extractor FAST [18] and the feature descriptor BRIEF [6] with
some modifications which enable multi-scale matching and guarantee rotation
invariance. In FAST, a pixel x is a key-point if its intensity exceeds by a pre-
defined threshold the intensities of a set of pixels y1, . . . , yn equi-spaced on a
circumference Γ(x) centered at x. BRIEF associates to each FAST key-point
x the n- dimensional vector whose i-th entry is zero if I(x) < I(yi) and one
otherwise. To achieve invariance against re-scaling, ORB detects the FAST key-
points (that are corners) at multiple scales. Moreover, for each key-point x,
ORB defines the orientation θ(x) of x as the angle between x and the intensity
weighted centroid of a circular region C(x) around x. Finally, to grant robustness
to rotation and noise, ORB computes the BRIEF descriptors of x on the patch
C(x) steered by θ(x) and smoothed by a Gaussian filter.

In ORB, the dissimilarity measure between two key-points is defined as the
Hamming distance between their binary descriptors.

4 Evaluation

We assess the performance of each image enhancer by accounting for the varia-
tions of both the perceptual features and the retrieval accuracy.

Evaluation in Terms of Perceptual Changes - We quantify numerically the
perceptual changes by four features, which reflect perceptual properties usually
modified by an image enhancer: mean brightness, multi-resolution contrast [16],
histogram flatness and NIQE [15].

Given a color image J , the mean brightness B of J is the mean value of the
intensities of the mono-chromatic image B, obtained by averaging pixel by pixel
the channel intensities of J . The multi-resolution contrast C is the average of the
mean contrasts of Z images B1, . . . ,BZ obtained by half-scaling B sequentially.
Here, the mean contrast of Bs (s ∈ 1, . . . , Z) is the average value of the pixel
contrasts C(Bs(x)) with x ∈ Bs, where C(Bs(x)) is the mean value of the dif-
ferences |Bs(x) − Bs(y)| with y belonging to a 3 × 3 window centered at x. The
histogram flatness F measures the entropy of the probability density function h
of B as the L1 difference between h and an uniform probability density function.
Finally, NIQE [15], here denoted by N , is a measure of image naturalness: it
quantifies departures of J from image regularity, which is defined in terms of
local second-order statistics.

Usually, an image enhancer increases the values of B and C, while decreases
those of F and N , namely it makes the input image brighter and more contrasted,
while it flattens its color distribution and smooths local irregularities. We observe
that the exact amount of B, C, F and N and their variation after enhancement
depend on the image at hand. In particular, for already clear images, the varia-
tion of B, C, F and N are negligible, while they are remarkable for unreadable
images.
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Evaluation in Terms of Image Description and Matching - We consider
a dataset D with n indoor and outdoor scenes, each of them represented by
m images differing to each other only for the exposure time under which they
have been captured. We define the reference of each scene as the image with
the lowest value of F : this criterion guarantees that the reference has a good
detail visibility, being its brightness distribution the most uniform among those
of that scene. We describe the references and the queries by SIFT and ORB with
and without enhancement, then we match each input (enhanced, resp.) query
Q against the corresponding input (enhanced, resp.) reference R. We evaluate
the description and matching performance of SIFT and ORB by the following
measures:

– the percentage Nd of images of D described by at least one key-point: if
Nd < 100%, then some images have no key-points;

– the numbers KR and KQ of key-points detected respectively on R and Q:
in general, when KQ � KR, Q is poorly described with respect to R; when
KR � KQ, the query is over-described and this is often due to a high percent-
age of noisy pixels that are wrongly detected as key-points; when KQ � KR,
R and Q are likely described similarly, but of course this does not grant that
the key-points of R and Q are effectively similar;

– the number Mg of key-points of Q matching key-points of R with the same
position on the image (correct matches);

– the number Mb of key-points of Q matching key-points of R with different
position on the image (wrong matches);

– the mean dissimilarity ratio σ of Q, computed as follows: we match each
key-point x of Q to the key-points of R, we order the key-points of R by
their dissimilarity with x (from low to high) and we compute the ratio σ(x)
between the first and second dissimilarity scores in the ranked list of key-
points of R; σ is the average of the ratios σ(x) where x is a key-point of Q
correctly matched; the lower σ, the higher the discrimination capability of
the algorithm is;

– the flatness S of the spatial distribution of Mg over the image: to this purpose,
we partition each query Q in four rectangular, non overlapping blocks Q1, Q2,
Q3, Q4 whose top left corners are defined respectively by (0, 0), (0, W /2),
(H /2, 0), (H /2, W /2), where H and W denote the height and width of Q;
the flatter the distribution of the correct matches over these blocks, the more
uniform the image description and matching and the higher the robustness
of the retrieval algorithm to occlusions are.

The exact values of Nd, KR, KQ, Mg, Mb, σ depend on the image at hand: for
instance, almost uniform images have a low number of key-points that do not
vary by enhancement. Nevertheless, we expect that the use of an enhancer as
pre-processing step of description and matching procedures increases the values
of Nd, KR, KQ, Mg and σ, while decreases the value of S. As a drawback, in some
cases, the enhancement may increase Mb since it may highlight noisy pixels.

Finally, we also report the retrieval performance of SIFT and ORB obtained
by comparing the input (enhanced, resp.) queries versus the input (enhanced,
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resp.) references without the constraint on the spatial correspondence between
query and reference key-points.

Fig. 1. (a) Some scenes from MEXICO. (b) A scene from MEXICO taken with increas-
ing exposure times and the corresponding values of F . The lowest value of F (in the
red box) identifies the reference image of this scene. (Color figure online)

5 Experiments, Results and Conclusions

In our test we employed the dataset MEXICO (Multi-Exposure Image COllec-
tion) [3], which consists of 40 scenes of indoor and outdoor environments cap-
tured by the FLIR camera [1] and each represented by 10 images acquired with
increasing exposure time, ranging from 3 to 30 ms with regular steps of 3 ms (see
Fig. 1). In all these images, the blocks Qi’s are not uniform. As already men-
tioned in Sect. 1, these scenes present challenging issues for image enhancement,
description and matching, like dark and bright regions at different proportions,
surfaces differently textured, several light conditions, including shadows, color
cast, back-light. The parameters of STAR, LIME and NPEA are set as in their
original paper, the clip limit of CLAHE is 8, and the number of spray pixels
of Light-RSR is 250. We exploit the ORB and SIFT C++ routines included in
OpenCV library [2]. We notify that the implementation of ORB sets to 500 the
maximum number of key-points to be extracted from any image.

Figure 2 reports the distributions of the perceptual features B, C, F , N for
the MEXICO images. By analyzing their joint distributions, we observed that
too low and too high values of B, reported on very dark and saturated image
regions, correspond to low values of C (i.e. low visibility of the details) and high
values of F and N (i.e. poorly readable image content and noise). Table 1(a)
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Fig. 2. Distributions (with 16 bins on the x-axis) of the perceptual features of MEX-
ICO.

shows the mean values of B, C, F , N broken down by enhancers. On average,
all the enhancers we considered increase the values of B and C, while decrease
those of F . The mean value of N obtained on the MEXICO pictures without
enhancement (case ‘INPUT’) is smaller than that output by all the enhancers,
except for HE and CLAHE that generally tend to over-enhance the images and
in this way introduce irregularities and emphasize noise.

For all the cases considered here, both SIFT and ORB described the refer-
ences of MEXICO by at least one key-point, i.e. for the references Nd = 100%.
When no enhancement is used, both ORB and SIFT return a value of Nd smaller
than 100%, meaning that no key-points have been detected on some queries
(see Fig. 3, left for an example). Precisely, ORB and SIFT cannot describe the
13.89% and the 14.17% of the queries. On the contrary, all the enhanced queries
are described by at least one key-point (i.e. Nd = 100%), with KQ ranging over
[183, 500] for ORB and over [28, 7142] for SIFT.

Increasing the contrast is the key-point to improve the performance of ORB
and SIFT, since these algorithms are based on the detection of key-points defined
in terms of local intensity variations.

We observe that both too dark and saturated image areas present a low
contrast value: while enhancers can improve the detail visibility in the dark
regions, they cannot recover the visual signal in the saturated portions. There-
fore, the values of KR, KQ, Mg and σ are higher on the enhanced versions of
the queries that originally have been acquired with low exposure time or display
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dark regions than of those that originally have an already good detail visibil-
ity or that contains saturated areas. The main drawback of image enhancement
is due to the generation of many false positive key-points: the enhancement of
dark regions where the visual signal is corrupted due to difficult light conditions,
often magnify also noisy pixels that are erroneously detected as key-points and
thus matched against the reference. As a consequence, the value of Mb increases
proportionally to KQ, determining mismatches that should be removed by post-
processing. This phenomenon is particularly evident for HE and CLAHE, that,
as already observed above, yield the highest value of N .

Fig. 3. On top: examples of key-point matching between a query and its reference by
ORB (left) and SIFT (right) without enhancement. No key-points are detected on left,
while the key-points detected on right are not uniformly distributed over the images.
On bottom: key-point matching by ORB (left) and SIFT (right) on the images on top
enhanced by STAR: the key-points have been uniformly detected over the images.

The spatial analysis of the distribution of Mg shows that the enhancement
enables a more uniform image description, making the matching process more
robust to occlusions with respect to the case ‘INPUT’ (see Fig. 3, right). In fact,
as displayed in Tables 1(b) and (c), for all the enhancers, the values of S reported
by ORB and SIFT are smaller than the case ‘INPUT’. Finally, Tables 1(d) and
(e) show that the description of the image is remarkably more uniform when an
enhancer is applied. The best results are in general obtained by SIFT.

Additional tests were performed to measure the accuracy of the key-point
matching when the queries are matched against all the references. To this pur-
pose, for each image group e (‘INPUT’, ‘HE’, . . . , ‘NPEA’) let Qe and Re be the
sets of the queries and the references of e. We match each query qe ∈ Qe against
each reference re ∈ Re, and we compute the dissimilarity between qe and re as
the mean value of the dissimilarities between the key-points of qe matched with
those of re, without the check on their spatial location. Table 1(f) shows the rate
ρ of image retrieval on the different image groups, i.e. the number of queries
assigned to the correct reference divided by the number of queries. The value of
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ρ obtained on ‘INPUT’ is smaller than that achieved by enhancing the images,
apart from ‘NPEA’ where noisy pixel adversely affect the SIFT performance.
The bad results on ‘INPUT’ depend partly on the existence of dark images in
which neither SIFT or ORB did not extract and match any feature.

We conclude that our experiments proved that modifying perceptual features
like brightness, contrast, color distribution entropy and image regularity gener-
ally increases the description and matching performance since the enhancers
allow to highlight the relevant details over the whole image. Future work will
address the analysis of image enhancement in other machine vision applications.

Table 1. Evaluation summary

(a) Dataset Characterization
Algorithm B C F [×10−3] N
INPUT 51.97 9.08 5.36 4.20
HE 132.62 27.33 2.95 4.26
CLAHE 93.86 23.90 2.88 4.23
Light-RSR 102.65 15.92 3.80 3.94
STAR 121.56 14.97 4.11 3.81
LIME 128.07 17.62 3.68 4.02
NPEA 121.37 15.95 4.15 3.96

(b) Results of ORB
Algorithm Nd KR KQ Mg Mb σ S

INPUT 86.11 469 272 133 37 0.51 0.78
HE 100 500 500 232 73 0.50 0.59
CLAHE 100 500 499 194 89 0.58 0.73
Light-RSR 100 456 487 237 79 0.52 0.71
STAR 100 499 481 233 75 0.52 0.65
LIME 100 499 493 204 93 0.58 0.66
NPEA 100 488 493 161 103 0.66 0.76

(c) Results of SIFT
Algorithm Nd KR KQ Mg Mb σ S

INPUT 85.83 747 304 150 21 0.40 0.73
HE 100 2240 3741 545 333 0.54 0.45
CLAHE 100 3705 3259 657 402 0.59 0.48
Light-RSR 100 961 1169 349 82 0.46 0.54
STAR 100 1016 1123 365 88 0.47 0.51
LIME 100 1629 1415 483 145 0.54 0.49
NPEA 100 1625 2442 357 175 0.60 0.54

(d) Missed Block Matching [ORB]
Algorithm Q1 Q2 Q3 Q4

INPUT 133 117 129 114
HE 10 23 6 31
CLAHE 28 34 26 56
Light-RSR 41 38 43 44
STAR 20 27 29 25
LIME 26 27 21 33
NPEA 42 36 47 70

(e) Missed Block Matching [SIFT]
Algorithm Q1 Q2 Q3 Q4

INPUT 121 115 124 119
HE 1 9 0 3
CLAHE 1 13 4 7
Light-RSR 11 20 1 9
STAR 4 16 7 12
LIME 0 14 5 12
NPEA 2 12 9 11

(f) Retrieval Results

Algorithm ρORB ρSIFT

INPUT 0.769 0.731
HE 0.992 0.767
CLAHE 0.986 0.983
Light-RSR 0.925 0.853
STAR 0.969 0.881
LIME 1.000 0.917
NPEA 0.856 0.639
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