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Ricardo J. Araújo1,2(B) , Jaime S. Cardoso1,3 , and Hélder P. Oliveira1,2
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Abstract. The segmentation of retinal vessels in fundus images has
been heavily focused in the past years, given their relevance in the diag-
nosis of several health conditions. Even though the recent advent of deep
learning allowed to foster the performance of computer-based algorithms
in this task, further improvement concerning the detection of vessels
while suppressing background noise has clinical significance. Moreover,
the best performing state-of-the-art methodologies conduct patch-based
predictions. This, put together with the preprocessing techniques used in
those methodologies, may hinder their use in screening scenarios. Thus,
in this paper, we explore a fully convolutional setting that takes raw fun-
dus images and allows to combine patch-based training with global image
prediction. Our experiments on the DRIVE, STARE and CHASEDB1
databases show that the proposed methodology achieves state-of-the-art
performance in the first and the last, allowing at the same time much
faster segmentation of new images.
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1 Introduction

The retina is a tissue layer in the eye of vertebrates that participates in the pro-
duction of nerve impulses that go to the visual cortex of the brain. Its vascular-
ization is easily assessed in a non-intrusive manner by photography-based mech-
anisms, such that fundus imaging is often used as a diagnostic means of medical
conditions affecting the morphology of vessels, such as hypertension, diabetes,
arteriosclerosis, and cardiovascular disease [6]. It has been reported that 10%
of all the diabetic patients have diabetic retinopathy, the main cause of blind-
ness among people in the Western civilizations. Therefore, an early treatment
is essential, and given that manual analysis by experts is very time consuming,
automated vessel analysis is crucial for inclusion in screening programs [8].

This clinical relevance lead to the emergence of a large number of both
unsupervised and supervised methodologies. Unsupervised approaches started
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to appear before the advent of public databases and use theory from, one or a
combination of, matched filters, vessel tracing, mathematical morphology, and
scale-space representation [1,15,16]. Works resorting to supervised learning use
manual annotations and different learning algorithms to find proper mapping
functions between hand-crafted features and target segmentation [3,12]. The
advent of deep learning further improved the performance of retinal vessel seg-
mentation. Even though this approach is heavily dependent on labeled data and
available databases contain at most dozens of images, researchers resort to divid-
ing retinal images into small patches and transform the problem into a patch
classification one [11]. However, this has implications at prediction time, as a
patch has to be extracted for each pixel, leading to increased computational
costs. This, associated with image preprocessing, which is also commonly con-
ducted, may hinder the use of such systems in scenarios where a large number
of images needs to be analyzed on the spot, as is the case of screening programs.

In this paper, we propose a Fully Convolutional Network (FCN) design that
is able to segment an unseen image at a single step, even if it is trained in a
patch-wise fashion (see Fig. 1).

Fig. 1. Fully convolutional networks take images of arbitrary size, allowing to combine
patch-based training and image-based prediction.

In practice, an adequate preprocessing facilitates the learning process, even
though theory supports that a high number of non-linearities is able to adapt to
the structure of data. Thus, in our experiments, we use raw color fundus images,
to understand if this network is able to improve the state-of-the-art concerning
vessel detection and background noise suppression, and simultaneously keep the
prediction process as simple as possible. A FCN was proposed in the past [2],
however its performance is significantly inferior to the best performing methods,
indicating that other specific network design options may not have been ideal
for retinal vessel segmentation.
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1.1 Main Contributions

The main contributions of this work are:

– A neural network design allowing fast predictions on new data, which is crucial
in all applications with high throughput of data, as is the case of screening
programs;

– A methodology achieving high performance even being applied to raw fundus
images, thus avoiding the need of using expensive preprocessing methods for
image normalization.

1.2 Document Structure

This Section summarized the relevance and previous work regarding the topic of
vessel segmentation in retinal fundus images, and the main contributions of our
work; in Sect. 2, we discuss in detail the different options we took for designing
the proposed model; in Sect. 3 we briefly describe the datasets used to assess
the performance of our methodology, we introduce the conducted experiments
and discuss the results; finally, Sect. 4 concludes the work and discusses possible
directions for future research.

2 Methodology

Here, we discuss the motivations and preliminary empiric findings that led us
into designing a fully convolutional network adapted to the specific task of vessel
segmentation in raw color fundus images.

2.1 Fully Convolutional Network for Vessel Segmentation

Convolutional neural networks (CNNs) have revolutionized the field of computer
vision, given their combination of deep hierarchical feature extraction (sequence
of convolutional layers) and classification (fully connected layers) blocks. This
was the type of deep neural network used in [11], where very small patches of
the retina were fed into the model and it outputted the probability of the center
pixel being a vessel. This highlights one of the problems of using typical CNNs
for segmenting vessels, which is the need to divide a given image into a very
large number of small patches and classify each of them, yielding a tremendous
computational cost. A second problem is that fully connected layers force all the
input images to have the same size.

A FCN design is a more adequate choice for segmentation problems, since
it does not use fully connected layers. Thus, it is not mandatory to divide an
image in order to obtain a complete segmentation map, which is crucial whenever
we require fast predictions, as is the case of retinal screening programs, where
a high volume of data is quickly generated. The inputs may also have varying
size, making this design much more adaptable to different imaging conditions.
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It allows us to train on smaller patches of the images and later still be able to
obtain single-pass predictions of the entire images, as is represented in Fig. 1.
Note that performing patch-wise training is an engineering option which facili-
tates avoiding wasting computational effort with portions of the images that do
not contain information of the retina fundus.

2.2 Specific Design Considerations

After motivating the use of a FCN design for the segmentation of retinal vessels,
now we delve into more specific aspects of the proposed network architecture,
discussing some options we took based in previous works and empirical findings.

Spatial Resolution. Pooling or strided convolutions are commonly used to
induce higher-level features to encode more neighborhood information. Recent
results [11] suggest that pooling operations seem to not improve the performance
of networks that are trained in small images. In preliminary experiments, we
found that indeed a single-resolution deep network was more capable than a
Unet-like model when extracting small capillaries. Even though the latter is
able to combine low- and high-scale features, it seems that a deeper network at
a fine scale is able to obtain better representations of small structures of interest,
as is the case of very small vessels. Thus, in this work, the image resolution was
kept across the entire network, contrarily to the previously proposed FCN [2].

Activation Units. All intermediate non-linearities were given by a Leaky Rec-
tified Linear Unit (Leaky ReLU):

f(x) =

{
x if x > 0,

ax otherwise
(1)

where x represents the outcome of the previous convolution and a was set to 0.2.
It was used over a ReLU just to allow the network to learn even for negative
inputs. In the last layer, we used a Sigmoid activation unit, since we are dealing
with a pixel-wise binary problem.

Batch Normalization. Whenever the statistics at test time differ from the
ones found during training, batch normalization becomes problematic. In fact,
this is the case when a model is trained in small retinal patches and at test time
is applied to entire retinal images, whose statistics will be inevitably different. In
preliminary experiments, we found that using batch normalization was indeed
hurting the performance of the models, thus it was not considered in the final
design.

Dropout. Turning off some computational connections along the network was
useful to create more redundancies and thus obtain more robust models. We
found it was also useful to apply dropout at the initial levels of the model, in
order to add some noise to the initial representations.
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Loss Function. Neural networks targeting binary segmentation problems usu-
ally minimize the Binary Cross Entropy (BCE) loss, a pixel-wise criterium that
exponentially increases as the network becomes more confident when commit-
ting a mistake. Note however, that this loss is agnostic to class imbalance, thus
it naturally biases models to be more confident identifying the most common
class, which in our case, is the background. We are interested in alleviating this
effect, in order to obtain models with good sensitivity and that do not simply
ignore narrow vessels. Weighting differently each class is an option we consider
for reaching fairer models. Furthermore, we used the recently proposed focal
loss [10], an extension to the BCE loss that puts more focus in the misclassified
examples:

FL(p) = −
(
y · α(1 − p)γ · log(p) + (1 − y) · (1 − α) · pγ · log(1 − p)

)
(2)

where p ∈ [0, 1] is the probability of class 1 (vessel) outputted by the network,
y ∈ {0, 1} is the binary target variable, γ ≥ 0 is a focusing parameter, and
α ∈ [0, 1] allows to give more weight to samples of a certain class. γ was set
to 2 in this work. Even though the focal loss by itself is also agnostic to class
imbalance, by performing hard training, it helps inducing the model to not ignore
the potential hardest cases, such as small capillaries.

After all these considerations, architecture and hyper-parameter tuning was
conducted (see Sect. 3.3). The final design we considered for segmenting vessels
from raw color fundus images is represented in Fig. 2.

Fig. 2. Single-resolution fully convolutional network used in this work for segmenting
vessels in raw fundus images.

3 Experiments and Results

The datasets and metrics used to assess the performance of our model will be
briefly described here, then we provide details regarding how hyper-parameter
tuning was conducted to obtain the final neural network design, and finally, we
present and discuss the achieved results.
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3.1 Datasets

Several public benchmarks of retinal vessel segmentation are available. In
this paper, we conducted experiments in three of the most commonly used
datasets among the literature works, which are the DRIVE [14], STARE [5], and
CHASEDB1 [13] datasets.

The DRIVE database results from a diabetic retinopathy screening program
in The Netherlands. Among the collected images, 40 photographs have been
randomly selected, 7 of which showing signs of early diabetic retinopathy. The
images were acquired using a Canon CR5 non-mydriatic 3CCD camera with a
45 degree field of view and later digitized to 584 × 565 pixels.

The STARE database comprises 20 retinal images captured by a TopCon
TRV-50 fundus camera and digitized to 605 × 700 pixels. Half of the images are
pathological.

Finally, the CHASEDB1 dataset includes retinal images of children from the
Child Heart and Health Study in England. 28 fundus images of size 960 × 999
are available, with the particularity that central vessel reflex is abundant.

3.2 Model Evaluation

To evaluate how well a map of vessel probabilities fits the ground truth, we
calculated the metrics that are commonly used in this task, which are accuracy,
sensitivity, and specificity:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

where TP, FP, FN, and TN are the true positive, false positive, false negative, and
true negative detections. A limitation of these metrics is that they are evaluated
at a threshold of 0.5. Thus, we also considered the commonly used area under
the receiver-operator curve (AUC), which seems more ideal for this task, as it
better depicts how well a method separates both classes.

3.3 Implementation Details

The architecture and hyper-parameters were tuned by randomly picking three
images from DRIVE’s training set for validation purposes and using the remain-
ing ones to train varying model configurations, according to the considerations
detailed in Sect. 2. Color images were solely normalized to the range [0, 1]. At
each training epoch, 500 batches of N patches of size M × M were fed to the
network. Patches were randomly extracted from images at valid positions, where
valid means the center pixel belongs to the retinal fundus. Data augmentation
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was conducted via random transformations including vertical or horizontal flip-
ping, and rotations in the range [−π/2, π/2]. We used the Adam optimizer with
the parameters as provided in the original work [7], with the exception of the
learning rate, which was initialized to 1e−4 and decreased to half every time the
validation loss did not decrease for 10 epochs. A loss decrease was only consid-
ered if it surpassed the threshold of 1e−4. Early stopping occurred if there were
30 epochs without improvement. Our preliminary experiments achieved best per-
formance in the validation set using the network design present in Fig. 2, and
for N = 16 and M = 64, even though these hyper-parameters did not have a
significant impact in the performance of the model.

We trained our final FCN design for 30 epochs. Starting from epoch 10, we
performed linear learning rate decay by multiplying it by a constant of 0.75, and
after epoch 20 the constant was changed to 0.5. Concerning DRIVE, we trained
the network in the 20 images of the training set and evaluated it in the 20 images
comprising the test set. Regarding STARE and CHASEDB1, datasets with few
images and where a prior division does not exist, we followed the same approach
of other researchers [11], which resorted to the leave-one-out validation.

3.4 Results and Discussion

The results obtained by conducting the described methodology in the referred
databases are present in Table 1, along with the performance of state-of-the-art
approaches. It is important to notice that the method of Azzopardi et al. [1],
where a Combination of Shifted Filter Responses is used to enhance bar-like
structures, belongs to the unsupervised category. Additionally, the work of Fraz
et al. [3] uses traditional machine learning, where decision trees are ensembled to
predict vessel probability from hand-designed features related with orientation
and contrast. The rest of the methods included use deep learning techniques.
Dasgupta and Singh [2] introduce a FCN design that takes preprocessed images,
Fu et al. [4] couple a CNN with a Conditional Random Field to better model long-
range interactions, Li et al. [9] perform patch-based segmentation using 3 fully
connected layers having 400 neurons each and conduct pre-training by means
of an autoencoder, and, finally, Liskowski and Krawiec [11] propose different
variants of CNNs for conducting patch-based classification.

The analysis of the results shows that our FCN design is able to combine
efficiency and strong predictive capabilities, even when using raw fundus images.
By comparing the AUC of the methodologies, it is possible to conclude that
the proposed methodology achieved superior performance in the DRIVE and
CHASEDB1 databases. We believe that the performance in the STARE database
was hindered due to the high variability of the raw color information among the
images. This may indicate that preprocessing techniques leading to more uniform
images are relevant in this dataset. Regarding DRIVE, we also tested α = 0.6
(give more weight to the vessel class) to better show the compromises we can
get between sensitivity and specificity. The results show that we were capable of
reaching better compromises in terms of vessel detection and noise suppression
in this dataset, as for similar specificity we achieved higher sensitivity than the
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Table 1. Performance of the proposed methodology and state-of-the-art approaches in
the DRIVE, STARE, and CHASEDB1 databases. Accuracy, sensitivity and specificity
are abbreviated as acc, sen, and spe, respectively.

Method DRIVE STARE CHASEDB1

AUC acc sen spe AUC acc sen spe AUC acc sen spe

Azzopardi et al. [1] 96.1 94.4 76.6 98.1 95.6 95.0 77.2 97.0 94.9 93.9 75.8 95.9

Dasgupta and Singh [2] 97.4 95.3 76.9 98.0 – – – – – – – –

Fraz et al. [3] 97.5 94.8 74.1 98.1 97.7 95.3 75.5 97.6 97.1 94.7 72.2 97.1

Fu et al. [4] – 95.2 76.0 – – 95.8 74.1 – – 94.9 71.3 –

Li et al. [9] 97.4 95.3 75.7 98.2 98.8 96.3 77.3 98.4 97.2 95.8 75.1 97.9

Liskowski and Krawiec [11]

balanc.-SP, s = 3 97.9 95.1 84.6 96.7 99.3 96.7 92.9 97.1 98.2 94.4 91.6 94.7

balanc.-SP, s = 5 97.9 95.3 81.5 97.5 99.3 97.0 90.8 97.7 98.4 95.8 87.9 96.7

no-pool-SP, s = 5 97.9 95.4 78.1 98.1 99.3 97.3 85.5 98.6 98.2 96.3 78.2 98.4

Proposed

α = 0.5 98.2 95.6 80.3 97.9 98.7 96.5 82.9 98.0 98.6 96.5 82.1 98.1

α = 0.6 98.2 95.4 85.0 96.9 – – – – – – – –

other methods. Note that by varying α, we could easily achieve models with very
high sensitivity or specificity, thus we stress that it is the compromise that is
relevant. Besides, this shows that the AUC metric is the most adequate to inspect
the true model’s capacity to distinguish both classes. We did not conduct this
experiment in the other databases, since the number of models that are trained
in a leave-one-out validation setting is very high. The use of focal loss over cross
entropy lead to an improvement of 0.2% points regarding the AUC metric, when
evaluating the system in the DRIVE database for α = 0.5. The other metrics
did not significantly change with this loss, meaning that it mostly induced the
system to become slightly more confident on its predictions. Then, this seems
to support that the single-resolution deep architecture was the main reason for
our system to significantly outperform the FCN proposed in [2]. Figure 3 shows
the best and worst predictions outputted by the proposed methodology for the
considered databases, regarding AUC. It is possible to visualize that the model
is able to cope with challenging imaging conditions, and even with the presence
of severe pathology (4th row of Fig. 3).

Using a Nvidia GeForce GTX 1080 Ti GPU, it took us 2.1, 2.7, and 6.5 s to
make a prediction for an image in DRIVE, STARE, and CHASEDB1 databases,
respectively. The method of Liskowski and Krawiec [11] takes on average 92 s
using the Nvidia GTX Titan GPU. Even though the GPUs are not identical,
this strongly suggests that our method is significantly faster, thus being more
adequate for real-time applications.
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best
DRIVE

worst
DRIVE

best
STARE

worst
STARE

best
CHASE

worst
CHASE

Fig. 3. Best and worst results for each database, concerning the AUC metric. From left
to right: raw color fundus image, probability map outputted by the proposed method-
ology, segmentation obtained by thresholding probabilities at 0.5, and ground truth.
(Color figure online)
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4 Conclusion

In this paper we proposed a fully convolutional network to perform vessel seg-
mentation in raw retinal fundus images. This design is more convenient and
efficient than state-of-the-art best performing approaches, as it allows to make
predictions for unseen images of different sizes at a single step, a trait that
becomes relevant in screening scenarios. Our results demonstrate that the pro-
posed method does not necessarily compromise the performance in this task, as
it was able to reach state-of-the-art performance in two out of the three tested
databases (DRIVE and CHASEDB1). In STARE, the raw images are signifi-
cantly different from each other, such that preprocessing may be necessary to
achieve better results. Thus, for future work, cost efficient preprocessing tech-
niques will be tested for analyzing whether the performance can be improved.
Semi-supervised learning will be also targeted, as a means of incorporating unla-
beled data in the training process and obtain models that generalize better.
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