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Abstract. Small-scale Unmanned Aerial Vehicles (UAVs) have recently
been used in several application areas, including search and rescue oper-
ations, precision agriculture, and environmental monitoring. Telemetry
data, acquired by GPSs, plays a key role in supporting activities in areas
like those just reported. In particular, this data is often used for the
real-time computation of UAVs paths and heights, which are basic pre-
requisites for many tasks. In some cases, however, the GPS sensors can
lose their satellite connection, thus making the telemetry data acquisition
impossible. This paper presents a feature-based Simultaneous Localisa-
tion and Mapping (SLAM) algorithm for small-scale UAVs with nadir
view. The proposed algorithm allows to know the travelled route as well
as the flight height by using both a calibration step and visual features
extracted from the acquired images. Due to the novelty of the proposed
algorithm no comparisons with other methods are reported. Anyway,
extensive experiments on the recently released UAV Mosaicking and
Change Detection (UMCD) dataset have shown the effectiveness and
robustness of the proposed algorithm. The latter and the dataset can be
used as baseline for future research in this application area.
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1 Introduction

Nowadays, robots and small-scale UAVs are used in several fields, such as SAR
[1,2], environment monitoring and inspection [3–6] and precision agriculture [7,8]
due to their low cost and easiness of deployment. These devices are equipped
with different sensors, such as gyroscope, accelerometer, compass, and GPS,
thus allowing to know the state of the UAV (e.g., breakdown occurrences, travel
speed, etc.) with a very high precision. During the execution of a task, it may
happen that the UAV loses the connection with the satellites, thus making it
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impossible to retrieve data such as the flight height, or to use the GPS coordi-
nates to know the overflown route. In robotics and computer vision, the most
common approaches to determine both position and orientation of the robot are
Simultaneous Localization and Mapping (SLAM) [9] and Visual Odometry (VO)
[10–12]. The simplest sensor that can be used in performing SLAM and VO is
the RGB camera. There are two main categories of works using a RGB camera:
methods using monoscopic cameras [13–18] or methods based on stereo camera
[19–21]. The major difference between stereo and monoscopic cameras is that
the former allows to feel the distance from objects within the scene, as if it had
a third dimension. Human vision is stereoscopic by nature due to the binocular
view and to our brain, which is capable of synthesizing an image with stereo-
scopic depth. It is important to notice that a stereoscopic camera must have at
least two sensors to produce a stereoscopic image or video, while the monoscopic
camera setup is typically composed by a single camera with a 360◦ mirror. When-
ever the scene-to-stereo camera distance is much larger than the stereo baseline,
stereo VO can be degraded to the monocular case, and stereo vision becomes
ineffectual [22]. Authors in [11] present the first real-time large-scale VO with
a monocular camera based on a feature tracking approach and random sample
consensus (RANSAC) for outlier rejection. The new upcoming camera pose is
computed through 3D to 2D camera-pose estimation. The work in [16] leverages
a monocular VO algorithm for feature points tracking on the world ground plane
surrounding the vehicle, rather than a traditional tracking approach applied on
the perspective camera image coordinates. Two real-time methods for simul-
taneous localization and mapping with a freely-moving monocular camera, are
proposed by the LSD-SLAM [17] and ORB-SLAM [18] algorithms. In [13], the
FAST corners and optical flow are used to perform a motion estimation task and,
subsequently, a mapping thread is executed through a depth filter formalized as
a Bayesian estimation problem. Other works, such as [14,15], propose a robust
framework which makes direct use of the pixel intensity, without exploiting a
feature extraction step.

In this paper, a feature-based SLAM algorithm for small-scale UAVs with a
nadir view is proposed. In detail, a first calibration step is performed to know
the ratio between pixels/meters and flight height. Then, during flights, key-
points extracted from the video stream are exploited to know if the flight height
changed, while the center of mass of the frames are used for route estimation.
Exhaustive experiments performed on the recently released UMCD dataset high-
light the robustness and the reliability of the proposed approach. To the best of
our knowledge, there are no works in literature that estimates both the trajec-
tory and the flight height of a UAV. Hence, no comparisons with other SLAM
algorithm are provided, and the obtained results are meant to be considered as
a baseline for future works.

The remainder of the paper is structured as follows. In Sect. 2, the proposed
method is described in detail. In Sect. 3, the performed experiments and the
obtained results are discussed. Finally, Sect. 4 concludes the paper.
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2 Proposed Method

The proposed method main idea is to exploit keypoint matching between two
consecutive video frames, received from the UAV, in order to determine the flight
height, while the frames center of mass is used to determine the overflown route.
A necessary condition for the algorithm correctness, is that features must always
be matched between frames, otherwise it is not possible to estimate the correct
flight height.

2.1 System Calibration

In order to find the relation between the spatial resolution of the RGB sensor
and the flight height, a calibration step is required. To perform this calibration, a
marker of known dimensions (e.g., 1×1 m) is placed on the ground and it is then
acquired at a known height (e.g., 10 m), through the UAV sensors. During this
process, the GPS sensor of the UAV is used to know the exact height. Markers
have been chosen for this step due to their robustness and easiness of recognition
within the observed environment [23,24]. With this procedure, it is possible to
compute the pixels/meters ratio needed to initialize the system. In Fig. 1, the
marker detected during the calibration step is depicted.

Fig. 1. System calibration step example. By knowing both the UAV height and the
marker size, it is possible to estimate the pixels/meters ratio which is a requirement
for the algorithm.

In case information about the camera focal length f is not available, this
calibration step also allows its estimation. Let us consider the height h of the
UAV during the calibration step, the marker to have a real size of w meters and
a pixel size at height h of p pixels. Then, f can be computed as follows:

f =
(h × p)

w
(1)

By knowing how to compute the focal length, the height estimation step can be
performed with any kind of sensor, as shown in the next Section.
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2.2 Flight Height Estimation

For the flight height estimation, keypoints extracted from the video stream
frames are used. The A-KAZE [25,26] feature extractor is adopted due to its per-
formance, allowing for a faster feature extraction with respect to SIFT, SURF,
and ORB [27]. In more details, features are extracted and matched between two
consecutive frames ft−1 and ft, creating two sets of keypoints Kt−1, Kt and a
set of matches Θt. Subsequently, the affine transformation matrix is computed
from these matches, and is used to determine the scale changes between key-
points. More thoroughly, if we have an incremental scale change it means that
a zoom in operation is performed, so the UAV is lowering the flight height. On
the contrary, if we have a decremental scale change it means that a zoom out
operation is performed, so the UAV is increasing the flight height. In the flight
height estimation, two goals are pursued:

– To filter the identified matches and exclude keypoints belonging to the fore-
ground component (i.e., dynamic elements within the scene) during the drone
movement estimation, in order to avoid moving objects negatively influencing
the height estimation;

– To estimate all altitude variations.

The first goal is obtained using the set of matches Θt, and the homography
matrix Ht that maps the coordinates of a keypoint k ∈ Kt−1 into the coordinates
of a keypoint k̂ ∈ Kt. The matrix Ht is computed applying the RANdom SAmple
Consensus (RANSAC) algorithm [28] on the matches contained in Θt. The re-
projection error in Ht can be minimized through the use of the Levenberg-
Marquardt optimization [29]. To find the keypoints belonging to the moving
objects present in the scene, the following check is performed for each match
(k, k̂) ∈ Θt:

γ =

{
1 if

√
(k − k̂)2 − √

(k − (Hk))2 ≥ ρ

0 otherwise.
(2)

where ρ is a tolerance applied on the difference between the estimated distance
obtained by homography and the estimated distance obtained by Θt. If ρ has
a low value, then a large number of keypoints found in the background result
as static and, consequently, many false positives can occur for the background
keypoint estimation. Instead, if ρ has a high value, the estimation of the keypoint
movements is less restrictive, but a large number of false negatives can occur.
According to [30], the value of ρ has been fixed to 2.0. In more details, if γ =
0, then the keypoint k̂ is a background keypoint, otherwise k̂ is a foreground
keypoint. Finally, all background keypoint matches are used to compose a new
filtered set of matches called Θ̂t.

In order to achieve the second goal, an affine transformation matrix A is
computed. Given three pairs of matches (ka, kb), (kc, kd), and (ke, kf ) ∈ Θ̂t with
ka, kc, ke ∈ Kt−1 and kb, kd, kf ∈ Kt, the A matrix can be calculated as follows:
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A =

⎡
⎣λx 0 τx

0 λy τy
0 0 1

⎤
⎦ =

[
xkb

xkd
xkf

ykb
ykd

ykf

] ⎡
⎣xka

xkc
xke

yka
ykc

yke

1 1 1

⎤
⎦

−1

(3)

The translations on the x and y axes are indicated by the τx and τy, respec-
tively. Drone altitude variations are estimated using the λx and λy, representing
the scale variation on the x and y axes. Once λx, λy values are computed, we
can multiply them by the original pixels/meters ratio to determine the UAV
flight height variation. Notice that, altitude changes cause zoom-in (or zoom-
out) operations in the frames acquired by the drone and, in those cases, we
obtain λx = λy. Also recall that in order to know the altitude variation, there
must always be a match between two consecutive frames, so that it is possible
to estimate the transformation matrix and the λx, λy values. Otherwise, it is
unfeasible to correctly estimate the variation.

Fig. 2. Example of route estimated with the proposed method. In 2(a), the mosaic of
the overflown area is shown, while in 2(b) the route estimates through frames center
of mass is depicted.

By using Eq. 1, it is possible to estimate the flight height h′ through the
triangle similarity:

w′ = λ × w (4)

h′ =
w′ × f

p
(5)

where λ can be either λx or λy.

2.3 Route Estimation

Concerning the UAV route estimation, centers of mass from the received video
stream frames are used. In order to know where the new center of mass must
be positioned with respect to the others, a reference coordinate system must be
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used. In the proposed method, we use the mosaic of the area overflown by the
UAV as reference for the centers of mass. By following the steps shown in [31],
a mosaic is built incrementally and in real-time in the following way:

1. Frame Correction: In this step, the radial and tangent distortions are removed
(if needed) from the received frame. To perform this step, a matrix containing
the calibration values of the camera is required, and it is computed by using
well-known methods [32];

2. Feature Extraction and Matching: In this step, keypoints are extracted from
the current video frame and the partial mosaic is built up to the previous
algorithm iteration. Then, features are matched together and a similarity
transformation matrix is generated;

3. Frame Transformation: The similarity transformation matrix generated at
the previous step is used to scale, rotate, and translate the received frame in
order to align it with the partial mosaic;

4. Stitching: The last step consists in merging together the frame and the partial
mosaic seamlessly, using some well-known techniques such as the multiband
blending [33].

For each new received frame, the coordinates of all the centers of mass are
recomputed. This is due to the fact that when a new frame is added to the
partial mosaic, space within the latter must be allocated for the new frame.
This operation is performed by appropriately translating the partial mosaic, as
well as the centers of mass of the frames composing it, in the new mosaic image.
Notice that the centers of mass can be associated with the real GPS coordinates
of the UAV frame acquisition. In this way, it is possible to map the estimated
route to the real world. In Fig. 2, an example of mosaic and the corresponding
estimated route is shown. To summarize, Algorithm 1 shows all the performed
steps for both route and flight height estimation.

3 Experiments

In this section, the results obtained in the performed experiments are reported.

3.1 Dataset

In our experiments, the recently released UMCD dataset [34] is used. The latter
provides 50 geo-referenced aerial videos that can be used for mosaicking and
change detection tasks at very low altitudes. The authors provide, together with
the videos and the GPS coordinates, a basic mosaicking algorithm that has
been used in our experiments as ground truth. In addition to the dataset, we
have acquired 12 new videos. The latter have been acquired by following the
same protocol of the used dataset, in order to have homogeneous testing data.
Moreover, the same drone used for building the UMCD dataset, i.e., the DJI
Phantom 3, has been used. Since within the dataset there are no videos with a
ground marker, the calibration step for those videos has been performed by using
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Algorithm 1. Steps performed by the proposed algorithm to estimate UAV
route and flight height.
Require: Video stream sent by UAV
Ensure: Estimated flight height and route overflown by the UAV
1: Estimate the pixels/meters ratio through calibration step
2: while UAV sends video data or it is impossible to match features do
3: Extract features from two consecutive frames
4: Match the features to create both the Θt set and A matrix
5: Compare A matrix with the matrix generated at the previous iteration in order

to determine the scale changes
6: Compute the center of mass for the received frame.
7: Use A matrix to align the new received frame with the mosaic generated up to

the current iteration
8: Translate the centers of mass of the frames in the correct position by using the

A matrix
9: Stitch the new frame to the mosaic generated up to the current iteration

10: end while

Fig. 3. Example of paths used for testing the proposed method. In 3(a), (b) and (c),
the ground truth data is reported, while in 3(d), (e) and (f) the estimated data is
shown. In the x and y axes the centers of mass coordinates are represented, while in
the z axis the flight height is shown.

the change detection procedure. This is possible due to the fact that the authors
also provide the real size of the objects, in conjunction with the videos. Finally,
through the given GPS file, it is possible to know the UAV flight height when in
proximity of an object, allowing to compute the pixels/meters ratio needed for
the calibration.
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3.2 Qualitative Results

For each test, a mosaic of the overflown area has been built to extract the center
of mass of each frame, and to estimate the flight route. Since the proposed
method relies on the mosaicking algorithm, whenever the mosaic generation
failed only a partial route and flight height estimation was given as a result. In
Fig. 3, some experimental results are shown. The Figs. 3(a), (b) and (c) show
the ground truth for both flight height and route, while the Figs. 3(d), (e) and
(f) present the results obtained with the proposed method. In detail, Figs. 3(a)
and (d) depict the route of an area of our own acquisitions, while the other
figures show two paths provided in the UMCD dataset. As presumed, the results
obtained with the proposed algorithm reflect, approximately, the ground truth
data. Despite the estimated route and the ground truth route being almost
similar, we have more variations on the estimated flight height. This is due to
the features matching problem being sensible to outliers, as well as features
mismatches. While for Figs. 3(a), (d) and (b), (e) the estimated height and the
ground truth height are similar, this is not true for Figs. 3(c) and (f). This is
due to the fact that in this specific path the GPS sensor fails in acquiring data,
highlighting the potentialities of the proposed algorithm.

Ground Truth vs Estimated Data
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Fig. 4. (a) Comparison between raw data (blue bars), and estimated data (orange
bars), and (b) difference between raw and estimated data. (Color figure online)

3.3 Quantitative Results

In Fig. 4, the ground truth and estimated data, together with their difference,
is reported. As shown in both Figs. 4(a) and (b), the results obtained with the
proposed method are very close to the raw data obtained through the sensors.
From Fig. 4(a) it is possible to notice that, in average, the estimated data is
slightly overestimated with respect to the ground truth. An exception regards
the third flight path, which corresponds to the example shown in Fig. 3(c). In
this case, we have a higher distance since the UAV lost the GPS signal during
the experiments.
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Concerning the execution time, the proposed method strongly depends on
the mosaicking algorithm since both keypoints and centers of mass are com-
puted during the process. This means that using new generation hardware and
optimizing the algorithm for multicore CPUs or GPUs allows to reach real-time
performances.

4 Conclusion

In this paper, a feature-based SLAM algorithm for small-scale UAV with a nadir
view is presented. The proposed method exploits a state-of-the-art mosaicking
algorithm to estimate the UAV flight route, while image features in conjunction
with an affine transformation are used to estimate the flight height. Experimental
results are performed on our aerial acquisitions and on the recently released
UMCD dataset, showing the effectiveness of the proposed approach.
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