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Abstract. Within the realm of information extraction from documents,
detection of tables and charts is particularly needed as they contain a
visual summary of the most valuable information contained in a docu-
ment. For a complete automation of the visual information extraction
process from tables and charts, it is necessary to develop techniques
that localize them and identify precisely their boundaries. In this paper
we aim at solving the table/chart detection task through an approach
that combines deep convolutional neural networks, graphical models
and saliency concepts. In particular, we propose a saliency-based fully-
convolutional neural network performing multi-scale reasoning on visual
cues followed by a fully-connected conditional random field (CRF) for
localizing tables and charts in digital/digitized documents. Performance
analysis, carried out on an extended version of the ICDAR 2013 (with
annotated charts as well as tables) dataset, shows that our approach
yields promising results, outperforming existing models.

Keywords: Document analysis · Image classification ·
Object detection · Saliency detection

1 Introduction

Production and storage of digital documents have increased exponentially in
the last two decades. Extracting and retrieving information from this massive
amount of data have become inaccessible to human operators and a large amount
of information captured in digital documents may go lost or never seen. As a
consequence, a large body of research has focused on automated methods for
document analysis. Most of these efforts are directed towards the development
of Natural Language Processing (NLP) methods, that analyze both grammar
and semantics of text with the goal of automatically extracting, understanding
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and, eventually, summarizing key information from digital documents. However,
while text is, inarguably, a fundamental way to convey information, there are
contexts where graphical elements are much more powerful. For example, in sci-
entific papers, many experiments, variables and numbers need to be reported in
a concise way that fits better with tables/figures than text. “A picture is worth a
thousand words” describes exhaustively the power that graphical elements pos-
sess in conveying information that would be otherwise cumbersome, both for the
writer to express and the reader to understand. Thus, it is of primary importance
for an effective automatic document processing approach to gather information
from tables and charts. Several commercial software products that convert digi-
tized and digital documents into processable text already exist. However, most
of them either largely fail when dealing with graphical elements or require an
exact localization of such elements to work properly. For this reason, a crucial
pre-processing step in automated data extraction from tables and charts is to
find their exact location. The problem of identifying objects in images tradition-
ally falls in the object detection research area, where, nowadays, Deep Convolu-
tional Neural Networks (DCNNs) play the leading role [14,18]. However, naively
employing DCNN-based object detectors in digital documents, suitably trans-
formed into images, leads to failures mainly because of the intrinsic appearance
difference between digital documents and natural images (the data for which
models are mainly thought for). Trying to train models from scratch may be
unfeasible due to the large number of images required and to the lack of suitably
annotated document datasets. Moreover, such approaches generally exploit the
visual differences between object categories: while the visual characteristics of
certain graphical elements (e.g., charts) significantly differ from text, the same
cannot be said for tables, whose main differences from the surrounding content
lie mostly in the layout. Finally, many of the existing object detectors are often
prone to potential errors by upstream region proposal models and are not able
to detect simultaneously all the objects of interest in an image [5,19].

In this paper we propose a general deep neural network model for pixelwise
dense prediction, and consequently for detection of arbitrary graphical elements,
rather than only for tables as existing methods, in digitized documents. The key
intuition to make the whole model generalizable to arbitrary graphical elements
is to pose the detection problem as a saliency detection one as those elements
generally stand out in documents. Additionally, in order to provide a stronger
supervision to the internal saliency detectors, we employ the approach intro-
duced in [16], by adding a loss term related to the capability of the saliency
maps to identify regions that are distinctive for visual classification in one of
the four target categories. Finally, predictions of our network are enhanced with
a fully connected Conditional Random Field (CRF) [12]. We demonstrate that
our method generalizes well as demonstrated by the performance achieved on
an extended version of ICDAR 2013 dataset (with annotated charts as well as
tables and we also release).
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2 Related Work

Given the large quantity of digital documents that are available today, it is
mandatory to develop automatic approaches to extract, index and process infor-
mation for long-term storage and availability. Consequently, there is a large body
of research on document analysis methods attempting to extract different types
of objects (e.g., tables, charts, pie charts, etc.) from various document types
(text documents, source files, documents converted into images, etc.). Before the
advent of deep learning, most works on document analysis for table detection
were based on exploiting a priori knowledge on object properties by analyzing
tokens extracted from source document files [2,3,21]. For example, [3] proposes
a method for table detection in PDF documents, which uses tags of tabular
separators to identify the table region. Of course, the main shortcoming of all
methods that rely on detecting horizontal or vertical lines for table detection is
that they fail to identify tables without borders. Alternatively, methods oper-
ating on image conversion of document files and exploiting only visual-cues for
table detection have been proposed [9,15].

Similar computer vision–based methods have been proposed for detecting
other types of graphical elements (e.g., charts, diagrams, etc.) than tables [8].
These methods basically employ simple computer vision techniques (e.g., con-
nected components, fixed set of geometric constraints, edge detection, etc.) to
extract chart images, but, as for the table detection case, they show scarce
generalization capabilities. Low-level visual cues (e.g., intensity, contrast, homo-
geneity, etc.) in combination with shallow machine learning techniques have been
used for specific object classification tasks [17] with fair performance, but these
methods are mainly for classification as they tend to aggregate global features
in compact representations which are less suitable for performing object detec-
tion. With the recent rediscovery of deep learning, in particular convolutional
neural networks, and its superior representation capabilities for high-level vision
tasks, the document analysis research community started to employ DCNNs for
document processing, with a particular focus on document classification [1,7] or
object (mainly chart) classification – after accurate manual detection [22]. One
recent work presenting a DCNN exclusively targeted to table detection is [4],
which employs Faster R-CNN for object detection. Nevertheless, this method
suffers from the limitations mentioned in the previous section, i.e., its perfor-
mance is negatively affected by the region proposal mistakes and it does not
provide multiple detections for each image.

In this paper, we tackle the detection problem from a different perspective,
i.e., we pose it as semantic image segmentation problem, by densely predicting—
according to visual saliency principles—for each pixel of the input image the
likelihood of being part of a salient object. This allows us to detect arbitrary
graphical elements by only fine-tuning the classification stream as the salient
objects have been already outlined by the saliency network of the proposed
approach.
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3 Deep Learning Models for Table and Chart Detection
and Classification

The approach for table and chart extraction presented here works by receiv-
ing an image as input and generating a set of binary masks as output, from
which bounding boxes are drawn. Each binary mask corresponds to the pix-
els that belong to objects of four specific classes: tables, pie charts, line charts
and bar charts. The main processing engine driving our approach consists of a
fully-convolutional deep learning model that performs table/chart detection and
classification, followed by a conditional random field for enhancing and smooth-
ing the binary masks (see Fig. 1).

Fig. 1. The proposed system. An input document is fed to a convolutional neural
network trained to extract class-specific saliency maps, which are then enhanced and
smoothed by CRF models. Moreover, binary classifiers are trained to provide an addi-
tional loss signal to the saliency detector, based on how useful the computed saliency
maps are for classification purposes.

Given an input document page transformed into an RGB image and resized
to 300 × 300, the output of the system consists of four binary masks, one for
each of the aforementioned classes. Pixels set to 1 in a binary mask identify
document regions belonging to instances of the corresponding class, while 0
values are background regions (e.g., regular text).

We leverage visual saliency prediction to solve our object detection problem.
As a result, the first processing block in our method is a fully-convolutional
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neural network (i.e., composed only by convolutional layer) that extracts four
class-specific heatmaps from document images. Our saliency detection network
is based on the feature extraction layers of the VGG-16 architecture. However,
we applied a modification aimed at exploiting inherent properties of tables and
charts: in particular, the first two convolutional layers do not employ traditional
square convolution kernels, as in the original VGG-16 implementation, but use
rectangular ones instead, of sizes 3 × 7 and 7 × 3. This set up gives our network
the ability to extract table-related features (e.g., lines, spacings, columns and
rows) even at the early stages. Padding was suitably added in order to keep the
size of the output feature maps independent of the size of the kernels.

After the cascade of layers from the VGG-16 architecture, the resulting 75×
75 feature maps are processed by a dilation block, consisting of a sequence of
dilated convolutional layers. While the purpose of the previous layers is that
of extracting discriminative local features, the dilation block exploits dilated
convolutions to establish multi-scale and long-range relations. Dilation layers
increase the receptive field of convolutional kernels while keeping the feature
maps at a constant size, which is desirable for pixelwise dense prediction as we do
not want to spatially compact features further. The output of the dilation block
is a 4-channel feature map, where each channel is the saliency heatmap for one
of the target object categories. After the final convolutional layer, we upsample
the 75 × 75 maps back to the original 300 × 300 using bilinear interpolation.

In theory, the saliency maps could be the only expected output of the
model, and we could train it by just providing the correct output as supervi-
sion. However, [16] recently showed that posing additional constraints to saliency
detection—for example, forcing the saliency maps to identify regions that are
also class-discriminative—improves output accuracy. This is highly desirable in
our case as output saliency maps may miss non-salient regions (e.g., regular text)
inside salient regions (e.g., table borders), while it is preferable to obtain maps
that entirely cover the objects of interest.

For this reason, we add a classification branch to the model. This branch
contains as many binary classifiers as the number of target object classes. Each
binary classifier receives as input a crop of the original image around an object
(connected component) in the saliency detector outputs, and aims at discrim-
inating whether that crop contains an instance of target class. The classifiers
are based on the Inception model and are architecturally identical, except for
the final classification layer which is replaced by a linear layer with one neuron
followed by a sigmoid nonlinearity.

To train the model we employ a multi-loss function that combines the error
measured on the computed saliency maps with the classification error of the
binary classifiers. The saliency loss function measured between the computed
saliency maps Y (expressed as a N × 300 × 300 tensor, with N being the number
of object classes, 4 in our case) and the corresponding ground-truth mask T
(same size) is given by the mean squared error between the two:
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LS(Y,T) =
1

N · h · w
N∑

k=1

h∑

i=1

w∑

j=1

(Ykij − Tkij)2 (1)

where h and w are the image height and width (in our case, both are 300), and
Ykij and Tkij are the values of the respective tensors at location (i, j) of the
k-th saliency map. The binary classifiers are first trained separately from the
saliency network, so that they can be used to provide a reliable error signal to
the saliency detector. Training is performed using original images cropped with
ground-truth annotations. For example, for training the table classifier, we use
table annotations (available in the ground truth) and crop input images so as to
contain only tables: these are the “positive samples”. “Negative samples” are,
instead, obtained by cropping the original images with annotations from other
classes (pie chart, bar chart and line chart) or with random background regions.
This procedure is performed for each classifier to be trained. Since cropping may
result in images of different sizes, all images are resized to 299 × 299 to fit the
size required by the Inception network.

Each classifier is trained to minimize the negative log-likelihood loss function:

LCi
(I, ti) = −ti logCi(I) − (1 − ti) log (1 − Ci(I)) (2)

where Ci (1 ≤ i ≤ 4) is the classifier for the ith object class, and returns the
likelihood that an object of the targeted class is present in image I: ti is the target
label, and is 1 if i is the correct class, 0 otherwise. After training the classifiers,
they are used to compute the classification loss for the saliency detector, as
follows:

LC =
N∑

i=1

LCi
(I, ti) (3)

The saliency detector, in this way, is pushed to provide accurate segmentation
maps so that whole object regions are passed to the downstream classifiers,
Indeed, if the saliency detector is not accurate enough in identifying tables, it
will provide incomplete tables to the corresponding classifier, which may be then
misclassified as non-table objects with a consequent increase in loss. Note that
while training the saliency detector, the classifiers themselves are not re-trained,
and are only used to compute the classification loss. This prevents the binary
classifiers to learn to recognize objects from their parts, thus forcing the saliency
network to keep improving its detection performance.

The multi-loss used for training the network in an end-to-end manner is,
thus, given by the sum of the terms LC and LS :

L = LC + LS (4)

The outputs of our fully convolution network, usually, show irregularities such
as spatially-close objects fused in one object or one object oversegmented in mul-
tiple parts. In order to mitigate segmentation errors, we integrate in our system
a downstream module based on the fully-connected CRFs employed in [13].
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4 Performance Analysis

4.1 Dataset

Training Dataset. To train our method, we developed a web crawler that
searched and gathered images from Google Images, using the following queries:
“tables in documents”, “pie charts”, “bar charts”, “line charts”. Additionally,
we manually collected a set of documents available online related to banking
reports, using queries constructed by prefixing the name of a banking institute
to “research report” and “financial report”. All retrieved documents were then
converted to images (one per page), resulting in a total of 50,466 images.

Training Annotations and Splits. Annotation was carried out on the web-
crawled training dataset by paid annotators using an adapted version of the
annotation tool in [10]. In particular, among the 50,442 retrieved images only
19,564 had at least one object of interest, while the remaining 30,878 images did
not. The 19,564 images with positive instances had in total 22,544 annotations.
From the set of retrieved images (and related annotations), 10% were used as
a validation set for model selection, while the remaining 90% as training set.
The distribution of instances of the four target classes between the training and
validation sets were approximately equal.

Test Datasets. To test how well our approach generalizes we computed the
performance on an extension of the ICDAR 2013 [6] benchmark. In particular we
extended the ICDAR 2013 dataset (that contained table-only annotations) into
a new version containing annotations of pie charts, line charts and bar charts. We
refer to this new dataset as the “extended ICDAR 2013”; chart annotation was
carried out as previously described for the training dataset. In terms of number
of annotations, only 161 out of 238 images from ICDAR 2013 contained objects
of interest. In these 161 images, there were 156 tables (with annotations already
available) and 58 charts (of either “pie”, “bar” and “line” types). We did not
test on ICDAR 2017 as the test split is unavailable.

Saliency detector and binary classifiers were trained in an end-to-end fashion
using an image as input and (a) the annotation masks as training targets for
the saliency detector, and (b) presence/absence labels of target objects on image
crops for the classifiers. The input image resolution was set to 300 × 300 pixels.
The training phase ran for 45 epochs, which in our experiments was the point
where the performance of the saliency network on the validation set stopped
improving. All networks were trained using the Adam optimizer [11] (learning
rate was initialized to 0.001, momentum to 0.9 and batch size to 32).

4.2 Performance Metrics

Our evaluation phase aimed at assessing the performance of our DCNN in local-
izing precisely tables and charts in digital documents, as well as in detecting and
segmenting table/chart areas.



Sal-CNN for Table and Chart Detection 299

– Table/chart localization performance. To test localization performance
we computed precision Pr, recall Re and F1 score by calculating true posi-
tives, false positives and false negatives.

– Segmentation accuracy was measured by intersection over union (IOU).
While the detection scores above provide information on the ability of the
models to detect the tables and charts that overlap with the ground truth
over a certain threshold, IOU measures per-pixel performance by comparing
the exact number of the pixels that are detected as belonging to a table
or chart. In other words, the IOU score reflects the accuracy in finding the
correct boundaries of table and chart regions.

The proposed model consists of several functional blocks (saliency detection,
binary classification) which are stacked together for final prediction. In order
to assess how each block influenced performance, we computed the performance
of the model when using only the saliency network (SAL); saliency detector
followed by the binary classifiers (SAL-CL) and the whole system including all
parts (saliency detection, fully connected CRF and binary classifiers) (ALL).

4.3 Results

The results obtained by the two configurations previously described are reported
in Table 1. Our system performed very well in all object types, and this perfor-
mance increased progressively from the baseline configuration (SAL) to the more
complex architecture (i.e, ALL). In particular, the baseline configuration (SAL)
achieved an average F1 score of 69.0%, with the top performance achieved on the
“Tables” category (76.3%) and the worst on the “Line charts” category (63.4%).
By comparing with the results obtained by SAL-CL model, we can infer that
the lower performance was due to the difficulty by the saliency detector alone in
extracting discriminative features between these two types of charts. Indeed, this
shortcoming was countered by introducing the classification loss in the model
(SAL-CL configuration). The classifiers managed to aid the saliency detector
network in recognizing the distinguishing features between line charts (increase
of F1 score of about 24%) and bar charts (increase of F1 score of about 23%)
w.r.t. the baseline, bringing the average F1 score to 87%.

Finally, adding the fully-connected CRF to SAL-CL led to a further 6.4%
increase to the system’s performance, reaching a maximum average F1 score of
93.4%. it appears evident that CRFs influence the number of false negatives and
subsequently, the recall, more than they influence the number of false positives.
In fact, w.r.t. the SAL-CL configuration, the CRF module increased more the
recall (about 7.5%) than the precision (about 4.5%). This can be explained by
the fact that the major contribution of CRF models consisted in filling gaps and
holes resulting from the deep learning methods, especially for very large tables
with extensive white areas. Figure 2 show examples of, respectively, good and
bad detections obtained by our method.

Comparison against state of the art methods was done only in terms of
table detection. In particular, we compared the performance of the four different
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Table 1. Performance—in terms of precision, recall, F1 and IOU—achieved by the two
different configurations of our method on the extended ICDAR 2013 dataset. Values
are in percentage.

Configuration Class Precision Recall F1 IOU

SAL Tables 78.4 74.4 76.3 65.3

Pie charts 75.0 66.7 70.6 62.7

Bar charts 62.5 69.0 65.6 63.5

Line charts 61.9 65.0 63.4 62.1

Average 69.5 68.8 69.0 63.4

SAL–CL Tables 93.8 87.2 90.4 75.5

Pie charts 87.5 77.8 82.4 72.2

Bar charts 86.7 89.7 88.1 76.4

Line charts 89.5 85.0 87.2 74.8

Average 89.4 84.9 87.0 74.7

ALL Tables 98.1 98.1 98.1 81.3

Pie charts 100.0 88.9 94.1 78.1

Bar charts 90.0 93.1 91.5 79.6

Line charts 90.0 90.0 90.0 78.5

Average 94.52 92.52 93.43 79.4

Fig. 2. Examples of good (top row) and bad (bottom row) detections.

configurations of our method to those achieved by both traditional and more
recent approaches in detecting only tables on the ICDAR 2013. The comparison
is reported in Table 2 and shows that our system achieved an F1 score of 98.1%,
outperforming all of the state-of-the-art methods.



Sal-CNN for Table and Chart Detection 301

Table 2. Comparison of state of the art methods in table detection accuracy on the
standard ICDAR 2013 dataset (IoU = 0.5)

Table detection

Precision Recall F1

DeepDeSRT [20] 97.4 96.1 96.7

Tran [23] 95.2 96.4 95.8

Hao [7] 97.2 92.2 94.6

Silva [21] 92.9 98.3 95.5

Nurminen [6] 92.1 90.8 91.4

Our method 98.1 98.1 98.1

5 Conclusion

The identification of graphical elements such as tables and charts in documents is
an essential processing block for any system that aims at extracting information
automatically, and finds applicability to the analysis of financial documents,
where numeric information is typically represented in tabular format. In this
paper, we presented a method for automatic table and chart detection in doc-
ument files converted to images, hence without exploiting format information
(e.g., PDF tokens or HTML tags) that limit the general applicability of these
approaches. The core of our model is a DCNN trained to detect salient regions
from document images, with saliency based on the categories of objects that we
aim to identify (tables, pie charts, bar charts, line charts). An additional loss
signal based on the generated saliency maps’ discriminative power in a classifi-
cation task was provided during training, and a fully-connected CRF model was
finally employed to smooth and enhance the final outputs. Performance evalu-
ation, carried out on the standard UNLV dataset and ICDAR 2013 benchmark
for table detection, and on an extended version of ICDAR 2013 with additional
annotations for chart detection, showed that the proposed model achieves bet-
ter performance than state-of-the-art methods in the localization of tables and
charts. At Tab2ex, a technology based on the presented approach is employed
at industrial level to extract tabular information from scanned images. Future
directions of research in this complex task envision the detection of individual
headers, rows and columns of tables, and the extraction of numeric data from
charts based on axis values: such technologies would provide businesses with the
means to process large amounts of documents (e.g. orders, invoices, financial
trends) in an automated way.
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