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Abstract. It is a very well known fact in computer vision that classi-
fiers trained on source datasets do not perform well when tested on other
datasets acquired under different conditions. To this end, Unsupervised
Domain adaptation (UDA) methods address the shift between the source
and target domain by adapting the classifier to work well in the target
domain despite having no access to the target labels. A handful of UDA
methods bridge domain shift by aligning the source and target feature
distributions through embedded domain alignment layers that are based
on batch normalization (BN) or grouped whitening. Contrarily, in this
work we propose to align feature distributions with domain specific full-
feature whitening and domain agnostic colouring transforms, abbreviated
as F2WCT. The proposed F2WCT optimally aligns the feature distri-
butions by ensuring that the source and target features have identical
covariance matrices. Our claim is also substantiated by the experimen-
tal results on Digits datasets for both single source and multi source
unsupervised adaptation settings.
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1 Introduction

In the recent years deep learning has been exceptionally successful in super-
vised object recognition tasks [1,2]. Despite its effectiveness in supervised regime,
object recognition in unsupervised regime is still an open ended problem because
the lack of labels makes the training complicated. Off-the-shelf networks pre-
trained on some domain do not work well when transferred to a novel but
related domain due to a problem called domain-shift [3]. To mitigate domain
shift among datasets numerous Unsupervised Domain Adaptation (UDA) meth-
ods [4–10] have been proposed which leverage unlabeled target data together
with labeled source data to learn a predictor for the target samples.

UDA methods can be roughly categorized under two broad categories. The
first category includes Generative Adversarial Network (GAN) based meth-
ods [10–12] that learn a cross-domain mapping to emulate target-like source
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images, which are then leveraged for training a target classifier. The second
category of methods aims to reduce the discrepancy between source and target
domains by leveraging the first order statistics [13,14] or second order statistics
[15,25]. Some of the methods from this category achieve alignment of feature
distributions by directly embedding batch normalization (BN) based [9,16,17]
domain alignment (DA) layers into the network.

Fig. 1. Visualization of 2D features with different normalization transformations: (a)
Feature standardisation; and (b) Feature whitening.

While BN based methods align feature distributions by setting variance of
features to 1 and mean to 0, yet they leave the feature correlations intact (see
Fig. 1a), leading to sub-optimal alignment. Conversely, we argue that to com-
pletely eliminate discrepancy between domains the source and target features
should have the same covariance matrix. This can be ensured by projecting
the feature distributions onto a canonical unit hyper-sphere through full-feature
whitening (see Fig. 1b), such that both source and target domain features have
identity covariance matrix. While Roy et al. [8] proposed to align feature distri-
butions with domain-specific grouped -feature whitening (DWT), it suffers from
imperfect alignment due to partial feature whitening (see Sect. 2).

To overcome the drawbacks of previous DA layers we propose to first whiten
the feature representations and then apply colouring. Our whiten operation use
domain specific whitening, while colouring operation is domain agnostic and is
used to re-project the whitened features to a distribution having an arbitrary
covariance matrix. Inspired by [18], we realize these transformations through
Full-Feature Whitening and Colouring Transform (F2WCT) blocks, embed-
ded inside the network, replacing the BN-based and DWT-based DA layers.
However, different from [18], which uses these operations for conditional image
generation, we propose this technique for UDA. We also extend this to multi-
source unsupervised DA (MSDA) setting where multiple source domains are
available during training. Finally, we evaluate our proposed method on the digits
datasets for both single source UDA and MSDA settings and set new state-of-
the-art results.
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Fig. 2. Covariance matrices of features undergoing different normalization transforma-
tions: (a) BN [9]; (b) DWT [8]; and (c) Full-Feature Whitening. Black pixels denote
value 1, white pixels denote value 0 and gray denotes intermediate values.

2 Related Works

Single Source UDA. Several UDA methods have been proposed in the recent
years that operate under the assumption that there is only a single source
domain. A multitude of UDA methods have utilized GAN [10–12] to learn a
mapping between the source and target domains in order to generate synthetic
data in the target domain. SBADA-GAN [10] and CyCADA [11] are trained with
adversarial and cycle-consistent losses to generate labeled target-like source sam-
ples which are used for training a classifier for the target domain. Although very
effective, GAN based methods require large amount of data from each domain
to capture the inherent data distributions.

Fig. 3. Visualization of 2D features after whitening and different feature re-projection
techniques: (a) whitening with scale and shift as in DWT [8]; and (b) proposed whiten-
ing with colouring for aligning feature distributions. (Color figure online)

Another genre of UDA methods aim to reduce the discrepancy between source
and target domains by leveraging the first and second order statistics. Minimum
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Mean Discrepancy based methods [13,14] minimize the discrepancy between
domains by minimizing the difference of the mean (i.e., first order statistics)
of their respective feature representations. Correlation alignment methods [5,
15,25] leverage second order statistics by minimizing the loss derived from the
covariance matrices of source and target feature representations. Carlucci et
al. [9] and Roy et al. [8] showed that discrepancy between domains can be reduced
efficiently by directly embedding BN-based and DWT based DA layers into the
network, respectively. Albeit effective, BN-based and DWT based DA layers
result in features which are correlated and therefore imperfectly aligned. As
can be observed from the covariance matrices in Fig. 2a and b, the variance
of the features are 1 but the features are still correlated due to non-zero off-
diagonal elements. Ideally, we would like to have identity covariance matrix,
Σ = I, (see Fig. 2c) to achieve complete alignment of features. This is achieved
with our proposed F2WCT. Moreover, DWT [8] re-projects partially whitened
features with scale and shift transforms of [9] which is sub-optimal because
it reduces the capacity of the network [18]. Hence, we propose to re-project
whitened features with colouring operation as shown in Fig. 3b. Different from
scale and shift operation of DWT (see Fig. 3a), which can only have axis-aligned
re-projection of features, our colouring operation can re-project the whitened
features to any arbitrary orientation and the network is flexible to choose through
training.

Multi Source UDA. In practical scenarios source data can possess differ-
ent underlying marginal distributions and therefore multiple domain shifts need
to be addressed coherently while adapting to the target domain. MSDA was
first addressed in [19] which showed the necessity to borrow knowledge from
nearest source domains to avoid negative transfer. Xu et al. [20] adapted to
the distribution-weighted combining rule in [21] with an adversarial framework.
More recently, Peng et al. [22] proposed a Moment Matching Network for reduc-
ing domain shift from multiple sources to the target domain. Departing from
the above methods, we easily extend F2WCT to simultaneously align feature
distributions of multiple source and target domains to a reference distribution.

3 Method

In this section we present our proposed method for UDA and MSDA. Specifically,
first we will discuss some preliminaries and then introduce the proposed F2WCT.

3.1 Preliminaries

Let us assume that S = {(Isj , ys
j )}Ns

j=1 be the labeled source dataset, where
Isj is the jth source image and ys

j ∈ Y = {1, 2 . . . , C} be its associated label.
Also, let T = {Iti}Nt

i=1 be the unlabeled target dataset where Iti is the ith target
image without any associated label. The aim of UDA is to train a target domain
predictor by jointly utilizing samples from S and T .
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A fairly common technique to bridge domain shift is to use DA layers, which
can either be BN-based [9] or DWT-based [8], that project source and target
feature distributions onto a canonical distribution through per feature standard-
isation and grouped feature whitening, respectively. As mentioned in Sect. 1,
we propose to replace these feature alignment techniques with domain specific
full-feature whitening and domain agnostic colouring. Before introducing the
proposed F2WCT we will briefly recap BN [23] below.

A BN layer takes as input a mini-batch B = {x1, . . . ,xm} of m samples,
where xi is the ith element in the batch B and xi ∈ R

d. As the name suggests,
given a batch B the BN layer transforms each xi ∈ B in the following way:

BN(xi,k) = γk
xi,k − μB,k√

σ2
B,k + ε

+ βk, (1)

where k (1 ≤ k ≤ d) signifies the k-th dimension of input data, μB,k and σB,k

are, respectively, the mean and the standard deviation corresponding to the k-
th dimension of the samples in B and ε is used to prevent division by zero.
Finally, γk and βk are learnable scaling and shifting parameters. In essence, BN
transforms a batch of features into having zero mean and unit variance and then
re-projects the features with γ and β.

In Sect. 3.2 we present our proposed F2WCT for UDA, while in Sect. 3.3 we
extend the proposed F2WCT for MSDA.

3.2 Full-Feature Whitening and Colouring Transform for UDA

As stated in Sect. 2 that BN based per-dimension feature standardization and
DWT based grouped feature whitening is sub-optimal for marginal source and
target distribution alignment due to the presence of correlated features. To alle-
viate domain shift we argue to replace BN and DWT with F2WCT, derived from
[18], and is defined as follows:

F2WCT(xi;Ω) = Γx̂i + β, (2)
x̂i = WB(xi − μB). (3)

In Eq. (3), μB is the mean of B while WB is the whitening matrix such
that: W�

B WB = Σ−1
B , where ΣB is the covariance matrix derived from B.

Ω = (μB, ΣB) indicates the batch-specific first and second-order statistics.
Equation (3) performs the whitening of xi ∈ B and the resulting elements of
B̂ = {x̂1, . . . , x̂m} lie in a hyper-spherical distribution, i.e., with a covariance
matrix equal to the identity matrix (see Fig. 2c). Additionally, and differently
from [8], in Eq. (2), with the help of learnable d dimensional vector β and d × d
dimensional matrix Γ the whitened B̂ is projected back to a multivariate Gaus-
sian distribution having an arbitrary covariance matrix through the colouring
operation. Implementation wise Eq. (2) can be realized with a convolutional layer
having kernel size 1 × 1.
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Our network, at any intermediate layer, takes as input two batches of input
samples, Bs = {xs

1, . . . ,x
s
m} and Bt = {xt

1, . . . ,x
t
m} from the source and tar-

get domain, respectively. Every xs
i ∈ Bs and xt

i ∈ Bt is transformed through
the F2WCT block, where the whitening operation is domain specific but the
colouring operation is domain agnostic. In details, using Eqs. (2)–(3) the output
of F2WCT blocks for the source and target samples are given respectively by:

F2WCT(xs
i ;Ω

s) = ΓWBs(xs
i − μBs) + β, (4)

F2WCT(xt
i;Ω

t) = ΓWBt(xt
i − μBt) + β. (5)

Separate statistics (Ωs = (μs
B, Σs

B) and Ωt = (μt
B , Σt

B)) are estimated for
Bs and Bt which are then used for whitening the corresponding activations and
then followed by colouring the spherical distribution to an arbitrary one (see
Fig. 3b). Details about the computation of WB can be found in [18]. In addition,
the F2WCT blocks maintain a moving average of the statistics Ωt

avg of the target
domain which is used during inference.

3.3 Full-Feature Whitening and Colouring Transform for MSDA

In the MSDA scenario we have access to P labeled source datasets {Sj}Pj=1,
where Sj = {(Ii, yi)}Nj

i=1, and a target unlabeled dataset T = {Ii}Nt
i=1. Since, we

are addressing closed-set DA all the datasets share the same categories and each
of them is associated to a domain Ds

1, . . . ,D
s
P ,Dt, respectively. Our end goal is

to learn a predictor for the target domain Dt exploiting the data in {Sj}Pj=1∪T .
Unlike many UDA methods [10,11], the proposed F2WCT can be extended

to the MSDA setting in a very straightforward way by having dedicated F2WCT
blocks for every domain D, where the colouring parameters are shared amongst
P + 1 domains. In details:

F2WCT(xDs
1

i ;ΩDs
1) = ΓW

BDs
1 (xDs

1
i − μ

BDs
1 ) + β, (6)

...

F2WCT(xDs
P

i ;ΩDs
P ) = ΓW

BDs
P

(xDs
P

i − μ
BDs

P
) + β, (7)

F2WCT(xDt

i ;ΩDt

) = ΓWBDt (xDt

i − μBDt ) + β. (8)

The whitening operation of F2WCT projects the marginal feature distri-
butions of all P + 1 domains onto a hyper-spherical reference distribution,
thereby minimizing the multiple domain discrepancies in a coherent fashion.
As in Sect. 3.2, the moving average of target statistics ΩDt

avg is maintained during
training and is used during inference.

3.4 Training

Let Bs = {xs
1, . . . ,x

s
m} and Bt = {xt

1, . . . ,x
t
m} be two batches of the network’s

last-layer activations, from the source and target domain, respectively. Since, the
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source samples are associated with labels, the standard cross-entropy loss (Ls)
can be used for Bs:

Ls(Bs) = − 1
m

m∑
i=1

log p(ys
i |xs

i ), (9)

However, for the target samples entropy loss is calculated as in [9], which
acts as a regularizer. The entropy loss forces the network to be more confident
in its predictions by producing peaked probability distribution at the output.

Lt(Bt) = − 1
m

m∑
i=1

p(xt
i) log p(xt

i), (10)

Finally, the network is trained with a weighted sum of Ls and Lt:

L(Bs, Bt) = Ls(Bs) + λLt(Bt) (11)

4 Experimental Results

In this section we describe the datasets and provide details about the experi-
mental protocols adopted. We also report our experimental evaluation on the
considered datasets and compare our proposed method with the state-of-the-art
methods in UDA and MSDA, respectively.

4.1 Datasets

We conduct all our experiments on the Digits-Five dataset, built for recognizing
digits, consists of five unique domains having numerical digits ranging between 0
and 9. It includes the USPS, MNIST, MNIST-M, SVHN and Synthetic numbers
(SYN) datasets. SVHN contains images of real-world house numbers acquired
from Google Street View. SYN includes about 500K computer generated digits
having varying orientation, position, color, etc. USPS and MNIST are datasets
of digits scanned from U.S. envelopes but having different resolutions. Finally,
MNIST-M is the colored counterpart of MNIST.

4.2 Experimental Setup

To ensure fair comparison with other UDA and MSDA methods we adopt base
networks from [8] and [22] for UDA and MSDA experiments, respectively. In the
network we have plugged F2WCT blocks right after each of the first two convolu-
tional layers. We reason that strong alignment of low level features (e.g., colour
and texture) is very important to bridge the domain gap. As a consequence,
we act in the early convolutional layers of the network, which deal with low
level features, by fully aligning intermediate feature distributions with F2WCT
blocks. A typical block in the network is given by (Conv Layer → F2WCT →
ReLU). For the remainder layers we have used BN based DA layers as in [9].
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We trained the networks with Adam for 150 epochs with an initial learning
rate of 1e−3 and we dropped the learning rate by a factor of 10 after 50 and
90 epochs. To ensure well-conditioned covariance matrices we have used a mini-
batch size of 128 and 512 for the UDA and MSDA settings, respectively. The
source and target samples are drawn randomly such that each domain is well
represented in a mini-batch. The value of λ in Eq. 11 is set to 0.1 as in [9].

4.3 Results and Discussion

In this section we analyze the impact of the proposed components on the final
classification accuracy and compare F2WCT with the state-of-the-art methods.

Ablation Study. We conduct ablation studies on the digits dataset for single
source UDA to demonstrate the benefits of performing full-whitening followed by
a colouring transformation. We consider the following models: (i) F2WCT, our
full model, is composed of full-feature whitening and colouring; (ii) F2WT where
the colouring operation is replaced by scale-shift operation. This will validate the
importance of colouring transform over scaling and shifting; and (iii) DWT [8]
which considers grouped whitening. This comparison allows us to determine the
necessity of full-feature whitening as opposed to grouped whitening.

Table 1. Ablation study of full-feature whitening and colouring transform versus rel-
evant normalization techniques on Digits-Five. The target domain is shown in italics.
The best numbers are highlighted in bold and the second best numbers are underlined.

Methods MNIST →
USPS

USPS →
MNIST

SVHN →
MNIST

MNIST →
MNIST-M

Avg

Source only 78.9 57.1 60.1 63.6 64.92

F2WCT (Ours) 99.13± 0.05 98.81± 0.07 97.37 ± 0.10 96.33± 0.09 97.91

F2WT 99.03 ± 0.04 98.30 ± 0.07 78.96 ± 0.64 81.41 ± 0.98 89.42

DWT [8] 99.09 ± 0.09 98.79 ± 0.05 97.75± 0.10 45.46 ± 0.05 85.27

Target only 96.5 99.2 99.5 96.4 97.9

As can be observed from Table 1 our proposed F2WCT outperforms all other
baselines. F2WT demonstrates that the need of colouring is particularly evi-
dent for more complicated adaptation settings as in SVHN → MNIST and
MNIST → MNIST-M. While in simpler MNIST ↔ USPS settings the network
has enough capacity already. DWT [8] is especially worse than F2WCT in the
MNIST → MNIST-M setting because grouped feature whitening can not align
the source and target feature distributions optimally (see Sect. 2). Conversely,
F2WCT enables strong alignment of low level features through full whitening.

Comparison with State-of-the-Art Results. We compare our proposed
F2WCT with state-of-the-art methods, in both single source UDA and MSDA
settings.
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Table 2. Classification accuracy (%) on the Digits-Five for single source UDA settings
in comparison with the state-of-the-art methods. The target domain is shown in italics.
The best numbers are highlighted in bold and the second best numbers are underlined.

Methods MNIST →
USPS

USPS →
MNIST

SVHN →
MNIST

MNIST →
MNIST-M

Avg

Source only 78.9 57.1 60.1 63.6 64.9

CORAL [5] 81.7 – 63.1 57.7 –

DANN [30] 85.1 73.0 ± 2.0 73.9 77.4 77.3

DSN [29] 91.3 – 82.7 83.2 –

CoGAN [12] 91.2 89.1 ± 0.8 – 62.0 –

ADDA [7] 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8 – –

DRCN [28] 91.8 ± 0.1 73.7 ± 0.1 82.0 ± 0.2 – –

ATT [27] – – 86.20 94.2 –

AutoDIAL [9] 97.96 97.51 89.12 36.86 80.36

SBADA-GAN [10] 97.6 95.0 76.1 99.4 92.02

GAM [26] 95.7 ± 0.5 98.0 ± 0.5 74.6 ± 1.1 – –

MECA [25] – – 95.2 – –

SE [24] 88.14 ± 0.34 92.35 ± 8.61 93.33 ± 5.88 – –

DWT [8] 99.09 ± 0.09 98.79 ± 0.05 97.75± 0.10 45.46 ± 0.05 85.27

F2WCT (Ours) 99.13± 0.05 98.81± 0.07 97.37 ± 0.10 96.33 ± 0.09 97.91

Target only 96.5 99.2 99.5 96.4 97.9

Single-Source Unsupervised Domain Adaptation. In Table 2 we consider
single-source adaptation settings where we adapt from a single source domain to
a target domain. We consider four adaptation settings: MNIST → USPS, USPS
→ MNIST, SVHN → MNIST and MNIST → MNIST-M. The entire labeled train
set of the source domain and unlabeled train set of the target domain is used for
training a network whereas the dedicated test set of the target domain is used
for evaluating the performance. We have considered the baselines reported in [8].
It is to be noted that we have chosen the baselines that do not utilize data aug-
mentation. The variant of SE [24] which does not make use of data augmentation
is therefore reported for fair comparison with other methods. However, for some
baselines we could not report all the numbers due to the lack of availability in
the corresponding adaptation settings.

From Table 2 we observe that on average our proposed F2WCT outperforms
all considered state-of-the-art methods by a considerable margin. Individually,
our F2WCT has the best accuracy in MNIST ↔ USPS settings and is the sec-
ond best in SVHN → MNIST and MNIST → MNIST-M settings. Particularly,
SBADA-GAN performs the best in the MNIST → MNIST-M setting due to
the implicit data-augmentation through generation of synthetic data. Surpris-
ingly, in overall F2WCT achieves at par performance with the target only setting
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Table 3. Classification accuracy (%) on Digits-Five for multi-source domain adaptation
settings. The target domain is shown in italics. Best number is in bold and second best
is underlined.

Models MNIST,

USPS,

SVHN, SYN

→ MNIST-M

MNIST-M,

USPS,

SVHN, SYN

→ MNIST

MNIST,

MNIST-M,

SVHN, SYN

→ USPS

MNIST,

USPS,

MNIST-M,

SYN →
SVHN

MNIST,

USPS,

SVHN,

MNIST-M →
SYN

Avg

Source combine

Source only 63.70± 0.83 92.30± 0.91 90.71± 0.54 71.51± 0.75 83.44± 0.79 80.33

DAN [13] 67.87± 0.75 97.50± 0.62 93.49± 0.85 67.80± 0.84 86.93± 0.93 82.72

DANN [30] 70.81± 0.94 97.90± 0.83 93.47± 0.79 68.50± 0.85 87.37± 0.68 83.61

Multi-source

Source only 63.37± 0.74 90.50± 0.83 88.71± 0.89 63.54± 0.93 82.44± 0.65 77.71

DAN [13] 63.78± 0.71 96.31± 0.54 94.24± 0.87 62.45± 0.72 85.43± 0.77 80.44

CORAL [5] 62.53± 0.69 97.21± 0.83 93.45± 0.82 64.40± 0.72 82.77± 0.69 80.07

DANN [30] 71.30± 0.56 97.60± 0.75 92.33± 0.85 63.48± 0.79 85.34± 0.84 82.01

ADDA [7] 71.57± 0.52 97.89± 0.84 92.83± 0.74 75.48± 0.48 86.45± 0.62 84.84

DCTN [20] 70.53± 1.24 96.23± 0.82 92.81± 0.27 77.61± 0.41 86.77± 0.78 84.79

M3SDA [22] 72.82± 1.13 98.43± 0.68 96.14± 0.81 81.32± 0.86 89.58± 0.56 87.65

AutoDIAL [9] 80.15± 1.32 99.30± 0.04 98.60± 0.09 80.87± 0.68 95.28± 0.13 90.84

DWT [8] 80.68± 1.35 99.26± 0.05 98.81± 0.08 86.11± 0.25 95.94± 0.10 92.16

F2WCT (Ours) 93.47± 0.41 99.41± 0.04 98.97± 0.06 82.46± 0.81 95.92± 0.12 94.04

without having access to any target label, demonstrating the effectiveness of our
method.

Multi-source Unsupervised Domain Adaptation. In Table 3 we report
results for MSDA setting where we adapt from multiple source domains to a
single target domain. We consider all possible combinations of the 5 domains
in Digits-Five for the experiments. For fairness in comparison with the baseline
methods we follow the training protocol used in [22]. According to this pro-
tocol we randomly sample 25000 training images from each domain and 9000
images for evaluation. For the USPS, entire train and test set is used instead.
We compare our method with DWT [8], Autodial: Automatic domain alignment
layers [9] (AutoDIAL) and other baselines taken from [22]. We observe simi-
lar behaviour in the MSDA setting as our proposed F2WCT also out-performs
all the baselines on average accuracy, thereby obtaining state-of-the-art results.
Notably, for the adaptation setting where MNIST-M is the target domain, the
proposed full-feature whitening and colouring provides a boost of 12.79% over
grouped whitening and scale-shifting in [8]. This validates our hypothesis that
complete alignment of source and target feature distributions with full-feature
whitening followed by colouring of the whitened features is more beneficial for
tackling domain shift.

5 Conclusions

In this work we address UDA and MSDA by proposing domain alignment layers
based on domain specific full-feature whitening and domain agnostic colouring
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with F2WCT blocks. On the one hand, full-feature whitening of intermediate
features allows optimal alignment of source and target feature distributions by
guaranteeing same covariance matrices for both source and target features. On
the other, the colouring transform helps in restoring the capacity of the net-
work. The proposed F2WCT blocks can be easily incorporated in any standard
CNN. Our experiments on digits dataset show consistent improved performances
over other state-of-the-art methods in both UDA and MSDA settings. As future
work, we plan to adapt the proposed feature alignment technique for large scale
benchmarks with deeper networks.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

3. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)
4. Zen, G., Sangineto, E., Ricci, E., Sebe, N.: Unsupervised domain adaptation for

personalized facial emotion recognition. In: ICMI (2014)
5. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:

AAAI (2016)
6. Saha, S., Banerjee, B., Merchant, S.N.: Unsupervised domain adaptation without

source domain training samples: a maximum margin clustering based approach.
In: ICVGIP (2016)

7. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR (2017)

8. Roy, S., Siarohin, A., Sangineto, E., Bulò, S.R., Sebe, N., Ricci, E.: Unsupervised
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