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Abstract. Superpixel computation can be seen as a process of group-
ing similar pixels trying to preserve image boundaries. In this work, we
propose a label propagation method guided by hierarchy of partitions in
the context of the marked (supervised) segmentation problem. The main
idea of the proposed method is to propagate labels on a tree modelling a
hierarchical representation of the image. We propose several criteria to
decide, in the case of a conflict, which of the competing labels must be
propagated into a neighbor region of the tree. According to our exper-
iments, the proposed method outperforms the baseline provided by the
SLIC method.
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1 Introduction

Superpixel computation is the process of grouping similar pixels trying to pre-
serve image boundaries. Some of the methods to compute superpixels can be seen
as image segmentation methods and can be done by hierarchical strategies [11].
A hierarchical image segmentation is a set of image segmentations at different
detail levels that preserves spatial and neighboring information among the seg-
mented regions. Hierarchies of partitions have been used in many approaches
in the context of image and video segmentation [3,10,12,20–23,25]. Following
the idea of [27], we propose a supervised image segmentation based on the label
propagation guided by hierarchies of partitions taking into account information
about the values extracted from the hierarchy as area and level value. The sem-
inal idea for label propagation on a hierarchy of segmentations was proposed
in [27], and later used for hierarchical segmentation assessment in [21,22]: in
this approach, the labels from the background and from the foreground compete
with each other in order to label the undefined regions. Differently of [21,22,27],
in this work, we propose a method for label propagation in which different crite-
ria are used to decide which label must be propagated. The general strategy can
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be divided into three main steps: (i) automatically generate seeds (or markers);
(ii) compute a hierarchy of partitions taking into account a specific attribute,
such as the area or the volume, in which the pixels are represented on the leaves;
and (iii) from leaves to root on the hierarchy, the labels are propagated con-
sidering a competition strategy. To decide which of the competing labels must
be propagated into a neighbor region in the case of conflict, we have devised
two different strategies: (i) the label that is related to a region with the high-
est attribute value is propagated; or (ii) the label that is related to the region
with the smallest attribute value is propagated. It is worth to mention that
some attribute values may directly be extracted from the hierarchy such as the
hierarchy level, but others must be dynamically computed, i.e. the area of the
regions.

This work is organized as follows. In Sect. 2, we present some important con-
cepts related to superpixels computation and hierarchies. The proposed label
propagation guided by hierarchy of partitions is described in Sect. 3. Some exper-
imental results obtained for tests performed on four databases are detailed in
Sect. 4. Finally, in Sect. 5, some conclusions are drawn and further works are
discussed.

2 Fundamental Concepts

2.1 Graphs

A graph is as a pair (V, E) such that V is a finite set and E is composed of
unordered pairs of distinct elements in V , i.e., E is a subset of {{x, y} ⊆ V |
x �= y}. In the following, the pair G = (V,E) denotes a connected graph. Each
element of V is called a vertex or a pixel, and each element of E is called an
edge. The graph G is used to model the image domain, e.g., V will represent a
regular 2D grid of pixels, and E encoded the 4 adjacency for every pixel. We
denote by W a function from E to R that weights the edges of G. Therefore,
the pair (G,W ) is an edge-weighted graph, and, for any u ∈ E, the value W (u)
represents the weight of u.

2.2 Hierarchies

A partition, also called a segmentation, P of V is a family of subsets of V such
that: (i) the intersection of any two distinct elements of P is empty; and (ii) the
union of the elements of P is equal to V . Each element of a partition P is called
a region of the partition P. Given two partitions P1 and P2, we say that P2 is
a refinement of P1 if every region of P2 is included in a region of P1.

A hierarchy (of partitions) H = (P0, ...,Pn) is a sequence of partitions of V
such that P0 is the single region partition P0 = {V }, the partition Pn contains
every singletons of V , i.e., Pn = {{x} | x ∈ V }, and Pi is a refinement of Pi−1

for all i in {1, ..., n}. It is usually represented as a tree or a dendrogram and
can be visualized as a saliency map, which is a contour map in which the grey
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level represents the strength of the contour: i.e., its level of disappearance in the
hierarchy. The reader may refer to [7] for more details about the hierarchy of
partitions.

The Quasi-Flat Zones (QFZ) hierarchy is a classical structure that is constructed
by considering the connected components of the level sets of the dissimilarity
function [7,16,17]. More precisely, we say that two pixels are λ-connected if they
can be joined by a path such that the dissimilarity between any two successive
pixels of this path is lower than λ. For a given λ in R, the equivalence classes
of the relation “is λ-connected” form the λ-partition of the image into its λ-
connected components also called λ-flat zones. The set of all λ-partitions for
every λ in R forms the QFZ hierarchy.

Watershed (WS) hierarchies are constructed by considering the watershed seg-
mentation of an image that is iteratively flooded under the control of an attribute
[4,6,8,15,18,19,21]. For example, the watershed segmentations of the area clos-
ings of size k of an image for every positive integer k form the WS hierarchy
by area of the image. In this article, we consider 2 possible attributes: (i) area
(WSArea); and (ii) volume (WSVol).

2.3 Seed Location and Superpixel Computation

According to [28], in order to really develop a superpixel approach one should
address some requirements such as being a partition of the image, representing
connected sets of pixels, preserving image boundaries, being generated efficiently
and with a controllable number of generated superpixels. Usually, the methods
for superpixel computation are classified in six different types: (i) Watershed-
based [14]; (ii) Density-based [1]; (iii) Graph-based [24]; (iv) Contour evolu-
tion [5]; (v) Clustering-based [1]; and (vi) Boundary-aware.

In the context of superpixels, computer vision applications have come to
rely increasingly attention on superpixels computation mainly due to the SLIC
method [1]. The SLIC algorithm groups pixels into regions which can be used
to replace the rigid structure of the pixel grid. Firstly, seeds are distributed
throughout the image taking into account uniform regions, each one containing
a centroid seed. The approximate size of each superpixel is N/K pixels, where N
is the size of the image and K is the number of regions (or superpixels). Thus,
seeds are equally spaced in the range of S =

√
N/K. During the execution of the

SLIC algorithm, the centers of the superpixels are moved to the lowest gradient
position in a 3 × 3 neighborhood to avoid starting at a very noisy pixel. Next,
in the assignment step, each pixel is associated to the nearest cluster center
according to a distance measure D. Thereafter, an update step, based on the
K-means clustering algorithm, to compute the centers of the superpixels is done.
The assignment and update steps are then repeated until stability or up to the
maximum number of iterations. The strategy of seed location based on the SLIC
method is so-called grid sampling. Despite the good results obtained by this
sampling strategy, we can use a random sampling in order to randomly put
seed on the image.
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3 Label Propagation Guided by a Hiearchy of Partitions

The seminal idea for label propagation on a hierarchical watershed, was proposed
in [27] in which labels from background and foreground compete with each other
in order to be assigned to undefined regions. Differently of [27], in this work, we
propose a method for label propagation in which distinct criteria may be used to
decide which label must be propagated. The proposed strategy may be divided
into three main steps: (i) seed generation; (ii) computation of the hierarchy of
partitions; and (iii) label propagation.

In the first step, seed generation, seeds (or markers) are automatically dis-
tributed over the pixels. For computing the hierarchy of partition, we fol-
low [8,19] in order to compute a QFZ hierarchy and watershed hierarchies based
on some attributes: (i) area; and (ii) and volume. The underlying graph corre-
sponds to a 4-connected adjacency graph in which each edge is weighted by the
dissimilarity measure between two pixels.

Finally, a label propagation is done following the procedure described in the
Algorithm 1. The propagation is divided into two main steps: (i) from leaves
to root (lines 3–9) to assign labels to the regions; and (ii) from root to leaves

Algorithm 1. Label propagation guided by a hierarchy of partitions.
Data: A hierarchy of partition H on the graph G. The attribute A to be

used by the criterion C. A set of k seeds S = {s1, s2, . . . , sk},
which are also the labels to be propagated.

Result: The labelling � on the leaves of H s.t. �({x}) ∈ {s1, s2, . . . , sk,
Undefined}, ∀x ∈ V . Leaves with the same label belong to the
same superpixel.

1 foreach x ∈ V do �({x}) ← Undefined;
2 foreach sk ∈ S do �({sk}) ← sk;
// For all nodes from leaves to root

3 for all regions R in RH in increasing order do
4 if R is not a leaf then
5 S ← sons(R);
6 if at least one son s of R in S �= Undefined then

�(R) ← selectBestLabel(S,A, C) ;
7 else �(R) ← Undefined;
8 end
9 end
// For all nodes from root to leaves

10 for all regions R in RH in decreasing order do
11 if R �= V and �(R) = Undefined then
12 �(R) ← �(Parent(R))
13 end
14 end
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(lines 10–14) to assign labels to the pixels. In the first part, from leaves to
root on the hierarchy, labels are propagated considering a competition strat-
egy. In order to decide about which label must be propagated to a neighbor
region in the case of conflict (line 4), we have used two different strategies
(selectBestLabel(S,A, C)): (i) the label that is related to a region with highest
attribute value is propagated; or (ii) the label that is related to a region with
smallest attribute value is propagated. In the second part, from root to leaves,
the pixels of the regions receive the labels which were assigned to it during the
bottow-up procedure.

(a) Initial Tree

(b) Propagation using the highest value attribute computed from each
region: (left) bottom-up and (right) top-down

(c) Propagation using the highest area attribute computed from each
region: (left) bottom-up and (right) top-down

Fig. 1. Toy example for illustrating the label propagation taking into account two
different criteria for solving the seed competition, the higher value and higher area.

It is worth to mention that some attributes may be directly extracted from
the hierachy, that could be represented as a tree, such as the value of the hier-
archy level, but other measures must dynamically be computed over the tree,
i.e. area of the regions. In Fig. 1, we present a toy example for illustrating the
label propagation procedure. In this example, we have used a QFZ hierarchy
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and we put three different seeds on the leaves Fig. 1(a). First, a bottom-up app-
roach is made in which the labels are propagated from the leaves to the root.
If there are label conflicts like in Figs. 1(b-left) and (c-left), the attributes com-
puted from the hierarchy are taken into consideration for deciding which label
must be propagated. For instance, in Figs. 1(b), the propagation is based on the
smallest value of the hierarchy level, while in Figs. 1(b) it is based on the largest
region area. As illustrated in Fig. 1(b-right) and (c-right), the obtained results
are quite different. As can be observed, the leftmost part of the hierarchy are
either assigned to yellow label or blue label. This occurs due to the criterion
used to solve the conflict in the inner node of the tree.

4 Experimental Results

In this section, we present assessments in terms of undersegmentation error,
boundary recall and GT Covering by using three hierarchies of watershed and
two different gradients applied to three different image databases.

4.1 Experimental Setup and Datasets

In order to provide a comparative analysis between several strategies, we have
used three different databases: (i) the Berkeley Segmentation Dataset [13], called
BSDS500; (ii) the database proposed in [26], called GRABCUT; and (iii) the
database proposed in [2] which is divided into two groups – single and two objects
– called WI1OBJ and WI2OBJ, respectively. Here, we compare our method
with several criteria to SLIC, which is the baseline of this work.

We considered a 4-adjacency relation with a Lab gradient (that is the
Euclidean distance in the L*a*b* colour space) for the dissimilarity measure or
max value of the structured edge gradient [9]. We have also studied two different
strategies for seed generation, the grid sampling and the random sampling.

In this paper, we have used the following notation for simplification: A↓
C (or

A↑
C) in which ↓ (↑) means the smallest (highest) value for the used criterion, A

can be the QFZ hierarchy (Q), watershed by area (A) and watershed by volume
(V ), and the C can be the level value (v) and the area (a).

4.2 Quantitative and Qualitative Analysis

For a quantitative assessment, we illustrate in Figs. 2 and 3 several results com-
puted over BSDS500, GRABCUT, WI1OBJ and WI2OBJ in terms of
undersegmentation errors, boundary recall and GT covering. Due to lack of
space, we present the results for structured edges as gradient since they outper-
form in all measures the Lab gradient.

In a general way, the strategies with the highest value for solving the conflict
have better GT Covering than the smallest value, but worse undersegmenta-
tion error and boundary recall. In our opinion, the label propagation guided by
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Fig. 2. Evaluation of superpixel computation using grid sampling. For hierarchical
watersheds, we have used SE and Euclidean Distance as gradient. From top to bottom:
(i) BSDS500; (ii) Grabcut; (iii) Weizmann 1 object; and (iv) Weizmann 2 objects.
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Fig. 3. Evaluation of superpixel computation using random sampling. For hierarchical
watersheds, we have used SE and Euclidean Distance as gradient. From top to bottom:
(i) BSDS500; (ii) Grabcut; (iii) Weizmann 1 object; and (iv) Weizmann 2 objects.
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watershed by volume using the value of the level for solving the conflict out-
performs other strategies in all databases. In particular, our strategies always
outperform the SLIC for GT Covering. Regarding the seed sampling, there is
no relevant difference in terms of the used measures between grid sampling and
random sampling.

In Fig. 4, we illustrate some results obtained by our label propagation strat-
egy. For computing the superpixels, we have used QFZ hierarchy Fig. 4(a) and
Watershed by area Fig. 4(b). As we can see in these results, the superpixels com-
puted from QFZ hierarchy are quite small. Considering that our strategy may
produce disconnected regions, we can observe that despite that the number of
seeds is defined, for example, in 8, the result presents more superpixels. Regard-
ing the results for the watershed by area, we results are interesting since they
better preserve the borders.

(a) Propagation guided by QFZ hierarchy.

(b) Propagation guided by watershed by area.

Fig. 4. Examples of label propagation. For computing the superpixels, we have used
QFZ hierarchy (a) and Watershed by area (b). In order to devise about the conflict, we
have used smallest level value of the hierarchy among the sons of a node (first row of
each subfigure), and we have used smallest area related to the sons of a node (second
row of each subfigure). Moreover, from left to right the used gradient and the number
of superpixels are the following: L*a*b* with 8 seeds; SE with 8 seeds; L*a*b* with
128 seeds; and SE with 128 seeds.
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5 Conclusions

In this paper, we have proposed a label propagation method guided by hierarchy
of partitions for superpixel computation. The proposed strategy may be divided
into three main steps: (i) seed generation; (ii) computation of the hierarchy of
partitions; and (iii) label propagation. The main novelty of this work is related
to the use of different criteria to decide about which of competing label should
be propagated to neighbor region. According to our experiments, the proposed
method outperforms the SLIC method, which is the baseline. Moreover, the
propagation based on watershed by volume using the smallest hierarchy level as
criterion to solve the conflict outperform the other tested criteria and hierarchy.
At the end of our procedure, the same label could be assigned to disconnected
regions. We have solved this problem by creating labels to be assigned to each
disconnected region. As future works, we will study how to produce connected
regions at the end of our method. Furthermore, we intend to apply other criteria
for solving the conflict and other hierarchies such as the watershed by number
of nodes.
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