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Abstract. This paper presents a new approach to dynamic texture clas-
sification based on deterministic partially self-avoiding (DPS) walks on
complex networks (or graphs). In this approach, for each pixel is assigned
a vertex and two vertices are connected according to a given distance.
In order to analyze appearance and motion, we propose two graph mod-
eling: a spatial graph and a temporal graph. The DPS walks are agents
that can obtain rich characteristics of the environment in which they
were performed. Thus, the DPS walks are performed in the two mod-
eled graphs (spatial and temporal) and the feature vector is obtained
by calculating the statistical measures from the trajectories of the DPS
walks. The results in two well-known databases have demonstrated the
effectiveness of the proposed approach using a small feature vector. The
proposed approach also improved the performance when compared to
the previous DPS walks based method and the graph-based method.
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1 Introduction

Dynamic textures can be defined as a sequence of images (or video) that exhibit
certain stationary in time [6]. Examples of dynamic textures in the real world
include sea waves, smoke, swaying trees, moving flag, fire, a crowd of people,
among others. The approaches for dynamic texture representation are applied
in different problems such as traffic condition recognition [9], human activity
recognition [14], surveillance [29], among others.

In the literature, many approaches have been proposed based on different
strategies to analyze the spatial and temporal characteristics of the dynamic
textures. These approaches can be separated into five categories: motion-
based methods [17], model-based methods [11,13,18], filter-based methods [7],
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statistical-based methods [24,29] and, agent-based methods [9,10]. The agent-
based methods use the deterministic partially self-avoiding (DPS) walks to
describe the dynamic textures. These methods achieved promising results in
classification, clustering, and segmentation of dynamic textures.

In this paper, we propose a new method for dynamic textures analysis and
classification based on deterministic partially self-avoiding walks on complex
networks. The DPS walks was introduced initially to investigate the effects of
simple walks in random media [15]. After that, the DPS walks methodology
was applied for texture and dynamic texture analysis [3,9,10]. Basically, a DPS
walk can be understood as an agent who visits points (e.g. pixels, vertices)
distributed in a map (e.g. image, video, graph) based on the neighborhood, a
rule of movement and memory. Starting from a given point, the next step follows
the rule: go to the nearest point on the neighborhood that has not been visited
in the last μ steps (memory) [15]. Statistical features of the trajectories of the
DPS walks are used to study the map.

In the proposed approach, we model the dynamic texture in two graphs
(i.e. networks): spatial graph and temporal graph. The spatial graph models
the appearance characteristics, while the temporal graph contains the motion
properties of the dynamic texture. In this way, we apply the DPS walks on these
two graphs and use statistical characteristics of the trajectories to represent the
appearance and motion of the dynamic texture in a feature vector. The proposed
approach is different of the previous works [9–11] because it combines graph
modeling and DPS walks characteristics, while in [9,10] only the DPS walks
is applied in the videos and in [11] only the complex network theory is used
to modeling and characterization. In Sect. 2 our proposed method to dynamic
texture analysis is detailed. The experimental setup is described in Sect. 3. In
Sect. 4 the experimental results are presented and discussed. Finally, the paper
is concluded in Sect. 5.

2 Proposed Approach

2.1 Network Modeling

The network sciences (also called complex network) field uses the formalism of
graph theory with the incorporation of statistical mechanics and complex sys-
tems. It has attracted increased attention because of its ability to represent
and study a wide range of systems and data. In computer vision, the networks
have been used to model and analyze images and video analysis [2,21–23]. In this
paper, we use the graph to represent the dynamic texture video. In dynamic tex-
ture analysis, it is important to obtain appearance and motion features in order
to accurately represent the video. To achieve this, in the proposed approach, we
model the dynamic texture video in two graphs (networks): the spatial graph
GS = (VS , ES) that characterizes the appearance properties and the temporal
graph GT = (VT , ET ) that contains the motion properties.

In the two graphs, each pixel i = (xi, yi, ti) is mapped into a vertex i ∈ V ,
where xi and yi are the spatial coordinates and ti the temporal coordinate of
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the pixel i. The main difference between the two graphs is the definition of the
set of edges. In the spatial graph, the set ES is defined by the connection of all
vertices whose the Euclidean distance is smaller or equal than a given radius

√
2

and the time coordinates ti and tj are equal,

eij ∈ ES ⇐⇒
√

(xi − xj)2 + (yi − yj)2 ≤
√

2 and ti = tj (1)

On the other hand, in the temporal graph, the set of edges is defined by
connecting the vertices whose the Euclidean distance is smaller or equal than√

3 and the time coordinates are different,

eij ∈ ET ⇐⇒
√

(xi − xj)2 + (yi − yj)2 + (ti − tj)2 ≤
√

3 and ti �= tj (2)

Figure 1 illustrates three frames modeled as a graph. The frames are repre-
sented by the spheres in blue, green and red. For each edge eij connecting two
vertices i and j, a weight w(eij) is defined by the difference of intensities between
the two pixels that represent the vertices:

w(eij) =
|I(i) − I(j)|

255
, (3)

where I(i) ∈ [0, 255] is the gray intensity of a pixel i.

Fig. 1. Three frames modeled as a temporal graph. The edges connecting only vertices
of different frames. (Color figure online)

2.2 DPS Walks on Networks

The deterministic partially self-avoiding (DPS) walk is an agent, which was ini-
tially used to study regular and random media [15]. This deterministic walk
produces a set of trajectories that are used to characterize the environment in
which they were performed. The DPS walk was applied with success for fea-
ture extraction in different classification tasks, such as in texture analysis [3],
dynamic texture classification [9,10], shape analysis [20] and complex network
classification [12].
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In the proposed approach, the DPS walks are used for feature extraction of
the graphs that model the dynamic texture videos. In this way, the DPS walks
are performed on the vertices. The DPS walk is an agent that walks on the
vertices of the graph based on a deterministic rule r. The agent starts the walk
from a pre-defined vertex i and the movement to the next vertex j is given by:
go to the vertex j in the neighborhood η(i) (vertices connected to the vertex
i) which minimizes the edge weight w(eij) and that has not been visited in the
previous μ steps (i.e. that is not in memory j /∈ Mμ). Here, we will call this rule
of movement as r = min. We also consider another rule of movement that moves
the agent in the direction of the maximum edge weight w(eij) (r = max). The
two rules of movement are used because each one produces different trajectories
and, consequently, obtain different characteristics of the graph. The walk will
end when the agent to find a set of vertices in which it cannot escape, called
attractor.

The memory Mμ of size μ is the last μ vertices visited by the agent and that
cannot be visited. This memory is updated in each step of the agent to save the
last μ vertices visited. The trajectory of the agent can be divided into two parts:
an initial part of size τ called transient, and, a final part named attractor, which
is composed of vertices that form a cycle of period ρ ≥ μ+1 where the agent gets
stuck. In the cases in which the agent cannot find an attractor, the trajectory is
represented only by the transient part. For each vertex of the graph, a DPS walk
is started with a given memory size μ and a rule of movement r. Therefore, for
a graph with N vertices, we have N different trajectories. In order to measure
this set of trajectories, the transient time and attractor period joint distribution
Sμ,r(τ, ρ) is considered. In this distribution, the frequency of trajectories with
transient τ and attractor ρ is stored in each position [3],

Sμ,r(τ, ρ) =
1
N

∑
i∈V

{
1, if τi = τ and ρi = ρ
0, otherwise , (4)

where μ is the memory size and r the rule of movement used.

2.3 Proposed Signature

The joint distribution contains relevant information about the trajectories of
the DPS walks performed in a given graph. Thus, previous works [3] have used
features obtained from this joint distribution for characterization. In this way,
the best results were obtained using the histogram ht

μ,r(l), which calculates the
number of trajectories with size l = τ + ρ in a joint distribution computed with
memory size μ and rule of movement r,

hμ,r(l) =
l−1∑
b=0

Sk
μ,r(b, l − b). (5)
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In order to characterize the dynamic texture videos, the DPS walks are per-
formed in the two graphs: GS and GT . Thus, for each graph a histogram hμ,r(l)
can be obtained. Several previous works have shown that the most discriminative
information of the histogram hμ,r(l) are concentrated on its first elements [3,9].
In this work, we use the n first descriptors of the histogram hμ,r(l), with the
first position defined as (μ + 1), since there is no attractor smaller than (μ + 1).
Thus, given a memory size μ and a rule of movement r, a feature vector νΘ

u is
obtained:

νΘ
μ,r = [hΘ

μ,r(μ + 1), hΘ
μ,r(μ + 2), ..., hΘ

μ,r(μ + n)] (6)

where Θ is the type of graph: spatial S or temporal T .
The size of the memory directly influences the complexity of the trajectories

and, consequently, in the information extracted by the method. For example,
DPS walks with low memory values perform better local analysis [10]. In this
sense, histograms obtained with different memory sizes are used for a more robust
characterization of the different patterns present in the graphs (i.e. dynamic
texture videos), according to:

ϑΘ
r = [νΘ

μ1,r, ν
Θ
μ2,r, ..., ν

Θ
μm,r]. (7)

To characterize patterns of appearance and movement of dynamic textures,
a feature vector that consists of the concatenation of the spatial and temporal
descriptors is considered. Thus, this feature vector is composed of the charac-
teristics extracted from the spatial ϑS

r and temporal ϑT
r graphs using different

memory values, as described:

λr = [ϑS
r , ϑT

r ]. (8)

The feature vector obtained above refers to a single rule of movement.
Although this vector may be able to properly characterize dynamic textures,
another possibility is to combine the two rules of movement. The rule of move-
ment is another parameter that influences the trajectory of the agent. In this
sense, it is considered a final feature vector that consists of the concatenation
of vectors obtained with the two rules of movement r = min and r = max, as
follows:

λ = [λmin, λmax] (9)

2.4 Computational Complexity

Basically, the proposed approach models a dynamic texture with N = w×h×T
pixels in two graphs. For modeling, each pixel is mapped into a vertex, which is
linked with 8 and 18 neighbors for the spatial and temporal graphs, respectively.
As the number of neighbors is a multiplicative constant and much smaller than
the number of pixels in the video, it can be disregarded. Thus, the computational
complexity of the modeling is given then by O(N) for each type of graph. Next,
a DPS walk is started from each pixel, producing a trajectory of size l = τ + ρ,
where τ is the transient time and ρ is the attractor period. For cases where
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an attractor is not found, we finish the walk after M steps. In this work, we
define M = 20 because we use only the first elements of the joint distribution
for characterization. Therefore, the computational complexity to compute the
features from each graph (temporal and spatial) is given by the number of pixels
and the size of the trajectories, O(N × (τ + 2ρ)). We have 2ρ because it is
necessary to go through twice the same cycle of pixels to identify an attractor.

3 Experimental Setup

To classify the feature vectors, we adopted the 1-Nearest Neighbor (1NN) clas-
sifier and a specific scheme for each database to separate the training and test
set. The Dyntex++ [8] database is a compiled version of the Dyntex database
[16]. The samples are preprocessed in order to eliminate static or dynamic
non-representative backgrounds, zoom, and textures without movement. The
database has 3600 samples divided into 36 classes (e.g. boiling water, river water,
colony of ants and smoke). In the experiments, a 10-fold cross-validation scheme
with 10 trials was used [11]. The accuracy is reported as the average performance
of all experimental trials.

The UCLA [4] database is composed of 200 dynamic texture videos separated
into 50 classes with 4 samples per class (named UCLA-50 version). Each sample
has 48 × 48 × 75 pixels. This database also has two variations of the original
database proposed in [19]. On the UCLA-9 version, the samples are reorganized
into 9 classes: boiling water (8 samples), fire (8), flower (12), fountains (20),
plants (108), sea (12), smoke (4), water (12) and waterfall (16). In the UCLA-
8 version, the plant class is eliminated due to the large number of samples.
The experimental setup adopted in these databases is similar to [19]. For the
UCLA-50 is used a 4−fold cross-validation scheme with 10 repetitions. On the
other versions, it is used for the testing set, half of the sequences (randomly
selected from each class), and the remaining half is used for training. For these
databases, the correct classification rate (CCR) or accuracy is reported as the
average performance of all experimental trials.

4 Results and Discussion

First, we investigate the effects of the parameters of our proposed approach in
the task of dynamic texture classification. The parameters analyzed were: (i)
memory sizes μ and (ii) rules of movement r. In the experiments, it was used
the first n = 3 elements of the histogram hΘ

μ,r(l) for the UCLA databases and
the first n = 5 positions for the Dyntex++ database. These values were defined
based on the idea that the main information are in the first elements and from
the experimental tests.

Figure 2 shows the results of our proposed method on the two databases
for different combinations of memory sizes and rules of movement. On both
databases, the rule of movement r = max obtained higher accuracies than the
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rule of movement r = min. The rule of movement r = max is related to het-
erogeneous regions of the video (i.e. graph), that is, the agent walks on regions
where the difference of the gray level between the pixels (i.e. high edge weight)
is higher. On the other hand, in the rule r = min, the agent walks on homo-
geneous regions, that is, where the edge weight is smaller. This indicates that
heterogeneous regions have more discriminative information of the dynamic tex-
ture. However, the best results are obtained when both rules of movement are
combined.

Concerning the memory sizes, we note that low memory sizes provide infe-
rior accuracies. Thus, as we increase the memory sizes, the accuracy also is
increased. However, when using a combination of memory size higher than
[0, 1, 2, 3], the accuracy obtained starts to stabilize, suggesting that the pro-
posed descriptors have reached their limits in terms of discrimination ability.
Such behavior is expected: the larger the memory sizes μ, the harder find an
attractor. From the results, we set up as default parameters of the proposed
method μ = [0, 1, 2, 3, 4, 5, 6, 7, 8] and r = [min,max]. On both databases, the
highest accuracy was using this configuration (94.5% and 96.0% for the Dyn-
tex++ and UCLA-50, respectively). These results are interesting because they
indicate that the method is not strongly parameter dependent.
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Fig. 2. Accuracies using different combination of memory sizes and rules of movement.

In order to improve the analysis of our proposed approach, we performed a
comparison experiment using literature methods of dynamic textures. To achieve
this, we considered the accuracy, standard deviation and number of features of
the methods, when described in the original papers. In all comparison, we use
the same experimental setup described in Sect. 3.

Table 1 presents the classification results of the proposed method and oth-
ers on UCLA-50 database. Note that the proposed method obtained the best
accuracy when compared to the others. Concerning the complex network based
methods, the proposed method improves the accuracy compared to the CNDT
[11] method by 1.0%. This method uses traditional complex networks measures
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while our method uses the DPS walk for complex network characterization. Thus,
the results suggest that the DPS walk is more effective to describe the graph
and, consequently, the dynamic texture.

Table 1. Comparison of the classification results of the proposed method and others
on UCLA-50 database.

Methods Number of features Accuracy (%)

KDT-MD [5] - 89.50

DFS [27] - 89.50

3D-OTF [28] 290 87.10

CVLBP [24] - 93.00

RI-VLBP [30] 16384 77.50 (± 8.98)

LBP-TOP [29] 768 95.00 (± 4.44)

DPSW-TOP [9] 75 95.00 (± 4.78)

CNDT [11] 420 95.00 (± 5.19)

Proposed method 180 96.00 (± 3.16)

Table 2 summarizes the results on the UCLA-9 database. On this database,
our approach yields the second best result (96.80%). This result is slightly inferior
to the one obtained by CVLBP method (96.90%). On the other hand, on the
UCLA-8 database, the proposed method achieved the best accuracy, as can be
seen in Table 3. Here, the proposed method gives an accuracy of 96.59% against
95.65% of the CVLBP method. The proposed method also outperformed the
method DPSW-TOP, which is a DPS walk based method. This method applies
the DPS walk on three orthogonal planes to analyze the appearance and motion
properties of the dynamic textures. In this way, the results indicate that our
approach based on DPS walk applied on the graph is more effective for dynamic
texture characterization.

Table 4 presents the results on the Dyntex++ database for different methods.
The proposed method shows an improvement of 10.74% and 3.21% compared to
the CNDT and DPSW-TOP methods, respectively. However, on this database,
the proposed method obtained a performance lower than the RI-VLBP and
LBP-TOP methods. Nevertheless, it is important to emphasize that the feature
vector size of these methods is significantly higher than the feature vector of
our method. Therefore, our method is still competitive due to the small feature
vector, for example, the RI-VLBP extracts a long feature vector of dimension
16384, whereas our method produces only 180 characteristics.

Besides these compared methods, called hand-craft methods, we also compare
our proposed signature with a method based on learned features. This method
proposed in [1] uses a convolutional neural network (GoogleNet) to learn the
characteristics of the dynamic textures in three orthogonal planes and obtain a
signature. On the UCLA-50, UCLA-9 and UCLA-8 databases, the CNN-based
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Table 2. Classification results for all methods on the UCLA-9 database.

Methods Number of features Accuracy (%)

3D-OTF [28] 290 96.32

CVLBP [24] - 96.90

High level feature [25] - 92.60

Chaotic vector [26] 300 85.10

RI-VLBP [30] 16384 96.30

LBP-TOP [29] 768 96.00

DPSW-TOP [9] 75 96.33 (±2.46)

CNDT [11] 336 95.61 (±2.72)

Proposed method 180 96.80 (±2.36)

Table 3. Comparison results on the UCLA-8 database.

Methods Number of features Accuracy (%)

3D-OTF [28] 290 95.80

CVLBP [24] - 95.65

High level feature [25] - 85.65

Chaotic vector [26] 300 85.00

RI-VLBP [30] 16384 91.96

LBP-TOP [29] 768 93.67

DPSW-TOP [9] 75 93.41 (±6.01)

CNDT [11] 336 94.32 (±4.18)

Proposed method 180 96.59 (±7.12)

Table 4. Comparison results for different dynamic texture methods on the Dyntex++
database.

Methods Number of features Accuracy (%)

RI-VLBP [30] 16384 96.14 (±0.77)

LBP-TOP [29] 768 97.72 (±0.43)

DPSW-TOP [9] 75 91.39 (±1.29)

CNDT [11] 336 83.86 (±1.40)

Proposed method 180 94.60 (± 1.20)

method obtained 99.50%, 98.35% and 99.02% of accuracy, respectively. These
results are higher than the obtained by our method. However, it is important to
highlight that even with inferior results, our method is still competitive due to
its computational simplicity.
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5 Conclusion

This paper presents a new method for characterization and classification of
dynamic textures using deterministic partially self-avoiding walks on complex
networks. In this method, we have shown a graph modeling from dynamic tex-
ture videos, which allows us to analyze appearance (spatial graph) and motion
(temporal graph) properties. Thus, the DPS walks are performed on these two
graphs and the statistical information of its trajectories are used to compose
a feature vector. Experimental results obtained on the UCLA and Dyntex++
databases showed that our method is very competitive when compared to other
methods. Our method also outperformed the other previous DPSW-based and
complex network based methods. In addition, the proposed approach is compet-
itive in terms of dimensionality, producing feature vectors significantly smaller
than other literature methods. In this way, the tradeoff between performance
and feature vector size demonstrates the great potential of the proposed method
for dynamic texture classification.
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