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Abstract. One of the most complex aspects of autonomous driving
concerns understanding the surrounding environment. In particular, the
interest falls on detecting which agents are populating it and how they
are moving. The capacity to predict how these may act in the near future
would allow an autonomous vehicle to safely plan its trajectory, minimiz-
ing the risks for itself and others. In this work we propose an automatic
trajectory annotation method exploiting an Iterative Plane Registration
algorithm based on homographies and semantic segmentations. The out-
put of our technique is a set of holistic trajectories (past-present-future)
paired with a single image context, useful to train a predictive model.
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1 Introduction

Autonomous driving the past years has been one of the fields in which machine
learning and artificial intelligence were applied the most. Even though significant
steps forward have been made [2], the problem is yet far to be solved. The com-
plexity stems from the many facets of different nature that need to be taken into
account: in addition to the actual movement of the car itself, a thorough under-
standing of the surrounding scene needs to be obtained, both for what concerns
static components such as road layout and other moving agents [3]. To allow
an effective planning of a safe route towards its destination, the autonomous
car needs to recognize other agents and model their dynamics to the point of
predicting their future behavior.

Predicting agents’ future trajectories is a problem that can benefit from a
complete understanding of the scene. The surrounding layout acts indeed as a
physical constraint that outlines the possible routes that the vehicle can under-
take. Without relying on maps or geolocalization sensors though, scene com-
prehension based only on computer vision systems can turn out to be extremely
complex due to occlusion, background clutter and scene variability. Scene parsing
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and semantic segmentation methods [6] can aid with this problem by providing
a semantic category for each observed pixel.

On the other hand, modeling object dynamics from an autonomous car per-
spective is a hard task by itself. Since the observer is constantly moving, the first
obstacle one has to deal with is separating the two observed motions: the real
motion of agents and the apparent motion caused by the moving camera. The
common approach in generating datasets to train autonomous vehicles involves
the use of costly laser based range finders in order to obtain precise environment
measurements and the integration of GPS sensors in order to refer such coor-
dinates into the real world [11]. Currently dash cameras can be deployed at a
very low cost on vehicles, indeed a simple video search for Dash Camera on a
video repository such as Youtube yields hundred of thousands distinct results.
Interestingly, mining videos from the web allows to obtain data on dangerous
situations such as accidents which are not ethically reproducible in a controlled
dataset.

In this paper we move the first steps towards a method that will allow to
generate trajectory datasets from real-world scenarios without the need of an
instrumented vehicle and hours of driving. We propose an automatic pipeline
finalized to the generation of holistic trajectories composed by past-present-
future positions of all other agents. We obtain trajectories for each frame in a
video sequence, starting only from an RGB stream, without relying on complex
sensors such as LIDARs or external sources like maps. Our pipeline is composed
by several modules aimed at tracking both agents and the ground plane on which
they are moving. By combining semantic segmentations and local descriptors we
estimate a transformation to map the ground plane from one frame to another,
enabling the projection of object positions through time, onto a desired frame
(Fig. 1). We refer to this process as Iterative Plane Registration (IPR).

The paper is organized as follows. In Sect. 2 we frame our method into an
appropriate literature review. Section 3 is dedicated to our proposed technique,

Fig. 1. Holistic trajectories shown on the reference frame. Past: full squares. Present:
full circle. Future: empty squares.
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providing an outline of the Iterative Plane Registration algorithm. In Sect. 4 we
show the obtained results and we draw conclusions in Sect. 5.

2 Related Work

Recently several works targeted trajectory prediction [1,15,21]. The majority of
this line of research targets non motorized vehicles and pedestrian trajectories
[1,21]. For proper path planning of autonomous vehicles a full understanding of
every moving agent behavior is necessary.

Collecting data for autonomous driving is a complex, slow and expensive
procedure. Most autonomous driving datasets [7,11,14,18,25] are collected with
cars equipped with several dedicated sensors: dash cameras provide footage,
stereo rigs are used to obtain depth, laser scanners (LIDARs) generate cloud
points, Inertial Measurement Units (IMU) log how the vehicle is moving and
position is pinned down with GPS. As an example KITTI [11], provides all the
above sources at 10 Hz.

The lack of trajectory information at a large scale is currently a limitation
of many commonly used datasets, such as Cityscapes [7]. Only a few datasets
nowadays contain trajectory information. KITTI [11] has a small fraction of
the dataset annotated for object tracking; Berkeley Deep Drive (BDD) [25]
provides instance level segmentations with consistent IDs across frames and
nuScenes [5] has trajectory informations for the short video snippets that com-
pose the dataset. None of these datasets offers a satisfactory number of tra-
jectories to train a prediction model. The ApolloScape dataset [14] has been
recently extended with approximately 80k trajectories for a new trajectory pre-
diction task [18]. Trajectories are obtained combining LIDAR and IMU readings
and are represented in a world reference system, which is the most common
setting for this task [15,22]. Similarly, other common datasets dedicated only
to pedestrian trajectories [20,21] are in a top view reference system. This way
of representing data is easy to process and evaluate, yet is hard to obtain due
to the need of a laser scanner and loosens the correlation between pixels and
vehicle dynamics. Nonetheless, these datasets have a high cost. They require
the instrumentation of a car with cameras, inertial sensors, gps and even more
expensive sensors such as LIDARs. Moreover, it must be taken into account the
human effort in driving the instrumented vehicle and in the annotation phase if
no automatic object labeling and tracking is used.

Differently from previous approaches, we avoid these problems by collecting
full trajectories directly in the frame reference, pairing past and future paths to
what the car has in front, mimicking what humans see when driving. Furthermore
we do not require any specific equipment and we work solely with RGB frames.
This aspect also thins the acquisition process since any dash cam recorded video
(even scraped from the web, e.g. YouTube) can be used to generate trajectories,
instead of relying on heavily equipped fleets.

Simultaneous Localization and Mapping (SLAM) [4] is a basic tool
for any autonomous driving platform, providing ego-motion estimation, 3D
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reconstruction and self-localisation in a single optimization framework. Recently
deep learning based frameworks [23,24] have been used to improve classical fea-
ture based SLAM algorithms [19]; the idea is either to provide single view depth
estimation or directly computing frame-to-frame local feature correspondences.

Our proposed method shares some common traits with SLAM. Both
approaches have a module dedicated to inferring the motion of the ego-vehicle:
IPR by tracking the 2D ground plane and SLAM by tracking the whole 3D envi-
ronment. Despite this similarity, the goal of the two methods is very different
since we want to retain exactly what SLAM discards, i.e. model the dynamics
of other vehicles rather than reconstructing ego-motion and the static environ-
ment. Indeed SLAM could serve as a ground motion estimator in our pipeline.
Nonetheless SLAM algorithms require internal calibration parameters, while our
approach is suitable for any RGB sequence.

3 Iterative Plane Registration

Iterative Plane Registration (IPR) is an procedure to track the ground plane in
a video and obtain a series of homographies that can transform points across
different frames. We refer to IPR as a meta-algorithm since it outlines a generic
algorithmic procedure based on different computer vision modules, without rely-
ing on any specific model or architecture. The modules composing the Iterative
Plane Registration meta-algorithm are shown in Fig. 2 and are the following:
object detector, multiple target tracker, semantic segmentation model, local key-
point detector and descriptor and homography estimator.

RGB frames

Object 
Detection

Semantic 
Segmentation

Keypoint 
Detection

Keypoint 
filtering

Object Tracking

Homography
Estimation

Fig. 2. Iterative Plane Registration pipeline. Objects are detected and tracked. The
ground plane is tracked with an homography estimated through keypoints detected in
the image and filtered with the semantic segmentation. Chains of homographies are
estimated to warp the position of the objects across frames.
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The advantage of defining IPR as a meta-algorithm is that, thanks to its
highly modular nature, it can be easily updated by replacing its building blocks
keeping up with future state of the art advancements.

Object Detection and Tracking. Agents have to be localized in each frame
and tracked across the whole video. To this end, we use Mask-RCNN [13] as
object detector and the bounding box association algorithm proposed in [8] as
multiple target tracker. The method matches bounding boxes in consecutive
frames according to their intersection over union and thus generates spatio-
temporal tubes enclosing the objects. To ensure an accurate matching, bounding
box future positions are predicted using dense optical flow [9] to compensate
object and ego motion. To be able to detect relevant objects in an urban scene,
we use a Mask-RCNN model pretrained on MS-COCO [16] and we track only
objects which are relevant to our task, i.e. objects labeled by the detector as car,
person, bicycle, motorbike, truck or train.

Semantic Segmentation Based Keypoint Detection. In order to estimate
reliable transformations to map the ground plane from a frame to another, we
extract local keypoints from the scene and filter them using the output of a
semantic segmentation method. As keypoints we use SIFT [17], masking the
input image with the semantic segmentation provided by DeepLab v3+ [6]. Since
we want to obtain keypoints belonging to the ground plane, we retain only the
ones centered in pixels labeled as road or sidewalk, independently of the scale of
the detected keypoint.

Fig. 3. Keypoint matching between two frames. When all the keypoints are used (left),
correspondences are found all over the scene. When keypoints are filtered with the
semantic segmentation (right) matches are reliably found only on the ground plane.

Homography Estimation. In the following experiments we use SIFT since
they are the best trade-off in terms of stability, repeatability and speed. Any
other local feature could be employed in principle. SIFT keypoints and their
associated descriptors are used to estimate homographies between frames. This
is done using Random Sample Consensus (RANSAC) [10] between the two set
of matching keypoints Lti and Lti+1 , belonging to frames at time ti and ti+1.
RANSAC finds the transformation Hti that maps keypoints kjti ∈ Lti in their
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correspondent ones kjti+1 ∈ Lt+1 in the next frame, rejecting outlier correspon-
dences. The semantic segmentation filter over all the keypoints in the scene is
necessary since we only want to model the planar homography for the pixels
belonging to the actual road. By doing so we are working unders the assump-
tion that the ground can be locally approximated by a planar surface. Without
relying on the semantic segmentation we cannot establish the correct correspon-
dences between keypoints, yielding to an incorrect homography. Figure 3 shows
an example of matched keypoints between two frames, with and without the
segmentation mask. It can be seen that without segmenting the scene, it is likely
to establish correspondences between other planar surfaces, such as buildings,
which are often rich in texture and therefore keypoints.

Fig. 4. Chained homographies to warp points lying on the ground plane across frames.

Trajectory Projection. To generate holistic trajectories of other agents in a
given frame Fti , we project their positions in other frames Ftj using a chain of
homographies from tj to ti:

H =
∏

Htk ∀tk ∈ [tj , ti]. (1)

This procedure is also depicted in Fig. 4.
To map points forward in time we use the homographies estimated between

pairs of consecutive frames, while to map points backward in time we use inverse
homographies. Since each homography can only transform points belonging to
the ground plane we cannot warp bounding boxes. We therefore project only the
lower edge middle point of a bounding box, which is guaranteed to lie on the
ground plane. An example of generated trajectories is depicted in Fig. 1.

Combining chains of homographies may lead to incorrect results due to
numerical instability. To determine whether an homography is valid or not, we
check the determinant of the transformation matrix [12]: det (H) > 0. If an
homography is not valid, we interrupt the chain of homographies and we stop
projecting the trajectories, marking the remaining portion as invalid.
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Algorithm 1. Iterative Plane Registration
Input: RGB video sequence Fti , ti ∈ [t0, tend]
Output: Homography set

1: Initial timestep t0.
2: while ti < tend do
3: Apply semantic segmentation algorithm (e.g. DeepLab [6]) to frame Fti , obtain-

ing a pixel-wise labeling Sc
ti , c ∈ {’road’, ’car’, ’sidewalk’ . . .}.

4: Extract local keypoints Lti (e.g. SIFT [17]) from Fti .
5: Discard keypoints not laying on the ground plane based on the semantic seg-

mentation: L′
ti = {k ∈ Lti s.t. Sti [kx, ky] ∈ {’road’, ’sidewalk’}}

6: Estimate homography to map the ground between frames Fti−1 and Fti :
Hti−1ti = RANSAC(L′

ti−1 , L
′
ti)

7: ti = ti+1;
8: end while
9: return {Hti}

4 Results

The Iterative Plane Registration algorithm can be used on any driving video
taken from a dashcam since it requires no annotation. To provide an evalua-
tion of the method, we generated trajectories for all LIDAR annotated videos
in the KITTI tracking training set [11]. To evaluate how accurately we register
the ground plane, we turn off the detection and tracking modules and consider
annotated trajectories instead. Since each trajectory is annotated as a collection
of 3D bounding boxes, we warp across frames the center of their lower face.
Once the holistic trajectories are obtained, we project them in the LIDAR met-
ric coordinate system using a frame to world homography. Whereas projecting
points from LIDAR to frame can be done by changing coordinate system and
using the camera projection matrix P , the opposite is not as1 straightforward
since P is not invertible. To this end we estimate an homography between the
pair of points belonging to the ground plane in the two reference systems. Dif-
ferently from what happens in the IPR pipeline, we do not need to detect and
match keypoints to estimate the homography since there is a direct correspon-
dence between frame pixels and LIDAR points. We only need to filter the points
by taking only the ones belonging to the ground plane, which can be done with
the semantic segmentation of the scene [6]. The frame to world transformation
allows us to project the estimated trajectories in the LIDAR metric reference
system and to compare them with the ground truth, obtaining an error in meters
(Fig. 5).

Figure 6 (left) shows the distribution of samples, i.e. individual points, as
a function of the temporal offset from the current frame and the L2 distance
from the ground truth. Most of the samples have a negligible error since almost
half of the points lie in a 5 m radius from the target. Increasing the temporal
offset, points estimates become less precise as an effect of error propagation
when combining long chains of homographies (Algorithm1). Furthermore some
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Fig. 5. Generated trajectories in the frame reference system (top) and comparison with
ground truth in the LIDAR metric reference system (bottom).

samples exhibit high errors, which are mainly caused by instabilities in warping
points far away from the camera, as shown in Fig. 6 (right). On the other hand,
it has to be noted that the most relevant signal is in the first seconds ahead.
We consider the most useful time span for training a prediction algorithm to be
12 s in the future. Therefore we report in Fig. 7 the distribution of errors for all
points in an 12 s horizon.

We also analyze the error in function of distance from the sensor. As can
be seen in Fig. 6, below 50 m of distance errors are mostly below 5 m. This
distance can be regarded as a common visibility horizon in urban scenarios,
with junctions, curved road and occlusions due to traffic. Consider that the
KITTI LIDAR sensor reach is 120 m but we can, in certain cases obtain farther
distances by ground plane registration.

Another interesting evaluation concerns the number of trajectories we are
able to obtain. To this end we ran the Iterative Plane Registration algorithm on
the whole KITTI tracking dataset (both train and test). We generate trajectories
up to 12 s (120 frames at 10 FPS), both in the past and in the future. According
to the determinant criterion explained in Sect. 3, parts of tracks generated by
invalid homographies are discarded.

In Fig. 8 we show the number of obtained trajectories, as a function of past
and future length. Both valid and invalid trajectories are shown. Interestingly
enough, invalid homographies concern mostly past trajectories. This is due to
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Fig. 6. Distribution of errors over samples (individual points) as a function of future
offset (left) and distance (right).

Fig. 7. Error distribution for points up to 12 s in the future.

the fact that from a car perspective the ground plane is observed from the car
ahead, therefore the estimated homographies will be less precise in the portion
of the plane behind the observer, which is often where the other agents lie in
past time-steps.

Despite this, we are able to generate a surprisingly high number of trajec-
tories, both in past and future directions. On the KITTI tracking dataset we
obtain approximately 55K and 73K samples for the training and test set respec-
tively, with an average of 6.7 trajectories per image. Note that the whole KITTI
tracking dataset only contains 896 training trajectories. The different nature of
our trajectories allows us to obtain a much higher number of samples both for
training and for testing. This high number of trajectories stems from the fact
that we are generating a new holistic trajectory from each frame in which the
agent is observed. Whereas these trajectories are correlated since they represent
the same agent, the resulting series of points is quite different due to camera
motion and context variability. Overall, this acts as a form of data augmenta-
tion over existing trajectories, multiplying the occurrences of a trajectory for
each frame in which the object is present.
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Fig. 8. Number of obtainable trajectories on the KITTI dataset (train) as a function
of past and future number of frames. Both valid (blue) and invalid (red) trajectories
are shown. (Color figure online)

5 Conclusions

In this paper we presented the Iterative Plane Registration meta-algorithm, a
procedure for collecting holistic trajectories of agents in urban scenarios without
requiring any prior annotation. The generated trajectories are composed by past,
present, and future positions, all projected into a single frame context. Thanks to
Iterative Plane Registration we are able to obtain an extremely high number of
trajectories which can be used to train predictive models for autonomous driving
vehicles.
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9. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: Proceedings of CVPR (2012)

12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2003)

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of
ICCV (2017)

14. Huang, X., et al.: The ApolloScape dataset for autonomous driving. In: Proceedings
of CVPRW, pp. 954–960 (2018)

15. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire:
distant future prediction in dynamic scenes with interacting agents. In: Proceedings
of CVPR (2017)

16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

18. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: TrafficPredict: tra-
jectory prediction for heterogeneous traffic-agents. arXiv preprint arXiv:1811.02146
(2018)

19. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An open-source SLAM system for
monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262
(2017)

20. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: mod-
eling social behavior for multi-target tracking. In: Proceedings of ICCV (2009)

21. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette:
human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46484-8 33

22. Srikanth, S., Ansari, J.A., Sharma, S., et al.: Infer: intermediate representations
for future prediction. arXiv preprint arXiv:1903.10641 (2019)

23. Tang, J., Folkesson, J., Jensfelt, P.: Geometric correspondence network for camera
motion estimation. IEEE Rob. Autom. Lett. 3(2), 1010–1017 (2018)

24. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monoc-
ular SLAM with learned depth prediction. In: Proceedings of CVPR (2017)

25. Yu, F., et al.: BDD100K: a diverse driving video database with scalable annotation
tooling. arXiv preprint arXiv:1805.04687 (2018)

https://doi.org/10.1007/978-3-319-49409-8_4
https://doi.org/10.1007/978-3-319-49409-8_4
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1811.02146
https://doi.org/10.1007/978-3-319-46484-8_33
http://arxiv.org/abs/1903.10641
http://arxiv.org/abs/1805.04687

	Vehicle Trajectories from Unlabeled Data Through Iterative Plane Registration
	1 Introduction
	2 Related Work
	3 Iterative Plane Registration
	4 Results
	5 Conclusions
	References




