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Abstract. Deep-learning approaches in data-driven modeling relies on
learning a finite number of transformations (and representations) of the
data that are structured in a hierarchy and are often instantiated as deep
neural networks (and their internal activations). State-of-the-art models
for visual data usually implement deep residual learning: the network
learns to predict a finite number of discrete updates that are applied to
the internal network state to enrich it. Pushing the residual learning idea
to the limit, ODE Net—a novel network formulation involving continu-
ously evolving internal representations that gained the best paper award
at NeurIPS 2018—has been recently proposed. Differently from tradi-
tional neural networks, in this model the dynamics of the internal states
are defined by an ordinary differential equation with learnable parame-
ters that defines a continuous transformation of the input representation.
These representations can be computed using standard ODE solvers, and
their dynamics can be steered to learn the input-output mapping by
adjusting the ODE parameters via standard gradient-based optimiza-
tion. In this work, we investigate the image representation learned in
the continuous hidden states of ODE Nets. In particular, we train image
classifiers including ODE-defined continuous layers and perform prelim-
inary experiments to assess the quality, in terms of transferability and
generality, of the learned image representations and compare them to
standard representation extracted from residual networks. Experiments
on CIFAR-10 and Tiny-ImageNet-200 datasets show that representations
extracted from ODE Nets are more transferable and suggest an improved
robustness to overfit.
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1 Introduction

The last decade witnessed the renaissance of neural networks and deep differ-
entiable models for multi-level representation learning known as Deep Learning,
that highly improved Artificial Intelligence (AI) and Machine Perception with
a special emphasis on Computer Vision. The AI renaissance started in 2012
when a deep neural network, built by Hinton’s team, won the ImageNet Large
Scale Visual Recognition Challenge [18], and from that, the astonishing results
obtained by deep-learning approaches for data-driven modeling produced an
exponential-growing research activity on this field. Deep Learning methods have
been, and still are, the driving force behind this renaissance, and impressive
results have been obtained through the adoption of deep learning in tasks such
as image classification [14,18], object detection [26,27], cross-media retrieval [6],
image sentiment analysis [31], recognition [1], etc. Being a representation learn-
ing approach, the rationale behind deep-learning methods is to automatically
discover a set of multi-level representations from raw data that are specialized
for the specific task to be solved, such as object detection or classification [19].
Starting from raw data, each level of representation captures features of the input
at increasing level of abstraction that are useful for building successive repre-
sentations. Following this definition, we understand how relevant representations
learned in intermediate layers of deep learning architectures are. In the context of
visual data modeling, the architectures of models, mostly based on convolutional
neural networks, rapidly evolved from simple feed-forward networks to very deep
models with complex interactions between intermediate representations, such as
residual [15] or densely connected networks [16].

Recently, in the NeurIPS 2018 best paper [9], Chen et al. proposed ODE
Nets—a novel model formulation with continuous intermediate representations
defined by parametric ordinary differential equations (ODEs). This models can
be used as a generic building block for neural modeling: the evolution of the acti-
vations and the gradients with respect to parameters can be computed calling
a generic ODE solver. This formulation provides several benefits, including nat-
ural continuous-time modeling, O(1)-memory cost, adaptive computation, and
tunable trade-off between speed and accuracy at inference time. The authors
demonstrated ODE blocks in image classifiers trained on the MNIST dataset,
actually creating a continuous and evolving activation space of image represen-
tations.

In this work, we analyze the continuous feature hierarchy created by ODE
Nets when classifying natural images in terms of generality and transferabil-
ity, and we compare them to representations extracted with standard neural
networks. We investigate multiple architectures in which a different amount of
processing is delegated to ODE blocks: we analyze standard residual networks,
mixed residual-ODE networks, and finally we also consider ODE-only architec-
tures. Preliminary experiments on CIFAR-10 and Tiny-ImageNet-200 datasets
show promising results for continuous representations extracted by ODE Nets
outperforming similar-sized standard residual networks on a transfer learning
benchmark.



434 F. Carrara et al.

2 Related Work

Neural Image Representations. Ever since the recent breakthroughs in the deep
learning field, extracting image representations from deep models, specially con-
volutional neural networks, has led to unprecedented accuracy in many vision
tasks. Early studies explored features extracted from generic object classifiers
trained on ImageNet: activations of late fully-connected layers played the role of
global descriptors and provided a strong baseline as robust image representations
[5,29]. With the definition of more complex networks, the attention shifted to
feature maps obtained from convolutional layers. Effective representations can
be extracted from convolutional feature maps via spatial max-pooling [3,25,30]
or sum-pooling [4,17], or more complex aggregation methods [2,21,24]. Better
representation can be obtained by fine-tuning the pretrained networks to the
retrieval task via siamese [23] or triplet [2,12] learning approaches. To the best
of our knowledge, we are the first to investigate ODE-derived continuous image
representations.

ODE-inspired Neural Architectures. Most of current state-of-the art models
implements some sort of residual learning [14,15], in which each layer or block
computes an update to be added to its input to obtain its output instead of
directly predict it. Recently, several works showed a strong parallelism between
residual networks and discretized ODE solutions, specifically demonstrating that
residual networks can be seen as the discretization of the Euler solution [22,33].
This interpretation sprouted novel residual networks architectures inspired by
advanced discretizations of differential equations. [22] and [35] derived residual
architectures justified by approximating respectively the Linear Multi-step and
Runge–Kutta methods. Comparisons with dynamical systems inspired works on
reversibility and stability of residual networks [7,8,13,28]. [9] propose to directly
adopt ODE solvers to implement continuous dynamics inside neural networks.
Traditional variable-step ODE solvers enable sample-wise adaptive computations
in a natural way, while previously proposed methods for adaptive computation
on classical networks [8,32] require additional parameters to be trained.

3 ODE Nets

In this section, we review the main concepts about ODE Nets, including their
formulation and training approach. For a full detailed description, see [9].

An ODE Net is a neural network that include one or more blocks whose
internal states are defined by a parametric ordinary differential equation (ODE).
Let z(t) the vector of activations at a specific time t of its evolution. We define
its dynamics by a first-order ODE parametrized by θ

dz(t)
dt

= f(z(t), t, θ) . (1)
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Given the initial value of the state z(t0)—the input of the ODE block—we can
compute the value of the state at a future time z(t1)—that we consider the
output of the ODE block—via integration of Eq. 1

z(t1) = z(t0) +
∫ t1

t0

dz(t)
dt

dt = z(t0) +
∫ t1

t0

f(z(t), t, θ)dt . (2)

This computation can be efficiently performed by modern ODE solvers, such
as the ones belonging to the Runge-Kutta family. Thus, the forward pass of an
ODE block is implemented as a call to a generic ODE solver

z(t1) = ODESolver(f, z(t0), t0, t1, θ) , (3)

where f can be an arbitrary function parametrized by θ which is implemented
as a standard neural network.

In order to be able to train ODE Nets, we need to adjust the parameters θ
in order to implement the correct dynamics of the continuous internal state for
our specific task. Thus, given a loss function L, we need to compute its gradient
with respect to parameters dL/dθ to perform a gradient descent step. Although
we can keep track of all the internal operations of the specific ODE solver used
and use backpropagation, this leads to a huge memory overhead, specially when
the dynamics of the internal state are complex, and the ODE solver requires
many steps to find the solution. Instead, Chen et al. [9] proposed to adopt the
adjoint sensitivity method. The adjoint state a(t) is defined as the derivative of
the loss with respect to the internal state z(t)

a(t) =
∂L

∂z(t)
, (4)

and its dynamics can be described by the following ODE

da(t)
dt

= −a(t)
∂f(z(t), t, θ)

∂z(t)
. (5)

The quantity we are interest in—the derivative of the loss with respect to param-
eters dL/dθ—can be expressed in function of the adjoint a(t)

dL
dθ

=
∫ t1

t0

a(t)
∂f(z(t), t, θ)

∂θ
dt, (6)

where ∂f(z(t), t, θ)/∂θ is known and defined by the structure of f . To compute
a(t) and thus dL/dθ, we need to know the entire trajectory of z(t), but this can
be recovered starting from the last state z(t1) and by solving its ODE (Eq. 1)
backward in time. With a clever formulation, Chen et al. [9] also showed that it
is possible to combine the process for finding z(t), a(t), and dL/dθ in a unique
additional call to the ODE solver.

Among the properties of ODE Nets, noteworthy benefits are (a) O(1)-
memory cost, since no intermediate activations are needed to be stored for both
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forward and backward operations, (b) adaptive computation, as modern adap-
tive ODE solvers automatically adjust the step size required to find the solu-
tion depending on the complexity of the dynamics induced by a specific input,
(c) inference-time speed-accuracy trade-off tuning, as the tolerance of adaptive
solvers can be lowered at inference time to obtain less accurate solutions faster
or viceversa.

4 Tested Architectures

In this section, we describe the architectures of the image classifiers implemented
with ODE Nets that we are going to analyze. We test three architectures in total.
The first two are the ones defined by Chen et al. [9], i.e. a standard residual net-
work with 8 residual blocks, and a mixed architecture with two residual blocks
and an ODE block. In addition, we analyze an architecture defined by the mini-
mum amount of standard layers, that is thus composed by a single convolutional
layer and an ODE block. A detailed description of the architectures follows.

Residual Net. We choose a standard residual network (ResNet) as a baseline
image classifier with the same architecture chosen by Chen et al. [9]. Starting
from the input, the ResNet is composed by two residual blocks each with a down-
sample factor of 2, and then by six additional residual blocks. The output of the
last residual block is average-pooled and followed by a fully-connected layer with
softmax activation that produces the final classification. The formulation of the
residual block is the standard one proposed in [15], but the batch normaliza-
tion operation is replaced with group normalization [34]. Thus, the structure of
the residual block is composed by two 3 × 3 256-filters convolutions preceded
by a 32-group normalization and ReLU activation, and a last group normal-
ization: GroupNorm-ReLU-Conv-GroupNorm-ReLU-Conv-GroupNorm. For the
first two blocks, we used 64-filters convolutions, and we employ 1 × 1 convolu-
tions with stride 2 in the shortcut connections to downsample its input.

Res-ODE Net. The first ODE-defined architecture tested is the one proposed
by Chen et al. [9]. They proposed to keep the first part of the architecture as
the previously described ResNet and substitute the last six residual blocks by
an ODE block that evolves a continuous state z(t) in a normalized time interval
[0, 1]. The ODE function f defining its dynamics is implemented using the same
network used in the residual blocks. In addition, this module takes the value of
the current time t as input to convolutional layers as a constant feature maps
concatenated to the other input maps. Similarly to ResNets, the output of the
ODE block z(1) is average-pooled and fed to a fully-connected layer with softmax
activation.

ODE-only Net. To fully exploit the ODE block and analyze its internal evolution,
we explore an additional architecture only composed by a single convolutional
layer and an ODE block. The convolutional layer has 256 4 × 4 filters slided
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with stride 2 which is not followed by any non-linear activation. The ODE block,
defined as in the Res-ODE architecture, takes the output of the convolution as
the initial state of the ODE block z(0). As in the other architectures, the final
state z(1) is taken as output and fed to the classification layer.

5 Experimental Evaluation

Following [29], we evaluate the effectiveness and generality of learned image
representation by measuring its effectiveness in a transfer learning scenario [11].
We learn features extractors for a particular image classification task (source),
and we evaluate them by using the learned representations as high-level features
for another image classification task with similar domain (target).

For our investigation, we used two low-resolution datasets, that is CIFAR-10
for the source task, and Tiny-ImageNet-200 for the target task. CIFAR-10 [20] is
a small-resolution 10-class image classification datasets with 50k training images
and 10k test images. Tiny-ImageNet-2001 is a 200-class classification dataset
with 64 × 64 images extracted from the famous ImageNet subset used for the
ILSVRC challenge. Each class has 500 training images, 50 validation images, and
50 test images, for a total of 100k, 10k, and 10k images respectively for training,
validation, and test sets.

We train all the models (Residual Net, Res-ODE Net, ODE-only Net) for 200
epochs on the CIFAR-10 dataset, adopting the SGD optimizer with momentum
of 0.9, a batch size of 128, a learning rate of 0.1 decreased by a factor 10 when the
loss plateaus, and a L2 weight decay of 10−4. We employ commonly used data
augmentation techniques for CIFAR-10, that is random cropping, color jittering,
and horizontal flipping, and we apply dropout with a .5 drop probability on the
layer preceeding the classifier. As ODE solver in ODE Nets, we employ a GPU
implementation2 of the adaptive-step fourth order Runge-Kutta method [10],
that performs six function evaluation per step plus the initial and final timestep
evalution, i.e. number of function evaluation = 6 × steps + 2.

Table 1 reports for each model the best test classification error obtained and
the complexity in both terms of number of parameters and ODE solver steps.
The introduction of ODE blocks in the image classification pipeline drastically
reduces the number of parameters of the model but also introduced a slight per-
formance degradation of the overall classification performance. Also note that
for ODE Nets, the number of steps required by the ODE solver to compute
a forward pass of the network depends on the complexity of the dynamics of
internal state induced by a specific input. For Res-ODE models, the ODE solver
requires 3 to 4 steps to process an image, indicating that the learned dynamics
of hidden state are quite simple, and most of the information extraction process
is due to preceding standard layers. On the other hand, in ODE-only networks
the ODE block is responsible to model the entire feature extraction process and

1 https://tiny-imagenet.herokuapp.com/.
2 https://github.com/rtqichen/torchdiffeq.

https://tiny-imagenet.herokuapp.com/
https://github.com/rtqichen/torchdiffeq
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Fig. 1. The most (left) and least (right) demanding images of CIFAR-10 test set in
terms of the number of solver steps required by the ODE solver (that is reported near
each image).

Table 1. Classification performance on CIFAR-10.

Test error Params Solver steps

Residual Net 7.28% 7.92M -

Res-ODE Net 7.80% 2.02M 3.8 ± 0.4

ODE-only Net 9.17% 1.20M 7.8 ± 1.5

thus requires to learn more complex dynamics of the hidden state; as a conse-
quence, the mean number of solver step required is higher, but it is more variable
depending on the input image. Figure 1 show the top-5 and bottom-5 images of
the CIFAR-10 test set in terms of number of solver steps required to make a pre-
diction; we can notice that the more prototypical and easily recognizable images
require fewer steps, while additional processing is adaptively employed by the
ODE solver when more challenging images are presented.
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Fig. 2. Accuracy (%) on the Tiny-ImageNet-200 validation set of a linear SVM trained
on z(t). Results obtained using the 7 intermediate layers of the Residual Net are evenly
placed between 0 and 1 on the x-axis.

We extract intermediate activations from all the trained models as image
representations for the target task (Tiny-ImageNet-200). For Residual Nets, we
test the output of the last 7 residual modules before the classifier. For both ODE
Nets, there are an infinite amount of intermediate states z(t), t ∈ [0, 1] that we
can extract; we sample z(t) between 0 and 1 with a sample rate of 0.05 and test
every sample as image representation for the target task. For all the extracted
representations, we apply global average pooling to obtain a spatial-agnostic
feature vector.

We train a linear SVM classifier that rely on the extracted features on the
validation set of Tiny-ImageNet-200 (for which labels are provided): we perform
a grid search of the penalty parameter C ∈ {0.01, 0.1, 1, 10, 100}, keeping track
of the configuration that obtained the best 5-fold cross-validated accuracy. We
then retrain this configuration on the whole set and report its accuracy. In Fig. 2,
we report the accuracies obtained by all the SVMs trained on different internal
activations of all the tested models. The x-axis indicate the time stamp t used to
extract the internal representation of ODE Nets z(t), while the y-axis indicate
the obtained accuracy. For convenience, we place the 7 points obtained from the
7 intermediate layers of the Residual Net evenly spaced in the x-axis between 0
and 1.
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In both ODE Nets, we observe a concave trend of the accuracy when using
later activations, with a maximum accuracy obtained using intermediate fea-
tures extracted from the early or mid evolution of the continuous hidden states
(∼21% at t = .45 for ODE-only and ∼19.5% at t = .1 for Res-ODE). As already
suggested by findings in other works [3,5], mid-features seem to be more trans-
ferable. Mid-features in Res-ODE are already extracted by preceding standard
layers, thus they occur early in the evolution of the continuous hidden state.
ODE Nets provide a more general and transferable image representation with
respect to Residual Nets that instead provide a lower and practically constant
performance on the target task, suggesting a higher degree of overfit to the source
task.

Notwithstanding that, the CIFAR-10 dataset is not able to provide enough
information about all the classes of the target dataset to obtain competitive
accuracies, and a larger and more complex dataset should be used as a source
task. Unfortunately, training ODE Nets has currently a high computational cost,
as also suggested by the evaluation of their proposers that was limited to the
MNIST dataset for image classification. This limits our ability to perform a
larger-scale experimentation, that are left for future work.

6 Conclusions

In this paper, we investigated the representations learned by ODE Nets, a
promising and potentially revolutionary deep-learning approach in which hidden
states are defined by an ordinary differential equation with learnable parameters.
We conducted our experiments in a transfer learning scenario: we trained three
deep-learning architectures (ODE-only Net, Res-ODE Net and Residual Net)
on a particular image classification task (CIFAR-10), and we evaluate them by
using the learned representations as high-level features for another image classi-
fication task (Tiny-ImageNet-200). The results show that ODE Nets provide a
more transferable, and thus more general, image representation with respect to
standard residual networks. Considering also other intrinsic advantages of ODE
Nets, such as O(1)-memory cost, and adaptive and adjustable inference-time
computational cost, this preliminary analysis justifies and encourages additional
research on the optimization of this kind of networks and its adoption in image
representation learning.
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