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Abstract. In this paper, we deal with the problem of super-resolution
(SR) imaging and propose a deep deconvolutional network based model
for the same. In principle, the SR problem considers the construction
of the high-resolution (HR) version of a scene given a number of so-
called low-level image instances of the respective scene. Moreover, if there
is a single low-resolution (LR) image available, the problem becomes
even difficult and ill-posed. We deal with such a scenario and show how
the popular deconvolutional network can effectively reconstruct the HR
image by learning the functional mapping at the patch level. We eval-
uate the proposed model on a number of optical remote sensing (RS)
images obtained from the UC-Merced dataset. Experimental results sug-
gest that the proposed model consistently outperforms the existing deep
and shallow models for single image SR for the RS images.

Keywords: Satellite imaging · Deconvolutional neural networks ·
Image super resolution · Deep learning

1 Introduction

Rapid developments in RS technologies have contributed to the availability of
large quantity of visual data pertaining to the Earth’s surface. Satellite images
are used in variety of applications ranging from environmental monitoring to
homeland security since they reveal a vast amount of intricate details regarding
the different geographical locations on ground.

For the sake of extracting accurate information from these images, the quality
of the satellite images must be as pristine as possible. Satellite images obtained
from sensors are generally affected by different degradation factors and sophisti-
cated image enhancement techniques are needed in order to improve their spatial
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resolution. Among the different approaches, the spatial resolution of an imaging
system can be improved using a class of image enhancement algorithms known
as SR imaging [16]. Particularly in RS applications including image classifica-
tion, having higher spatial resolution helps to extract minute features from the
respective scenes, thus significantly enhancing the classification results. How-
ever, sensors with high spatial resolution are required at the hardware level for
obtaining high quality images which is not always feasible. Another challenge in
this regard is due to the down-linking of the HR satellite images to ground sta-
tions which is often difficult and expensive. All such factors invariably degrade
the quality of the satellite images to a considerable extent. As a remedy, SR
techniques have become much popular to convert LR satellite images to the
corresponding HR versions.

In this regard, the forward model [16] for imaging and motion process can
be formulated as

Yk = DBkMkX + nk (1)

given the HR scene X, warp matrix M , blur matrix B, down-sampling matrix D,
noise vector n and the kth LR image Yk, respectively. As can be understood, we
obtain the LR images because of the degradation caused by warping, blurring
and sub-sampling performed to the captured HR scenes due to limitations of
cameras. From Eq. 1 it can be affirmed that the process of obtaining the HR
images from the LR counterparts is ill-posed nature. Please note that, in this
paper, we consider HR scenes as the upscaling of the resolution of available LR
images by a factor of 2.

Initially, multi-image SR [17] techniques were followed to generate the HR
image from multiple LR observations. As expected, these techniques often face
difficulties in registering the LR scenes on the HR grid. This subsequently insti-
gated the research focus on single-image SR. However, the key problem in this
respect is the absence of prior knowledge regarding the high frequency details
from the images. In this regard, the learning based single image SR techniques
such as sparse coding [2,6] are based on an assumption that the sparse represen-
tation of the LR image patch over the LR dictionary is same as the corresponding
HR patch over the HR dictionary. However, this assumption does not always hold
true which leads to restricted performance by these models.

On the other hand, a number of recently introduced deep learning strate-
gies find their application to RS image analysis [3,25]. Recently, deep learning
algorithms [5,8,10,19] are used to tackle the SR problem for natural scenes as
well as on RS applications. Following the same, we propose a deconvolutional
network model for the purpose of single image SR from optical RS data.

The proposed model learns an end-to-end mapping between the LR image
and HR image pairs at the patch level. In particular, the images are divided
into patches of size 32 × 32 and then forward-propagated through the network,
following which, the reconstruction error is calculated and is subsequently back-
propagated. For testing, we consider the standard simulated scenario where the
images are upscaled by a factor of 2 and then forward propagated through our
network to obtain the predicted HR image.
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2 Related Work

2.1 Image Super Resolution

As aforementioned, based on the availability of LR images to be deployed for
the SR process, the existing SR algorithms can broadly be classified into two
families [1,16]: (i) single image SR, and (ii) multi-image SR.

For multi-image SR, the basic premise is the availability of multiple LR
images representing a given scene. These LR images provide different views
belonging to the same scene in terms of sub-pixel level shifts. Multi-image SR
techniques are broadly classified into: non-uniform interpolation approaches, fre-
quency domain approaches, regularized image reconstruction approaches. Non-
uniform interpolation based methods [4] register the LR images on the HR grid.
The main problem with registration is the motion estimation with reference
to any of the LR images that is required to account for these sub-pixel shifts.
Restoration methods such as de-blurring, modeled as spatial averaging opera-
tor are used to smoothen the obtained HR image. In contrast, frequency based
approaches use the aliasing relationship between continuous Fourier transform
of HR image and the discrete Fourier transform of the captured LR images
to reconstruct the HR image. Regularization based reconstruction methods are
usually used when plenty of LR images are available. Prior knowledge of the
solution is used to stabilize the inversion of this ill-posed problem. Either of
the deterministic approach or stochastic approaches like Maximum-a-Posteriori
(MAP) [17] are used for this purpose.

On the other hand, single-image SR presents more challenging scenario as
it involves prediction of the high frequency image details. Some of the early
works on single-image SR are documented in [7,22]. Single-image SR techniques
are classified into four categories - prediction models, edge based models, image
statistical models and exemplar based models [21]. Among them, exemplar based
models haven shown to outperform the rest for images of different modalities.
Most of these approaches focus on learning a mapping between the LR and
HR patch. SR using sparse coding (SCSR) [2,6] are based on regularizing the
dictionaries for the HR and LR patches so as to make the dictionary atoms
coherent.

2.2 Deep Learning for Image Super Resolution

Convolutional Neural Networks (CNN) have shown high accuracy in image classi-
fication [12], object detection [15] and many more. On the other hand, SRCNN [5]
is arguably the most popular model for SR from natural images. They propose a
3 layer network consisting of 3 conv layers while the pooling layers are eliminated
to avoid loss of pixel information during the reconstruction process.

2.3 Deconvolutional Networks

Likewise, deconvolutional neural networks (deconv-net) are extensively deployed
for image denoising, feature extraction, and semantic segmentation [14].
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By design, deconv-net follows the encoder-decoder architecture and they have
enabled production of highly diverse set of filters beyond the edge primitives [24].

In this paper, deconv-net is used to obtain the HR image from the features
extracted by the conv layers in the network for satellite imaging applications.
Although it is observed that the deeper networks are proved to be beneficial,
however in case of SRCNN the results have saturated at three layers even though
the layers are increased. On the other hand, given their ability in efficiently
reconstructing images in the decoder stage, deconv-net can incorporate both the
deeper structure and learn invariant features which is expected to output better
HR versions of the underlying scenes.

3 Deconv-Nets for Single-Image SR

Different stages of the proposed model include pre-processing the image, formu-
lation of the model and training the deconv-net, as detailed in the following:

3.1 Pre-processing

We convert all images into YCbCr color space. All the three channels are
upscaled by factor of 2 using bicubic interpolation and the proposed model is
applied on the luminance channel following the setup of majority of the existing
single-image SR models [18]. Once we obtain the resultant ‘Y’ channel from the
model, the upscaled ‘Cb’ and ‘Cr’ are directly stacked to it to obtain the final
HR image. For training, we obtain sub-images of 32 × 32 with a stride of 14 as
proposed in [5]. This method is adopted so that we would have training images
of fixed sizes for the simplicity of programming. Let us denote the luminance
channel after upscaling as Y (not to be confused with ‘Y’) and the original image
sample as X, which is the objective image to be generating by propagating Y
through the network.

While deploying the proposed model, we pass the luminance channel of the
image without dividing it into patches. This is done to avoid incorporating other
methods to stitch the obtained results from patches to form the eventual HR
image and handle cases like borders of image-patch, which might result in the
poor quality of the obtained image.

3.2 Description of the Proposed Model

The proposed model uses conv layers, each followed by an activation function in
order to introduce non-linearities. ReLU [13] is chosen as the activation function
since it speeds up the computation and performs relatively good. The deconvo-
lution layers are subsequently used for the reconstruction of the respective HR
image. Note that pooling and un-pooling are not incorporated in order to reduce
possible information loss as they would reduce the dimensions which is unsuit-
able for our task. Besides, in case for image SR, feature maps do not require
any scale invariance which is generally required for many deep learning tasks.
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The block diagram of the proposed deconv neural network based model is shown
in Fig. 1. The deconv layers are exactly mirror-like reflection of the conv layers,
with same number of layers as in the convolutional part and same filter sizes as
that of conv layers.

Fig. 1. An illustration of proposed model showing the different layers of the deconvo-
lutional network for image SR.

To summarize, the proposed SR model consists of three stages:

– Patch extraction: The first conv layer is used for patch extraction. Larger
filters are used to extract patches as well as the basic feature maps from input
LR image Y .

– Feature extraction and Mapping: The next two conv layers are used to
extract high level features and map the LR feature maps into the correspond-
ing HR feature maps.

– Reconstruction: The last three deconv layers are used for the construction
of the HR image from the feature maps obtained from the conv layers. We
choose deconv layers with a stride of 1 over the conv layers as deconv layers
are basically transposed conv layers, that work like a backward pass operation
which allow reconstruction of original images from the learnt feature maps.

3.3 Training

Using the definitions mentioned in Sect. 3.1, X can be represented as a function
of Y given the network parameters θ:

X = F (Y ; θ) (2)

The standard mean squared error (MSE) over n LR-HR patch pairs given by
Eq. 3 is used as the loss function for the proposed model.

MSE =
1
n

(
n∑

i=1

(F (Yi; θ) − Xi)2 (3)



Deconv-nets for Optical Satellite Scenes 415

For optimizing MSE, we rely on the Adam’s optimizer [11]. The parameter
update rule followed in this case is given by:

θt = θt−1 − αt · mt

(
√

νt + ε̂)
(4)

where mt is the gradient of MSE with respect to θ, νt is the squared gradient,
β1 and β2 are hyper parameters controlling the moving values of the gradient.
On the other hand, a small constant ε̂ is used for numerical stability. αt is the
learning rate, which is tuned based on Eq. 5.

αt = α ·
√

1 − βt
2

(1 − βt
1)

(5)

3.4 Implementation Details

Given the proposed architecture, the size of filters in the conv layers are 9 × 9,
3 × 3 and 5 × 5 whereas the number of filters considered in each of these layers
are 32, 64 and 128, respectively. Note that the number of filters are increased
progressively considering that they yield more high-level features, apart from
restricting much loss of image details. On the other hand, the deconv layer filters
are constructed in opposite fashion compared to the conv layer filters (Fig. 1). In
total, the proposed network has 451, 969 parameters. We initialize the weights
of the network as per the He uniform initialization [9] as they consider the
distribution of outputs after ReLU activation while deciding the variance of the
uniform distribution of the weights which makes it easier to train.

We set β1 = 0.9 and β2 = 0.999 for the Adam’s optimizer, inspired by [11].
Learning rate (α) is set to 0.001 with decay of 10−6.

We also pad the output of each layer by zeros for handling the pixels that
lie on border. Therefore height and width of feature maps of each layer remain
identical (in our case, it is 32 × 32 for all layers). This is in contrast to SRCNN,
which explicitly requires to strip the border pixels for preserving the resolution
of the feature maps.

The output of the network is the luminance channel of obtained high reso-
lution image. We interpolate the Cb, Cr channels of the low resolution image
and stack the obtained luminance channel on top of it. We convert this resultant
YCbCr image, into RGB format to get the final image.

4 Results and Experiments

4.1 Data Set

The model is deployed on the popular UC-Merced optical RS dataset [23] which
is extensively used for different RS applications including classification etc. This
dataset consists of 21 different scene themes. Each class has a total of 100 images
of size 256 × 256 pixels providing us with total of 2100 images.
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50 randomly selected images from each class are used for training while
10 images per class are deployed for cross-validation. The model is tested on
4 images per category. This subsequently generates a total of 205, 520 image
patches for mapping the LR to HR patches.

4.2 Metrics

The goodness of the proposed SR model is tested using the standard signal to
noise ratio (PSNR) as mentioned in the following:

PSNR = 10 × log10(255/MSE) (6)

where MSE is obtained according to Eq. 3. Besides, we use the Structural Simi-
larity (SSIM) [20] for measuring the visual similarity at the patch level (between
LR and HR patches)

SSIM(x, y) =
(2 × μx × μy + c1)(2 × σxy + c2)

(μx + μy + c1)(σx + σy + c2)
(7)

where x and y represent the LR and HR patches, μ is average value of the lumi-
nance channel, σ is standard deviation, σxy is covariance. Further, c1 = (0.01L)2,
c2 = (0.03L)2 where L is the dynamic range of the pixel values: 2bitsperpixel − 1,
e.g., in this case L = 127.

4.3 Discussions

Fixation of the Network Structure. In order to obtain the optimal archi-
tecture, we initially repeat the experiments with varied network structures (in
terms of the number of deployed conv and deconv layers). Different combinations
used include the 2conv-2deconv model, 3conv-3deconv model and 4conv-4deconv
models where 2conv-2deconv implies a model with 2 conv layers followed by 2
deconv layers and so on. From Fig. 2, which is a plot of validation error against
epochs, we conclude that 3conv-3deconv layered network performs the best and
this architecture is subsequently finalized. From Fig. 3 we conclude that the
2conv-2deconv model underfits the data and fails to establish a relationship
between LR and HR images effectively. Whereas, the 4conv-4deconv model’s
accuracy averaged on the test data is slightly worse as that of 3conv-3deconv
model though it performs slightly better on some of the test images. Moreover,
it is computationally slower as compared to 3conv-3deconv model as it has more
trainable parameters due to addition of more layers. Therefore, the superiority
of the 3conv-3deconv model can be validated over the others based on the qual-
ity of the obtained HR images in terms of the PNSR measure as well as the
computational efficiency.
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Fig. 2. Validation error versus epochs.

Fig. 3. Comparison of PSNR for different layers.

Empirical Study. The 3conv-3deconv model is also compared with a number of
the recent state-of-the-art methods ScSR [21], SRCNN [5] and bicubic interpola-
tion. We have retrained ScSR and SRCNN on the same data set and split as we did
for our model to have a fair comparison. Figure 4 shows the HR image generated
by state-of-the-art models, our proposed model and the original HR image, respec-
tively for qualitative assessment. On the other hand, Table 1 depicts the accuracy
of models based on PSNR and SSIM. From Table 1 it is clear that our proposed
model outperforms than state-of-the-art methods for SR on satellite images based
on both the considered metrics. Also, from Fig. 4 we can infer that our proposed
model recovers more details of HR image as compared to other models.

Table 1. Comparison between Bicubic, ScSR, SRCNN and proposed model

Bicubic ScSR SRCNN Proposed model

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

airplane60 33.014 0.923 36.431 0.954 36.503 0.953 37.128 0.955

forest60 32.742 0.952 35.660 0.974 35.369 0.973 35.633 0.975

harbor60 24.044 0.900 26.223 0.940 26.351 0.939 27.652 0.957

parkinglot60 25.800 0.856 27.188 0.898 27.320 0.898 28.121 0.911

Average 31.837 0.883 33.964 0.919 34.095 0.918 34.642 0.924
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HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

HR Bicubic ScSR SRCNN Proposed Model

Fig. 4. Qualitative results comparing the images obtained from different algorithms.

5 Conclusions

In this paper, we present an end-to-end deep deconvolutional network based
single-image SR model for optical satellite images which is trained on image
patches. This is one of the preliminary study in remote sensing regarding the
use of deconvolutional network for image SR. Our model produces comparable
and even better performance as compared to the existing ad-hoc and deep image
SR techniques. Currently, we are interested in exploring the paradigm of zero-
shot SR based on deconv-net.
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