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Abstract. Deep Learning requires huge amount of data with related
labels, that are necessary for proper training. Thanks to modern
videogames, which aim at photorealism, it is possible to easily obtain syn-
thetic dataset by extracting information directly from the game engine.
The intent is to use data extracted from a videogame to obtain a repre-
sentation of various scenarios and train a deep neural network to infer
the information required for a specific task. In this work we focus on com-
puter vision aids for automotive applications and we target to estimate
the distance and speed of the surrounding vehicles by using a single dash-
board camera. We propose two network models for distance and speed
estimation, respectively. We show that training them by using synthetic
images generated by a game engine is a viable solution that turns out to
be very effective in real settings.

Keywords: Automotive · Deep Learning · Computer vision ·
Synthetic dataset

1 Introduction

The availability of large amount of indexed and labeled images is key to the
successful design of many complex vision tasks leveraging on powerful Deep
Learning (DL) techniques based on Convolutional Neural Networks (CNN). The
creation of a large dataset able to correctly represent the target scenario and
allowing the trained neural network to generalize in real applications remain a
critical design step. Resorting to human visual inspection and manual labeling
does not represent a viable solution in many scenarios. In fact, manual labeling
does not scale very well to large datasets, except for very simple and repetitive
tasks that do not require particular expertise where one can resort to crowd-
sourcing [3]. Moreover, doubts may arise on the quality of the collected infor-
mation and potential unexpected bias. Finally for some tasks manual labeling
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is simply not possible as is the case in the automotive scenario targeted in this
work, where physical quantities such as distance and speed must be estimated
from images. One option in the automotive field is to use special vehicles with
ad-hoc, and usually expensive, settings and sensors capable of gathering the
information required for training. The set-up and maintenance costs of such real
experiments may represent a significant barrier.

In this context the use of computer graphics (CG) simulation is emerging as
a powerful source of visual information. CG allows to obtain large sized dataset
in a short time and with the usage of cheap resources [11]. In addition, modern
video games are getting closer and closer to photorealism, thus promising to
bridge the gap between visual simulation and reality that is likely to be the
key to training computer vision systems that are effective in real life. Moreover,
simulation makes experimental and environmental settings more flexible: i.e.
in the automotive field, datasets with heterogeneous driving scenarios can be
generated and subjected to different weather and lighting conditions. Higher
heterogeneity can significantly improve the trained model in terms of robustness
and generalization. As an example by using a simple 3D rendering technique such
as Ray-casting in a virtual environment one can get a simulation of a LIDAR
scanner [14,15] easily obtaining information on the distance of the elements
within the image. Furthermore, it is possible to get data that are normally
difficult to obtain, such as measurements of the speed of all the surrounding
vehicles speed, that would require a complex setup on the real field.

Clearly, to customize and generate a dataset for visual training one either
needs to design a complex CG simulation environment or exploit existing high
quality game engines. The second option is viable if one has access to the source
code to easily extract information on the entities and the various elements
that make up the gaming environment (bounding box, size, distance from the
observer, type of entity, etc.). Nowadays, there are few open source simulators
that can be used to extract synthetic datasets. In the automotive environment
TORCS [1] can be used; however this tool allows the representation of only a few
scenarios with limited photorealism. On the other hand, commercial videogames
car run very realistic CG and are equipped with intelligent agents to simulate
entity actions, e.g. a pedestrian walking. For this reason the research community
has recently got interest in Grand Theft Auto V (GTAV) [4,9,12,13], a popular
open world videogame that, thanks to the libraries developed by third parties,
allows one to extract data from the gaming environment.

In a similar fashion to the work done in [13], in this work we propose two CNN
architectures to estimate distance and speed of the surrounding vehicles from a
single camera with windshield view (see Fig. 1). Training has been achieved with
GTAV simulations and performance validated in real life. The main contributions
of this paper lie in:

– a DL model the uses a pre-trained deep CNN to extract semantic features
from vehicles images and uses them to predict distance of the surrounding
vehicles from a single camera with windshield view;

– a model which uses optical-flow information to predict the speed of surround-
ing vehicles from pixel motion between pairs of video frames.
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– a training framework based on videogame simulation for the creation of train-
ing and testing datasets in the automotive field;

– we show that training with synthetic but photorealistic images represents
a viable alternative to more expensive experimental data collection, with
promising results in the estimation of distance and speed of the vehicles on
the road, observed with a single camera.

Dataset, code and pre-trained model are publicly available and can be found
at: https://github.com/mirkozaff/DeepGTAPrediction.

2 Methodology

In this section we will introduce the framework used to collect data, preprocess
them and the models used to accomplish the vision task.

2.1 Data Collection

Fig. 1. Example of a photorealistic frames extracted from the game environment.

Data have been collected from GTAV thanks to Script Hook V library (SHL),
which allows to easily access GTAV native function and extract information
about the entities (vehicles) from the game environment. Images and corre-
sponding information have been generated by configuring an in-game agent that
drives a vehicle and letting it wander the streets; during the simulation one can
collect the required information by queering the game engine through SHL calls.
For our goal we built a dataset by collecting, for every vehicle in the range of
30 m from the player, the following items:

https://github.com/mirkozaff/DeepGTAPrediction
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Fig. 2. Prototype architecture of our proposed distance model. A CNN is used to
extract semantic features, while the MLP branch is used to learn a spatial representa-
tion of the coordinates. Then all these information are merged and decoded into output
values trough a last MLP.

– Frame: 1920 × 1080 image captured at 30 Hz, gathered by setting the in-game
camera on the dashboard.

– Entity ID: identifier of the vehicle to track it in multiple frames.
– Entity speed, distance: speed and distance of the vehicle.
– Entity bounding box: pair of coordinates that define the bounding box B1 of

the vehicle in the captured frame; this is computed by projecting the 3D
bounding box obtained from the game engine into 2D screen coordinates.

We noted that the bounding boxes extracted by SHL are often inaccurate
and present a drift caused by the delay in the response to each SHL query. To
get precise bounding boxes we use pretrained Mask R-CNN [7] model to detect
each vehicle in the dumped frame (the same model will be used in the testing
phase on real-life images). For each detected vehicle Mask R-CNN output a
bounding box B2. To univocally map B2 onto previously computed B1 (and
corresponding speed and distance data) we set a threshold on the intersection
over union IoU = B1∩B2

B1∪B2
. Only the entities showing IoU ≥ 0.7 are included in

the dataset. The selected threshold has also the effect to filter out some vehicles
that cannot be reliably detected due to poor visual conditions.

2.2 Models

Distance. The first model we present is designed to estimate distance from
surrounding vehicles using a single camera with windshield view. The input is
a single image from which vehicles bounding boxes are detected, e.g. by using
Mask R-CNN. As shown in Fig. 2 the architecture is composed by two branches:

– First branch: pretrained ResNet50 [8] used to extract semantic features of the
target vehicle from the corresponding frame. To this end the classification
layers in ResNet50 are removed. The input is a frame crop based on the
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bounding box B2. In particular, each vehicle is extracted from the frame by
cropping and resizing it at 224× 224, that is the input resolution expected
by ResNet50.

– Second branch: Multi Layer Perceptron (MLP), that is used to encode the
coordinate of the bounding box B2 into a higher multi-dimensional space.
We selected the ELU activation function [5] for each layer, in place of the
classic ReLU ; we noted that in our scenario ELU is very effective to avoid
the dead-neuron problem [16].

These two branches are then concatenated and processed through a final MLP
responsible of predicting distance from the fused information produced by image
pixels and bounding box coordinates. Semantic features provided by the first
branch are important because vehicles appearing at the same scale in the image
may represent different classes of object; clearly, we cannot base the distance
estimation on the sole geometric information, i.e. bounding box dimension and
position analyzed by the second branch. In other words, as in real life, we must
take into account that cars are smaller than trucks when guessing the corre-
sponding distance.

Speed. The model proposed to estimate the speed of surrounding vehicles is
designed with a similar approach using two branches: (i) semantic based on
images, (ii) geometrical based on bounding boxes. When speed is regarded one
clearly has to consider at least two consecutive images to gather object dis-
placement over time. One option would be to directly process frames. In this
paper we propose to use as input the Optical Flow (OF) estimated from current
(and previous) frame under analysis. OF is a dense vector field that represents
the displacement of every pixel, e.g. computed using the Farneback method [6].
Moreover, we use the two bounding boxes of the same vehicle tracked in two con-
secutive frames (tracking is simply obtained in our GTAV dataset using entity
IDs, while it will require additional processing in real setting). The structure of
the model for speed estimation is as follows:

– First branch: PilotNet [2], a CNN proposed to learn salient points of the road
for autonomous driving, is used to process the input OF. The OF vector fields
is represented as an image with two bands representing vector magnitude and
direction, respectively. The obtained OF image is cropped according to B2 and
resized to 200 × 66 (the resolution expected by PilotNet). We improved the
original PilotNet model by adding batch normalization to the convolutional
layer in order to speed up convergence and by using ELU activation function
and Dropout on the last fully-connected layers.

– Second branch: same MLP structure used in previous model to encode in
a higher multidimensional space the coordinates of bounding boxes; differ-
ently from the distance estimation model, now the input is represented by
two bounding boxes associated to the same vehicle tracked in two successive
frames.
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Fig. 3. RMSE on distance (a) and speed (b) estimate.

Finally, the features extracted on the two branches are concatenated and pro-
cessed by final MLP as already shown in Fig. 2 to estimate speed. Clearly, we
adopted a heuristic similar to the one proposed for distance: the lower branch
extracts motion features based on bounding box geometrical information and
displacement; the Pilonet branch encodes richer features that depend on the OF
of all the pixels corresponding to a vehicle and potentially extract also semantic
characteristics.

3 Network Training

Using the process presented in Sect. 2.1 it is possible to generate datasets com-
prising as many vehicles, labeled with distance and speed, as desired. In this
work, we employ a training and validation sets with 250,000 and 2,500 samples,
respectively to train the distance model. As far as the speed model is regarded,
we extract from previous dataset all vehicles visible in two consecutive frames
generating a set of 180,000 OF images for training and 1,500 for validation.

The proposed models have been trained using Mean Squared Error (MSE)
as loss function and Adam optimizer with the following parameters: lr = 0.001,
β1 = 0.9, β2 = 0.999. In order to avoid over-fitting the training has been stopped
as soon as the loss computed on the validation set ceases to decrease; in our
experiments this usually happened after about 15 training epochs.

Training of all MLP sub-networks has been done using Dropout with param-
eter p = 0.4. In the distance model ResNet50 weights pretrained on ImageNet
have been kept fixed, while optimizing only the other MLP sub-networks. In the
speed model all the network has been trained since no pretrained PilotNet useful
in our context was already available.

Training has been run on a PC with Intel(R) Core(TM) i9-7940X CPU, 128
GB RAM and NVIDIA GeForce GTX 1080 Ti (x4). Testing was performed
both on the same machine and on a lighter one with Intel(R) Core(TM) i5-6400,
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8 GB RAM and NVIDIA GeForce GTX 1050 Ti. This latter has been selected
as representative of the hardware that one expects to have on board a vehicle
as opposed to the previous higher-end server.

4 Experimental Results

In this section we describe the experimental results obtained in different simu-
lated and real settings.

4.1 Testing on Synthetic Dataset

As a first step, the estimation accuracy of the trained models has been evaluated
on synthetic datasets of size 2,500 and 1,800 for distance and speed, respectively.
These testing sets have been generated using the GTAV simulation described
in Sect. 2.1. It is worth pointing out that training and testing sets have been
generated with different random simulations to make them independent.

The proposed models are able to predict distance with a Root MSE (RMSE)
of about 2.46 [m] and speed with RMSE of about 2.75 [mph]. In Fig. 1 we provide
an example of the obtained visual results. The image shows a car and a truck
with labels representing ground truth and predicted distance and speed. For the
car the model predicts a distance of 3.8 m versus a real value of 3 m and 9.5 mph
speed versus 10.2 mph.

In Fig. 3 we analyze in more details the estimation accuracy. In particular,
Fig. 3(a) shows the RMSE on distance as a function of the actual distance range;
to this end we compute RMSE (the circle marker) and standard deviation of the
estimation error (vertical bars) by binning the collected results in increasing
distance ranges of 5 m in the interval (0, 30) m (the top error bar indicates an
overestimate, whereas the bottom segment represents an underestimate). It can
be noted that, as one may expects, the RMSE increases for larger distances.
Overall the distance estimates are quite accurate and unbiased (almost symmet-
ric error bars) within a range of 15 m: as an example the RMSE in the range
(0, 5) m is 1.23 m and in the range (5, 10) m is 1.57 m. For farther vehicles the
predictions are less accurate and the model tends to underestimate the distance.
This can be explained by the fact that at distances greater than 15 m vehicles
are represented in the image by fewer pixels limiting the information extraction
capabilities of the convolutional layers.

In Fig. 3b we show similar RMSE analysis on the speed estimate as a function
of the speed up to 20 mph, that is the maximum value that can be simulated
in GTAV. It can be noted that speed RMSE increases as a function of speed.
The obtained results shows that the proposed network can guess the speed of
the surrounding vehicles at reasonable level by using a single camera view. As
an example, in the speed range (0, 5) mph we get RMSE equal to 2.10 mph, and
in the range (5, 10) mph we get RMSE equal to 4.15 mph. We expect to be able
to improve such results by increasing the number of temporal frames analyzed
by the model and using better OF representations.
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4.2 Testing on Real Dataset

As already mentioned in Sect. 1 one of the goal of this work is to understand if
CG simulation can be used to effectively train DL models that can be employed
in real settings. To answer this question we need vehicles videos with annotated
data. To this end we used the video sequence provided in [10] and corresponding
distance estimates as an example of real dataset. In Fig. 4 we compare the RMSE
on distance prediction obtained on the real and synthetic datasets subdivided in
2 m ranges (please note that images from [10] are limited to a 6 m range). It can
be noted that the proposed model is quite robust and generalizes well in real
life scenario, even if the actual environment can be significantly different with
respect to GTAV simualtion. Indeed it can be noted that, in the experimented
distance range, the RMSE of the real dataset increases by less than 0.5 m with
respect to the synthetic testing set. Overall the test RMSE was 1.21 on synthetic
data and 1.40 on real data. We would like to perform similar experiment with
speed prediction but unfortunately, to the best of our knowledge, there is no
publicly available dataset that can be employed to this end. Indeed, the setup
of a real road experimentation is quite complex.
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Fig. 4. RMSE on distance estimate (synthetic and real images).
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Fig. 5. Example of distance estimate in real environment.

4.3 Testing on the Road

Finally, the model has been tested on a video recorded on the streets around our
city using a Go Pro Hero 6 placed on the car dashboard. This last experiment
was accomplished in real road environments (both urban and highway) to check
the meaningfulness of the obtained predictions. In this case we do not have
ground truth data. By analyzing the operations of the proposed system in real
live we noted that the predicted distances are plausible and coherent, i.e. vehicles
appearing at the same distance are assigned the same value, and approaching
vehicles exhibit decreasing distance. As in previous experiment also in this case
the model performance is not significantly impaired by the road environment
that is very much different with respect the GTAV scenario.

4.4 Computational Cost

In this section we analyze the computational cost of the proposed solutions by
measuring the execution time of different algorithmic steps of the two hardware
architectures described in Sect. 3; these are meant to be representative of a work-
station performing remote computation and lower-end hardware compatible with
in vehicle system. In Table 1 we show the average time taken by the calculation
of the bounding box, speed and distance estimate for an image with 5 vehicles
(on average). It can be noted that to get acceptable delays (compatible with
real time requirements of advanced driver-assistance systems) it is necessary to
use powerful workstation. As expected the speed estimate represent the slowest
module.
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Table 1. Execution time of different algorithmic steps.

Work station

290 ms Bounding box

15 ms Distance

45 ms Speed

120 ms Latency

500 ms Total

On board PC

2 s Bounding box

280 ms Distance

880 ms Speed

3 s Total

5 Conclusions

In this paper, we proposed two models to accomplish two different tasks: speed
and distance prediction using a single camera looking at the road from the driver
perspective. Since for such tasks it is either technically difficult or quite expen-
sive to get real video sequences for training CNNs, in this paper we proposed
to use simulated data generated by means of a popular game engine. Such an
approach allowed us to collect photorealistic driving scenes, where all the visible
vehicles can be labeled with distance and speed information. We designed two DL
models built around similar ideas: one branch extracts features from the input
images, a second one maps vehicles’ bounding boxes (dimension and position)
to higher dimensional space, and a last MLP network infers distance or speed
from all the extracted features. The estimation accuracy has been evaluated on
both synthetic and real data showing that the simulated images can be used
to effectively train the proposed models. For future work we plan to improve
the models by substituting the bounding box detection network with a lighter
version and using a DL approach to estimate OF for speed prediction. Moreover,
we plan to enrich the input available to the network by including parameters
that can be logged on board a car such as throttle, brake and steering data to
mention a few.

Acknowledgement. The research leading to these results has received funding from
the European Union Horizon 2020 research and innovation programme under grant
agreement No 713788 (“optiTruck” project).

References

1. Torcs (2007). http://torcs.sourceforge.net/
2. Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end

learning steers a car (2017). http://arxiv.org/abs/1704.07911

http://torcs.sourceforge.net/
http://arxiv.org/abs/1704.07911


398 M. Zaffaroni et al.

3. Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new
source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6(1), 3–5
(2011)

4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for
direct perception in autonomous driving. In: ICCV 2015 (2015)

5. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus) (2015). http://arxiv.org/abs/1511.07289
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