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Abstract. Solving a classification problem for a neural network means
looking for a particular configuration of the internal parameters. This is
commonly achieved by minimizing non-convex object functions. Hence,
the same classification problem is likely to have several, different, equally
valid solutions, depending on a number of factors like the initialization
and the adopted optimizer.

In this work, we propose an algorithm which looks for a zero-error
path joining two solutions to the same classification problem. We witness
that finding such a path is typically not a trivial problem; however,
our heuristics is able to succeed in such a task. This is a step forward
to explain why simple training heuristics (like SGD) are able to train
complex neural networks: we speculate they focus on particular solutions,
which belong to a connected solution sub-space. We work in two different
scenarios: a synthetic, unbiased and totally-uncorrelated (hard) training
problem, and MNIST. We empirically show that the algorithmically-
accessible solutions space is connected, and we have hints suggesting it
is a convex sub-space.
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1 Introduction

One of the core problems in computer vision is image classification. Solving an
image classification problem means being able to correctly recognize an image as
being part of a class, which translates into the correct identification of key fea-
tures. Image classification finds a number of direct applications, not restricted
to tumor classification and detection [1], bio-metric identification [15,20,23],
object classification [9] and even emotions [7]. This problem is typically com-
plex to be solved, and a number of algorithms have been designed to tackle
it [8,17,24]. However, the top-performance model is here represented by neural
networks. In particular, the so-called convolutional neural networks (CNNs) are
able to automatically take as input images, process them in order to extract
the key features for the particular classification problem, and perform the clas-
sification itself. Applying very simple optimizing heuristics to minimize the loss
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function, like SGD [4,27], slightly more complex optimizers like Nesterov [19] or
Adam [14] moving to the sophisticated local entropy minimizer [2,6], it is nowa-
days possible to succeed in training extremely complex systems (deep networks)
on huge datasets. Theoretically speaking, this is the “miracle” of deep learning,
as the dimensionality of the problem is huge (indeed, these problems are typi-
cally over-parametrized, and the dimensionality can be efficiently reduced [25]).
Furthermore, minimizing non-convex objective functions is typically supposed to
make the trained architecture stuck into local minima. However, the empirical
evidence shows that something else is happening under the hood: understanding
it, in order to provide some warranty for all the possible applications of image
classification, is critical.

In this work, we propose an heuristic approach which should help us to under-
stand some basic properties of the found solutions in neural network models.
Here, we aim to find a path joining two (or, in general, more) different solutions
to the same classification problem. Early attempts to explore possible joining
paths were performed using random walk-based techniques, but the complex-
ity of the task, due to the typical high-dimensionality of the problem, made it
extremely inefficient [13].

A recent work [12] suggests that solutions to the same problem are typically
divided by a loss barrier, but a later work by Draxler et al. [10] shows the
existence of low-loss joining paths between similar-performance solutions. Such a
work, however, focuses on the loss function, which is a necessary but not sufficient
condition to guarantee the performance on the training/test set. Our heuristics
puts a hard constraint on it: we will never have a performance (evaluated as
the number of samples correctly classified by the neural network model) below
a fixed threshold. In the case we ask our model to correctly classify the whole
training set, we will say we lie in the solution region S of the training model,
also known as version space. This will be our focus along this work.

In the last few years, thanks to the ever-increasing computational capability
of computers, bigger and bigger neural networks have been proposed, in order to
solve always more complex problems. However, explaining why they succeed in
solving complex classification tasks is nowadays a hot research topic [11,21,22].
Still, it is object of study why, using simple optimizers like SGD to minimize
problems which are typically non-convex, is a sufficient condition to succeed in
training deep models [5,16,18]. The aim of this work is to move a step in the
direction of explaining such a phenomenon, analyzing some typical solutions to
learning problems, and inspecting some properties of them. In this way, we aim
to give some hints on which type of solutions SGD finds, guessing whether there
is some room for improvement or not.

The rest of this paper is organized as follows. In Sect. 2 we set-up the problem
environment, aim and the algorithm is illustrated and justified. Next, in Sect. 3
we test our algorithm on MNIST and on training sets containing uncorrelated,
randomly-generated patterns. The experiments show that our proposed method
is able to always find joining paths in S between any found solution for the same
problem. Furthermore, hints on some properties of S are deducted studying
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the joining path. Finally, Sect. 4 draws the conclusions and suggests further
directions for future research.

2 The Proposed Algorithm

2.1 Preliminaries

In our setting, we have a training set Ξtr made of M pairs (ξi, σi), in which
we identify the set of inputs ξi and their associated desired output σi. For the
purpose of our work, we ask for some configuration W of the neural network
such that the entire Ξtr problem is correctly solved. If such a condition is met,
we say that the configuration W is a solution for the learning problem Ξtr. In
other words, a weights configuration Wk is a solution when

yi |ξi,Wk = σi ∀i ∈ Ξtr (1)

If we define S as the subset of all the W configurations which solve the whole
training problem Ξtr, we can say that Wk ∈ S. Let us imagine two solutions to
the same problem Ξtr, Wa and Wb, are provided. We aim to find a path Ωab ⊂ S
which joins Wa to Wb. At this point, we might face two different scenarios:

1. Ωab is simply a straight line. According to the work by Goodfellow et al., we
could draw a straight line between Wa and Wb which might be parametrized,
for example, as

lab(t) = (Wb − Wa)t + Wa (2)

with t ∈ [0, 1]. According to this scenario, this is a sufficient condition to
join the two different solutions. However, as showed by the same work of
Goodfellow et al., this is not typical [12].

2. Ωab is a “non-trivial” path as lab �⊂ S, and is not a-priori guaranteed to exist.
This is the typical scenario, and the setting in which we are going to work.
The work by Draxler et al. [10] shows that there exists a path Γab having low
loss value, however, in general, Γab �⊂ S. Our heuristics not only works for
the case Ωab �= lab, but it guarantees Ωab ⊂ S (Fig. 1).

2.2 Finding the Path

Our heuristics generates the path Ωab in a “Markov chain” fashion: we are going
to use a “survey” network Wx, whose task is to modify its configuration (i.e.
the value of its parameters) in order to move from Wa’s configuration to Wb,
never leaving S. Hence, at time t = 0 we initialize Wx = Wa, and we ask Wx to
explore S such that, at some time tf , Wx = Wb. The exploration algorithm is
designed according to three, very simple, basic concepts:

– We will never leave S.
– As we start from Wa, we want to arrive to Wb using a survey network Wx,

which draws Ωab in tf steps.
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Fig. 1. Example of the “non trivial” scenario. Here, while lab goes out the solution
region S, Ωab still remains inside it.

– At time t′, Wx will just have knowledge of the training set, direction and
distance towards the target Wb.

In order to reach Wb, we need to drive Wx at any time t to it. Towards this end,
we use an elastic force:

ΔW t
x = γ(Wb − W t−1

x ) (3)

where γ is an elastic constant, whose value is typically γ � 1.
If we just apply Eq. 3, in the non-trivial scenario, Wx will leave the solution

region, as we will have Ωab ≡ lab. Hence, what we need here is to change the
trajectory for our Ωab in a “smart” way. It will be nice to stay away from the
frontier of S. A local information we have, which might come handy in this
context, is the gradient on the training set. If we perform a GD step, Wx should
be naturally driven down the loss function and, supposedly, drives Wx away from
the frontier of S.

Along with the elastic coupling and the GD step, we impose a norm constraint
for Wx, acting as a regularizer, to be applied layer-by-layer, which bounds Wx’s
norm to:

n
(
W l

x

)
= ‖W l

b‖F − ‖W l
b‖F − ‖W l

a‖F
‖W l

b − W l
a‖F

‖W l
b − W l

x‖F (4)

where W l
x indicates the l-th layer of Wx and ‖ · ‖F is the Frobenius norm.

Essentially, we are imposing a linear constraint to the norm of Wx, which is
function of the distance from Wb. Finally, as we have the hard constraint on
remaining into S, we need to impose small steps for Wx

W t
x = W t−1

x + δW t
x (5)

where, typically,
δW t

x � ∇W t−1
x (6)

In this way, unless we find a local minimum very close to Wb and exactly on
the same path followed by Wx (extremely unlikely as empirically observed, issue
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which can be anyway easily tackled with a proper tuning of γ), we avoid to get
stuck in any local minimum.

To sum-up, in order to generate Ωab, after we have initialized Wx to Wa, we
iteratively perform the following steps:

1. Apply an elastic coupling in the direction of Wb (Eq. 3), with the hard con-
straint of never leaving S (this is hard because we will simulate a “hitting
a wall”-like fashion, i.e. we will discard all the steps which will put Wx out-
side S)

2. Perform Nepochs of gradient descent (GD) steps evaluated on Ξtr

3. Properly normalize Wx (Eq. 4)

The general algorithm is summarized in Algorithm 1.

Algorithm 1. Find joining path between Wa and Wb

1: procedure Track Ω(Wa, Wb, Ξtr)� Implicitly, Wx always normalized as in Eq. 4
2: Wx = Wa

3: Ω = Wx

4: while Wx �= Wb do
5: for Nepochs do
6: Wx = Wx − η∇Wx � ∇Wx computed on Ξtr

7: if Wx /∈ S then
8: return ∅ � η, γ not properly set

9: Wx-tmp = Wx − γ(Wb − Wx)
10: if Wx-tmp ∈ S then
11: Wx = Wx-tmp

12: Ω = append(Ω, Wx)

13: return Ω

2.3 Properties of the Path

Once we have obtained Ωab, we can perform an empirical investigation on it.
There are some interesting observations we can perform on it:

– Is there any property related to the shape of S? As typical problems are
extremely high-dimensional, it is very difficult to deduct some global prop-
erty on S. However, we might have some hint on how S is shaped from two
indicators:

• If we are always able to find Ωab ⊂ S, then we might suggest that all the
algorithmically-accessible solutions in S, collected in Salgo ⊂ S, live in a
connected subspace.

• We can study the Hessian along Ωab. Even though this is not a fully-
informative observation for S, we can deduce some properties, like the
shape of the loss in Salgo.
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– Verify how the loss function varies along Ωab: as our technique is strictly
bounded to S and not necessarily to the minimization of the loss function, it
may happen that some solutions to Ξtr have high loss.

– Check how the generalization error, defined as the error on the test set, varies
along Ωab.

All of these aspects will be empirically investigated in Sect. 3.

3 Experiments

The proposed algorithm was tested under two very different settings and archi-
tectures. In both cases, a Ωab ⊂ S path has always been found.

3.1 Tree Committee Machine on Random Patterns

In our first experiments, we use a simple kind of neural network, the so-called
Tree Committee Machine (TCM). It is a binary classifier, consisting in one-
hidden neural network having N inputs and K neurons in the hidden layer.
The connectivity of the hidden layer is here tree-like: each k-th neuron of the
hidden layer is able to receive data from an exclusive N

K subset of the input. In
particular, for our setting, the general output of the TCM is defined as

ŷi = tanh

⎡

⎣
K∑

k=1

htanh

⎛

⎝
N
K∑

j=1

Wkj · ξµ
kN

K +j

⎞

⎠

⎤

⎦ (7)

where htanh is the hard tanh.
The training set Ξtr is randomly generated: the input patterns ξi ∈

{−1;+1}(N×M) and random desired outputs σ ∈ {−1,+1}M .
All the experiments here shown are performed on TCMs having size N = 300

and K = 3 and the training sets consist in M = 620 samples. The training
of the reference solutions to Ξtr has been performed using the standard GD
technique, minimizing the binary cross-entropy loss function, with η = 0.1. The
network has been initialized using a gaussian initializer. In this setting, γ = 0.001
and Nepochs = 5. The algorithm was tested on 10 different, randomly-generated
datasets, and for each of them 3 different configurations Wi ∈ S were obtained
and attempted to be connected. The implementation of the neural network and
of the algorithm is in Julia 0.5.2 [3].

Even though we are in the typical scenario for which the error on lab > 0,
we are able to find a non-trivial path in S. For this network, it is also possible
to compute the exact Hessian matrix. Surprisingly, the typical observed scenario
here is that, along any found Ω ⊂ S, all the non-zero eigenvalues of the Hessian
matrix are strictly positive, the cardinality of non-zero eigenvalues is constant
and the reference solutions represent local minima for the trace of the Hessian
matrix. An example of this observed result is shown in Fig. 2. This result is
obtained in a hard learning scenario, and may suggest us that, even though the
learning problems are typically non-convex, GD-based techniques work because
the algorithmically accessible Salgo region, is convex.
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Fig. 2. Hessian eigenvalues along Ωab in TCM for random patterns. In this case, just
three eigenvalues are non-zero and all positive. Along the path, the loss on the training
set is proportional to the trace of the Hessian.

3.2 LeNet5 on MNIST

Experiments on LeNet5 solutions trained on the MNIST dataset have been per-
formed. In particular, at first simulations on a reduced MNIST are shown (train-
ing is performed on the first 100 images: we are going to call it MNIST-100) and
on the full MNIST dataset. The software used for the following simulations is
PyTorch 1.1 with CUDA 10.

(a) Loss on training and test set in Ωab (b) Error [%] on training and test set in Ωab

Fig. 3. Example of Ωab for LeNet5 with MNIST-100. The x axis is a normalized dis-
tance between Wa and Wb.

For the MNIST-100 case, the networks have been trained using SGD with η =
0.1, and initialized with Xavier. The joining path heuristic used γ = 0.001 and



352 E. Tartaglione and M. Grangetto

Fig. 4. Hessian eigenvalues along Ωab for LeNet5 trained on MNIST-100 (same exper-
iment as Fig. 3). Here the top-20 Hessian eigenvalues are plotted.

(a) Loss on training and test set along Ωab (b) Error [%] on the test set along Ωab

Fig. 5. Example of Ωab for LeNet5 with the entire training set. The x axis is a nor-
malized distance between Wa and Wb.

Nepochs = 5. Despite the higher dimensionality and complexity of LeNet5, also in
this case it has always been possible to find a Ωab path in S. A typical observed
behavior is shown in Fig. 3. It is here interesting to observe that in general,
moving through Ω, both the training and test loss are no longer monotonic or
bi-tonic, but they show a more complex behavior (an example is in Fig. 3(a)).
Furthermore, observing the test set error, it shows a similar behavior to the test
set loss, but not locally exactly the same (Fig. 3(b)).

It can be here interesting to investigate the behavior of the eigenvalues of
the Hessian along Ωab also in this scenario. Figure 4 is a plot for the top-20
eigenvalues. The Hessian eigenvalue computation has been performed here using
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the code by Gholami [26]. Interestingly, even for a more complex architecture
like LeNet5, along the entire Ωab path, the top eigenvalues are all positive.

Besides the simulations on MNIST-100, we also attempted to find a joining
path between two solutions for the entire MNIST dataset, still using LeNet5. In
this case, γ = 0.1 and Nepochs = 5, while the training of the initial configuration
is performed using SGD with η = 0.1 and initializing with Xavier. According
to our findings, in this setting, a zero-error joining path, even for the whole
MNIST problem, typically exists (Fig. 5). Interestingly, the best generalization
performance (at about 0.2 in the normalized distance scale) is here found far from
both the solutions found by SGD, and typically can not be found by vanilla-SGD,
as there is a higher training loss value (even if it lies in the version space).

4 Conclusion

In this work, a heuristic approach to find a path Ωab joining two solutions Wa

and Wb to the same training problem Ξtr is proposed. The main property of Ωab

is that it entirely lies in the solution space S of the W ’s configurations which
solve the training problem. In general, such an approach is not guaranteed to
produce an Ω: if S is not connected and Wa and Wb belong to two different
sub-spaces of S, by construction, Ωab can not exist. By our empirical observa-
tions, with a randomly-generated, uncorrelated, synthetic training set and with
MNIST, the subspace Salgo ⊆ S accessed by GD-based techniques seems to be
connected. Furthermore, we have some hints indicating that Salgo might be con-
vex and a further proof that SGD alone is not sufficient to guarantee the best
generalization, neither for nowadays simple classification problems like MNIST.

The proposed technique potentially allows us to extend the investigation of
S also to non-typical algorithmic solutions to the learning problem, along the
drawn Ω paths. These findings open to new researches in the field of explain-
able neural networks. Future work involves the study of how the generalization
error varies along Ω on more complex classification tasks and the design of an
algorithm to boost it.
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