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Abstract. Neural networks are said to be biologically inspired since
they mimic the behavior of real neurons. However, several processes in
state-of-the-art neural networks, including Deep Convolutional Neural
Networks (DCNN), are far from the ones found in animal brains. One
relevant difference is the training process. In state-of-the-art artificial
neural networks, the training process is based on backpropagation and
Stochastic Gradient Descent (SGD) optimization. However, studies in
neuroscience strongly suggest that this kind of processes does not occur
in the biological brain. Rather, learning methods based on Spike-Timing-
Dependent Plasticity (STDP) or the Hebbian learning rule seem to be
more plausible, according to neuroscientists. In this paper, we investigate
the use of the Hebbian learning rule when training Deep Neural Networks
for image classification by proposing a novel weight update rule for shared
kernels in DCNNs. We perform experiments using the CIFAR-10 dataset
in which we employ Hebbian learning, along with SGD, to train parts of
the model or whole networks for the task of image classification, and we
discuss their performance thoroughly considering both effectiveness and
efficiency aspects.

Keywords: Hebbian learning · Deep learning · Computer vision ·
Convolutional neural networks

1 Introduction

Backpropagation is the most common learning rule for artificial neural net-
works. Despite being initially developed for biologically inspired artificial net-
works, it is commonly known by neuroscience that this process is unlikely to be
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implemented by nature. Seeking for more plausible models that mimic biologi-
cal brains, researchers introduced several alternative learning rules for artificial
networks.

In this work, we explore one of these alternative learning rules—Hebbian
learning—in the context of modern deep neural networks for image classifica-
tion. Specifically, the concept of Hebbian learning refers to a family of learn-
ing rules, inspired by biology, according to which the weight associated with
a synapse increases proportionally to the values of the pre-synaptic and post-
synaptic stimuli at a given instant of time [2,4].

Different variants of Hebbian rules can be found in the literature. In this
work, we investigate two main Hebbian learning approaches, that is the Winner-
Takes-All competition [3,12] and the supervised Hebbian learning solution. We
apply these rule to train image classifiers that we extensively evaluate and com-
pare with respect to standard models trained with Stochastic Gradient Descent
(SGD). Moreover, we experiment with hybrid models in which we apply Hebbian
and SGD updates to different parts of the network. Experiments on the CIFAR-
10 dataset suggest that the Hebbian approach is adequate for training the lower
and the higher layers of deep convolutional neural networks, while current results
suggest that it has some limitations when used in the intermediate layers1. On
the other hand, the Hebbian approach is much faster than Gradient Descent
in terms of numbers of epochs required for training. Moreover, Hebbian update
rules are inherently local and thus fully parallelizable in the backward/update
phase, and we think that strategies to enhance the scalability of current models
can benefit from this property. The main contributions of this work are:

– the use of Hebbian learning in DCNN, with a novel proposal for weight
updates in shared kernels (Sect. 3.4);

– the definition of various hybrid deep neural networks, obtained combining
SGD and Hebbian learning in the various network layers (Sect. 4);

– extensive experimentation and analysis of the results (Sect. 5).

The paper is organized as follows. Section 2 gives a brief overview of other works
in this context. Section 3 introduces the Hebbian learning model. Section 4 dis-
cusses the deep network architecture that we defined and how we set the exper-
iments to assess the performance of the approach. Section 5 discusses the exper-
iments and the results. Section 6 concludes.

2 Related Works

Recently, several works investigated the Hebbian rule for training neural net-
works for image classification. In [15], the authors propose a deep Convolutional
Neural Network (CNN) architecture consisting of three convolutional layers, fol-
lowed by an SVM classifier. The convolutional layers are trained, without super-
vision, to extract relevant features from the inputs. This technique was applied
1 For the implementation details about the experiments described in this document

and the related source code, the reader is referred to [8,9].
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on different image datasets, among which CIFAR-10 [6], on which the algorithm
achieved above 75% accuracy with a three-layer network.

In [10], the authors obtain the Hebbian weight update rules by minimizing
an appropriate loss function, defined as the strain loss. Intuitively, they aim at
minimizing how the differences, between the similarity among input vectors and
output vectors, get distorted when moving from the input space and the output
space. Also in this case, the authors use CIFAR-10 to perform the experiments,
achieving accuracy up to 80% with a single layer followed by an SVM classifier [1].

In the above approaches, the Hebbian rule application remains limited to
relatively shallow networks. On the other hand, in our work, we explore the
possibility of applying Hebbian learning rules to deeper network architectures
and discuss the opportunities and limitations arisen in this context.

3 Hebbian Learning Model

The Hebbian plasticity rule can be expressed as

Δw = η y(x, w)x , (1)

where x is the vector of input signals on the neuron synapses, w is the weight
vector associated with the neuron, η is the learning rate coefficient, Δw is the
weight update vector, and y(x, w) is the post-synaptic activation of the neuron—
a function of the input and the weights that is assumed to be non-negative (e.g.
a dot product followed by a ReLU or sigmoid activation).

3.1 Weight Decay

Rule 1 only allows weights to grow, not to decrease. In order to prevent the
weight vector from growing unbounded, Rule 1 is extended by introducing a
weight decay (forgetting) term [2] γ(x, w)

Δw = η y(x, w)x − γ(x, w) . (2)

When the weight decay term is γ(x, w) = η y(x, w)w [4], we obtain

Δw = η y(x, w) (x − w) . (3)

If we assume that η y(x, w) is smaller than 1, the latter equation obtains the
following physical interpretation: at each iteration, the weight vector is modified
by taking a step towards the input, the size of the step being proportional to the
similarity between the input and the weight vector, so that if a similar input is
presented again in the future, the neuron will be more likely to produce a stronger
response. If an input (or a cluster of similar inputs) is presented repeatedly to
the neuron, the weight vector tends to converge towards it, eventually acting as a
matching filter. In other words, the input is memorized in the synaptic weights.
In this perspective, the neuron can be seen as an entity that, when stimulated
with a frequent pattern, learns to recognize it.
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3.2 Competitive Hebbian Learning: Winner Takes All

Equation 3 can be also used in the context of competitive learning [3,5,12,14].
When more than one neuron is involved in the learning process, it is possible to
introduce some forms of lateral interaction in order to force different neurons to
learn different patterns. A possible scheme of interaction is Winner Takes All
(WTA) competition [3,12] which works as follows:

1. when input is presented to the network, the neurons start a competition;
2. the winner of the competition is the neuron whose weight vector is the clos-

est to the input vector (according to some distance metric, e.g. angular dis-
tance [3] or euclidean distance [4]), while all the other neurons get inhibited;

3. the neurons update their weights according to Eq. 3, where y is set to 0 for
the inhibited neurons and to 1 for the winner neuron.

3.3 Supervised Hebbian Learning

Hebbian learning is inherently an unsupervised approach to neural network train-
ing because each neuron updates its weight without relying on labels provided
with the data. However, it is possible to use a simple trick to apply Hebbian rules
in a supervised fashion: the teacher neuron technique [11,13] involves imposing a
teacher signal on the output of the neurons that we want to train, thus replacing
the output that they would naturally produce. By doing so and by applying a
Hebbian learning rule, neurons adapt their weights in order to actually reproduce
the desired output when the same input is provided.

Applying this technique to the output layer is straightforward, as the teacher
signal coincides with the output target, but the choice of the teacher signal for
supervised training of internal neurons is not trivial. Similarly to [15], we use the
following technique to guide the neurons to develop a certain class-specificity in
intermediate layers: we divide the kernels of a layer in as many groups as the
number of classes and associate each group with a unique class; in addition, we
also devote a set of kernels to be in common to all the classes; when an input of
a given class is presented to the network, a high teacher signal y = 1 is provided
to all the neurons sharing kernels that belong to the group corresponding to the
given class, while the others receive a low teacher signal y = 0 (neurons sharing
kernels associated with the set common to all the classes always receive a high
teacher signal).

3.4 Hebbian Rule with Shared Kernels in DCNN

Eq. 3 allows computing Δw for each neuron in a given layer. Due to weight shar-
ing in convolutional neural networks, different neurons in the same convolutional
layer that shares the same kernel might be associated with different Δw’s. In
order to allow weight sharing in kernels of deep convolutional layers, we propose
to perform an aggregation step in which the different Δw’s, obtained at different
spatial locations, are used to produce a global Δwagg used for the update of the
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Fig. 1. Architecture of the Deep Convolutional Neural Network used in our
experiments.

kernel. Δwagg is computed as a weighted average of the Δw, where the weights
are proportional to the coefficient that determines the step size (y when the basic
Hebbian rule is used, 1 or 0 for winners and losers, respectively, when the WTA
rule is used, and the teacher signal when supervised Hebbian learning is used).

4 Neural Network Architecture and Experiment Settings

To evaluate the Hebbian rule in deep learning, we designed a reference deep net-
work architecture inspired to AlexNet [7]. The deep network structure, shown in
Fig. 1, is composed of four convolutional layers followed by a fully connected layer
(layer 5). Layer 6 is a linear classifier with one output per class. We performed
several experiments in which we combined Hebbian learning with SGD learning
in various ways, and we measured the classification performance obtained on the
CIFAR-10 dataset [6]. In the first and second experiment, discussed in Sects. 5.1
and 5.2, we modified the architecture in Fig. 1 as shown in Fig. 2a. Specifically, we
placed in turn Hebbian classifiers and SGD classifiers on top of feature extracted
from various layers of, respectively, an SGD- and an Hebbian-trained network.
In other words, the entire network was trained using a single approach (either
Hebbian or SGD) and just the top layer (the classifier) was changed. In the third
and fourth experiment, discussed in Sects. 5.3 and 5.4, we placed SGD-trained
layers on top of Hebbian-trained layers, and vice-versa, at various level of the
network, as shown in Fig. 2b. In the fifth experiment, discussed in Sect. 5.5, we
put various Hebbian-trained layers in between SGD trained layers, as shown in
Fig. 2c. In all the experiments, when lower layers were trained with the Hebbian
rule, we also pre-processed images with ZCA-whitening [6], which provided us
with better performance.

5 Experiments

As a baseline for the various experiments, we trained the defined network by
applying the Stochastic Gradient Descent (SGD) algorithm to minimize the
Cross-Entropy Loss. Training was executed using the following configuration:
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Fig. 2. Architecture modifications applied in our experiments.

SGD with Nesterov correction and momentum of 0.9, L2 penalty of 0.06, and
a batch size of 64. The network was trained for 20 epochs on the first four of
the five training batches of the CIFAR-10 dataset [6], corresponding to the first
40,000 samples, while the fifth batch, corresponding to the last 10,000 samples,
was used for validation. Testing was performed on the CIFAR-10 test batch pro-
vided specifically for this purpose. Images were normalized to have zero mean
and unit standard deviation. Early stopping was used so that, at the end of
the 20 epochs, the network parameter configuration that we kept was the one
achieving the highest accuracy. The learning rate was set to 10−3 for the first ten
epochs, then halved every epoch for the next ten epochs. This baseline was used
both for comparing with the performance obtained with Hebbian learning and
to produce pre-trained SGD layers to be combined with Hebbian-trained layers.
In the next sections, we discuss the results obtained by the various combinations
of Hebbian-trained and SGD-trained layers, introduced in Sect. 4.

5.1 Hebbian vs. SGD Classifiers on SGD-Trained Layers

In this first experiment, we used the baseline trained network, discussed in
Sect. 5, as a pre-processing module to extract features from an image, which
were then fed to a classifier as shown in Fig. 2a. We compared both a classifier
trained using SGD and the Hebbian rule.

To perform an exhaustive test, we measured the performance obtained by
placing (and training) a classifier after every layer of the network. The SGD
classifiers were trained with the same parameters used for the baseline, except
that the L2 penalty is reduced to 5 · 10−4. The Hebbian classifiers were trained
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Table 1. Accuracy (%) of SGD- and Hebbian-trained classifiers built on top of various
internal layers of an SGD- or Hebbian-trained network.

Classifier Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

SGD SGD SGD SGD SGD

SGD 60.71 66.30 72.39 82.69 84.95

Hebbian 46.58 56.59 67.79 82.18 84.88

Hebbian Hebbian Hebbian Hebbian Hebbian

SGD 63.92 63.81 58.28 52.99 41.78

with learning rate 0.1, the similarity between neuron inputs and weight vectors
was measured in terms of angular distance (lower angular distance means higher
similarity and vice-versa), and the activation function adopted was simply the
scalar product between the input and the normalized weight vectors.

Table 1 (top two rows) reports the results of tested configurations. We can see
that classifiers placed on top of higher layers and trained with the Hebbian rule
achieve accuracy values practically overlapped to those of an SGD classifier. On
the other hand, Hebbian classifiers placed on top of lower layers obtain a lower
accuracy. However, it is worth mentioning that Hebbian classifiers can be trained
in just a few epochs (usually one or two in our experiments), while classifiers
trained with Gradient Descent need from five to ten epochs to converge.

5.2 SGD Classifiers on Hebbian-Trained Layers

Experiments discussed in this section are complementary to those discussed
above. The entire deep network is trained with Hebbian approach, and the fea-
tures extracted from the various layers are fed to an SGD classifier.

The goal is to evaluate the performance of the Hebbian approach for training
the feature extraction layers of the network. To train the network, we set the
learning rate of the Hebbian weight update rule to 0.1. The similarity between
neuron inputs and weight vectors was measured in terms of angular distance
(lower angular distance means higher similarity and vice-versa), and the activa-
tion function used for neurons of Hebbian hidden layers was the cosine similarity
between input and weight vector, followed by the ReLU non-linearity. We used
the WTA approach (Sect. 3.2) for updating the weight of the internal layers, we
applied ZCA-whitening (see Sect. 4) to the input images. We imposed a teacher
signal on the layers of the network trained with Hebbian approach, even if they
are not classification layers, according to the logic discussed Sect. 3.3. In our
experiments, we used 96 common kernels at layer 1, 8 kernels per class plus 16
common kernels at layer 2, 16 kernels per class plus 32 common kernels at layer
3, 24 kernels per class plus 16 common kernels at layer 4, and 28 kernels per
class plus 20 common kernels at layer 5.

Table 1 (bottom row) reports the achieved results It can be observed that the
accuracy slowly degrades with the number of layers. We conclude that training
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with the basic Hebbian rule has some disadvantages when the depth of the
network increases, while it is still competitive when the layers are less than 4.

5.3 Hybrid: SGD Layers on Top of Hebbian Layers

In the previous experiments, the entire network was trained using a single app-
roach and we changed just the classifier. Here, we created hybrid networks where
the bottom layers were trained with the Hebbian rule and the top layers were
trained with SGD. The goal of the following set of experiments is to assess the
limits within which layers trained with the Hebbian algorithm can replace layers
trained with SGD.

The architectures of these hybrid networks are as in Fig. 2b, where a layer was
chosen as the splitting point between Hebbian trained layers and SGD trained
ones. All the layers from the first to the fifth were used in different experiments
as splitting points. The features extracted from the Hebbian-trained layers up to
the splitting point were fed to the remaining network which was re-trained from
scratch with SGD on the Hebbian feature maps provided as input. During this
re-training process, the Hebbian-trained network was kept in evaluation mode
and its parameters were left untouched. As before, also in this case, when training
the Hebbian layers, we used the WTA approach, and the images were processed
with ZCA-whitening.

Table 2 (second group) shows the accuracy on CIFAR-10 of a network com-
posed of bottom layers trained with the Hebbian algorithm and top layers trained
with Gradient Descent. In addition, the accuracy of the baseline fully trained
with Gradient Descent and that of the same network fully trained with the
Hebbian algorithm are also shown for comparisons (Table 2, first group). We
also report the results of a network where the bottom layers are left completely
untrained (randomly initialized), so that it is possible to assess whether Hebbian
training gives a positive contribution w.r.t. pure randomness or it is completely
destructive (Table 2, third group).

It can be observed that the first layer trained with the Hebbian algorithm can
perfectly replace the corresponding Gradient Descent layer. There is a certain
accuracy loss when also the second layer is switched to Hebbian learning, however
it is still competitive. Accuracy heavily degrades when further layers are set to
Hebbian learning. As expected, Hebbian training is better than untrained layers.

5.4 Hybrid: Hebbian Layers on Top of SGD Layers

The experiments presented in this section complement those discussed in
Sect. 5.3: bottom layers are SGD-trained, while the top layers are Hebbian-
trained. Table 2 (fourth group) shows the accuracy on CIFAR-10 of a network
composed of bottom layers trained with Gradient Descent and top layers trained
with the Hebbian algorithm. The table compares the accuracy of hybrid networks
obtained by choosing layers 1, 2, ..., 5 to be the splitting point, i.e. all the layers
on top of the first, second, ..., fifth (respectively) were trained with the Hebbian
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algorithm, while the rest of the network was kept in evaluation mode and its
parameters were left untouched.

In this case, we can observe that the last layer trained with the Hebbian
algorithm (i.e. the supervised Hebbian classifier) can perfectly replace the cor-
responding Gradient Descent layer. The fifth layer can also be replaced with
a Hebbian layer with only a minimal accuracy decrease. We observe a slightly
higher accuracy loss when also the fourth layer is replaced. Accuracy heavily
degrades when further layers are replaced.

Table 2. Accuracy (%) on the CIFAR-10 test set of various configurations of learning
rules. Columns ‘L1–L5’ and ‘Classif’ report the learning rule (G gradient descent, H
Hebbian rule, R random init.) used to train respectively layers 1 to 5 and the final
classifier.

Group Description L1 L2 L3 L4 L5 Classif Accuracy

1 Full SGD G G G G G G 84.95

Full Hebbian H H H H H H 28.59

2 1-bottom Hebbian H G G G G G 84.93

2-bottom Hebbian H H G G G G 78.61

3-bottom Hebbian H H H G G G 67.87

4-bottom Hebbian H H H H G G 57.56

5-bottom Hebbian H H H H H G 41.78

3 1-bottom Random R G G G G G 80.19

2-bottom Random R R G G G G 71.87

3-bottom Random R R R G G G 54.96

4-bottom Random R R R R G G 45.56

5-bottom Random R R R R R G 9.52

4 1-top Hebbian G G G G G H 84.88

2-top Hebbian G G G G H H 83.16

3-top Hebbian G G G H H H 71.18

4-top Hebbian G G H H H H 50.43

5-top Hebbian G H H H H H 32.95

5 Layer 1 Hebbian G H G G G G 80.36

Layer 2 Hebbian G G H G G G 80.68

Layer 3 Hebbian G G G H G G 80.92

Layer 4 Hebbian G G G G H G 83.75

6 Layer 2-3 Hebbian G H H G G G 72.12

Layer 3-4 Hebbian G G H H G G 74.98

Layer 4-5 Hebbian G G G H H G 76.86

7 Layer 2-3-4 Hebbian G H H H G G 63.68

Layer 3-4-5 Hebbian G G H H H G 62.43

8 Layer 2-3-4-5 Hebbian G H H H H G 47.24
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5.5 Hybrid: Hebbian Layers Between SGD Layers

Finally, more complex configurations were also considered in which network lay-
ers were divided into three groups: bottom layers, middle layers, and top layers,
as shown in Fig. 2c. The bottom layers were trained with SGD, the middle layers
with the Hebbian algorithm and the top layers again with SGD.

Table 2 (fifth to eighth group) shows the accuracy on CIFAR-10 of these con-
figurations. The table compares the accuracy of hybrid networks obtained by
choosing various combinations of inner layers to be converted to Hebbian train-
ing. It can be observed that a minor accuracy loss occurs when a single inner
layer is switched to a Hebbian equivalent. A slightly larger accuracy loss occurs
when two layers are replaced. Specifically, lower layers are more susceptible than
higher layers. Accuracy degrades more when further layers are replaced. How-
ever, the replacement of inner layers has more influence on the resulting accuracy
than the replacement of outer layers.

6 Conclusion

We explored the use of the Hebbian rules for training a deep convolutional neural
network for image classification. We extended the Hebbian weight update rule to
convolutional layers, and we tested various combinations of Hebbian and SGD
learning to investigate the advantages and disadvantages of mixing the two.

Experiments on CIFAR-10 showed that the Hebbian algorithm can be effec-
tively used to train a few layers of a neural network, but the performance
decreases when more layers are involved. In particular, the Hebbian algorithm
is adequate for training the lower and the higher layers of a neural network, but
not for the intermediate layers, which lead to the main performance drops when
switched from Gradient Descent to its Hebbian equivalent.

On the other hand, the algorithm is advantageous with respect to Gradient
Descent in terms of the number of epochs needed for training. In fact, a stack
of Hebbian layers (for instance the top portion of a hybridly-trained network, or
even a full Hebbian network), can be trained in fewer epochs (e.g. one or two
on the architecture we used) than a network trained with SGD, which needs
twenty epochs. Although the performance of deep full Hebbian networks is not
yet comparable to the one of gradient-based models, according to our results,
current Hebbian learning approaches could be efficiently and effectively adopted
in scenarios like fine-tuning and transfer learning, where Hebbian layers on top
of pre-trained SGD layers can be re-trained fast and effectively.

Moreover, the local nature of the Hebbian rule potentially provides huge
speed-ups for large models with respect to backpropagation, thus encouraging
further research to improve current approaches.
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