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Abstract. In this work, we have proposed enhancements that improve
the performance of state-of-the-art facial emotion recognition (FER) sys-
tems. We believe that the changes in the positions of the fiducial points
and the intensities capture the crucial information regarding the emo-
tion of a face image. We propose the inputting of the gradient and the
Laplacian of the input image together with the original into a convolu-
tional neural network (CNN). These modifications help the network learn
additional information from the gradient and Laplacian of the images.
However, as shown by our results, the CNN in the existing state-of-the-
art models is not able to extract this information from the raw images.
In addition, we employ spatial transformer network to add robustness to
the system against rotation and scaling. We have performed a number of
experiments on two well known datasets, namely KDEF and FERplus.
Our approach enhances the already high performance of the state-of-the-
art FER systems by 3 to 5%.

In another contribution, we have proposed an efficient architec-
ture that performs better than the state-of-the-art system on FERplus
dataset, with the number of parameters reduced by a factor of about 24.
Here also, the fusion of gradient or Laplacian image with the original
image improves the recognition performance of the proposed model.

Keywords: Laplacian · Gradient · Convolutional neural network ·
Facial emotion recognition

1 Introduction

Machine recognition of human emotions is an important and challenging artificial
intelligence problem. Human emotions can be recognized from voice [1], body lan-
guage, facial expression and electroencephalography [2]. However, facial expres-
sion forms a simpler and more powerful way of recognizing emotions. Excluding
neutral, there are seven types of human emotions that are recognized univer-
sally: anger, disgust, fear, happiness, sadness, surprise and contempt. In certain
situations, humans are known to simultaneously express more than one emo-
tion. Developing systems for facial emotion recognition (FER) has application
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in areas such as clinical practice, human-computer interaction, behavioural sci-
ence, virtual reality, augmented reality, entertainment and advanced driver assis-
tant systems. Traditional techniques for FER mainly consist of four successive
steps: (i) pre-processing (ii) face and landmark detection (iii) feature extrac-
tion and (iv) emotion classification. These approaches heavily depend on the
algorithms used for face detection, landmark detection, the handcrafted features
and the classifiers used. Recent developments in deep learning reduce the burden
of handcrafting the features. Deep learning approaches perform well for all the
above-mentioned tasks by learning an end-to-end mapping from the input data
to the output classes. Out of all the learning based techniques, convolutional
neural network (CNN) based techniques are preferred.

There is a tendency in researchers to design deep neural networks (DNN’s)
as end to end systems, where every kind of processing is accomplished by the
network, including the feature extraction, by learning from the data. Some opine
that there is no need for any hard-coded feature extraction in any machine learn-
ing system. However, the deep neural networks have been designed to simulate
the biological neural network in the brain. It is well known that there are many
hard-coded feature extractors in the human brain, and even animal sensory
systems, in addition to the natural neural network, that also learns from data
(exposure and experience). One might argue that it is possible for the visual neu-
ral pathway or cortex to extract the gray image from the colour image obtained
by the cones in the retina. However, nature has chosen to have many more rods
than cones to directly obtain the gray images also in parallel. Further, the work
of Hubel and Wiezel [3] showed the existence of orientation selective cells in the
lateral geniculate nucleus and visual cortex of kitten. Also, different regions of
the basilar membrane in the cochlea respond to different frequencies [4] in both
man and animals and this processing is akin to sub-band decomposition of the
input audio signal. Thus, there are many examples of hard-coded feature extrac-
tion in the brain, which enhance the classification potential of the biological
neural network; our work reported here, is inspired from this aspect of nature’s
processing.

2 Related Work

Darwin and Phillip suggested that human and animal facial emotions are evo-
lutionary [5]. Motivated by Darwin’s work, Ekman et al. [6,7] found that the
seven expressions, namely happiness, anger, fear, surprise, disgust, sadness and
contempt remain the same across different cultures. Facial action coding system
(FACS) is proposed in [8] to investigate the facial expressions and the corre-
sponding emotions described by the activity of the atomic action units (cluster
of facial muscles). Facial expression can be analyzed by mapping facial action
units for each part of the face (eyes, nose, mouth corners) into codes.



270 R. K. Pandey et al.

2.1 Traditional Approaches

Features are desired that possess maximal inter-class and minimal intra-class
variabilities for each of the expressions. Traditional systems for facial emotion
recognition depend mainly on what and how the features are extracted from
the facial expression. The features extracted can be categorized into (i) geo-
metric features, (ii) appearance based features or (iii) their combination. In the
work reported by Myunghoon et al. [9], facial features are extracted by active
shape model, whereas Ghimire and Lee [10] extract geometric features from
the sequences of facial expression images and multi-class Ada-boost and SVM
classifiers are used for classification. Global face region or regions containing dif-
ferent facial information are used to extract appearance-based features. Gabor
wavelets, Haar features, local binary pattern [11] or its variants such as [12] are
used to extract appearance-based features. Ghimire et al. [13] proposed a sin-
gle frame classification of emotion using geometric as well as appearance based
features and SVM classifier. In [14], features are extracted using pyramid his-
togram of orientation gradients. Here, the facial edge contours are constructed
using Canny edge detector. Histograms are calculated by dividing the edge maps
into different pyramid resolution levels. The histogram vectors are concatenated
to generate the final feature to be used for classification using SVM or AdaBoost
classifier.

2.2 Deep Learning Based Approaches

The above techniques in the literature depend heavily on handcrafted features.
However, deep learning algorithms have shown promising results in the recent
years. CNN based models have shown significant performance gain in various
computer vision and image processing tasks, such as image segmentation, de-
noising, super-resolution, object recognition, face recognition, scene understand-
ing and facial emotion recognition. Unlike the traditional techniques, deep learn-
ing based techniques learn (“end-to-end”) to extract features from the data. For
FER, the network generally uses four different kinds of layers, namely convolu-
tion, max-pool, dense layer and soft-max. Batch normalization with skip con-
nection is also used to ease the training process. The features extracted have
information about local spatial relation as well as global information. The max-
pool layer makes the model robust to small geometrical distortion. The dense
and soft-max layers help in assigning the class score.

Breuer and Kimmel [15] demonstrate the capability of the CNN network
trained on various FER datasets by visualizing the feature maps of the trained
model, and their corresponding FACS action unit. Motivated by Xception archi-
tecture proposed in [16], Arriaga et al. [17] proposed mini-Xception. Jung
et al. [18] proposed two different deep network models for recognising facial
expressions. The first network extracts temporal appearance features, whereas
the second extracts temporal geometric features and these networks are com-
bined and fine tuned in the best possible way to obtain better accuracy from
the model. Motivated by these two techniques, we have trained and obtained
multiple models, the details of which are explained in Sect. 5.
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For the task of FER, the current state of the art model [24] proposed a
miniature version of VGG net, called VGG13. The network has 8.75 million
parameters. The dataset used is the FERplus dataset [24], which has 8 classes,
adding neutral to the existing seven classes. The reported test accuracy is ≈84%.
In 2014, Levi et al. [19] obtained improved performance of emotion recognition
using CNN. They convert images to local binary patterns (LBP). These patterns
are mapped to a 3D metric space and used as input to the existing CNN architec-
tures, thus addressing the problem of appearance variation due to illumination.
They trained the existing VGG network [20], on CASIA Webface dataset [33],
and then used transfer learning to train the static facial expressions in the wild
(SFEW), to address the problem of the small size of SFEW dataset [34].

Ouellet [21] used a CNN based architecture for realtime detection of emo-
tions. The author uses transfer learning to train the Cohn-Kanade [22] dataset
on AlexNet. The author used the model to capture the emotions of gamers, while
they are playing games.

3 Datasets Used for the Study

We have used the KDEF [23] and FERplus [24,25] datasets for our experiments.
The FERplus dataset contains nearly 35000 images divided into 8 classes, includ-
ing contempt. The FERplus dataset improves upon the FER dataset by crowd-
sourcing the tagging operation. Ten taggers were asked to choose one emotion
per image, which resulted in a distribution of emotions for each image. The
training set contains around 28000 images. The remaining are divided equally
into validation and test sets. The original image size is 48 × 48 pixels. Figure 1
shows some sample face images from the FERplus dataset, with multiple emotion
labels for each image. KDEF dataset contains a total of 4900 images (divided
into the 7 classes of neutral, anger, disgust, fear, happiness, sadness, and sur-
prise), with equal number of male and female expressions. Figure 2(a), (b) and
(c) show, respectively, a sample input image from KDEF dataset, its deriva-
tive image obtained by the Sobel operator (gradient) and its second derivative
obtained by the Laplacian operator.

Fig. 1. Face image samples from FERplus dataset, with multiple emotion labels for
each image [24]
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Fig. 2. (a) A sample input image from the KDEF dataset [23]. (b) Its derivative image
obtained by the Sobel operator (Gradient). (c) Its second derivative obtained by the
Laplacian operator. Zoom to see the details in the Laplacian image.

4 The Proposed Models and Our Contributions

Rather than proposing a totally new architecture, which performs marginally
better than the state-of-the-art model, one approach could be to work on good
existing models and propose enhancements to significantly improve their perfor-
mance. Another approach could be to come out with a computationally efficient
model that performs as good as the state of the art models. We propose that
the performance of a classifier for facial emotion recognition can be improved by
making it robust to transformations such as scaling and rotation. The fiducial
points of a face change predictably, depending upon the specific emotion and
these changes are the important features for emotion recognition. Such changes
in the image landmark points and their intensities can be effectively captured by
the gradient and Laplacian of an image. Thus, in our first approach, we have sig-
nificantly improved the emotion recognition performance of two state-of-the-art
architectures by adding the following enhancements [35].

Spatial Transformer Layer (STL): CNN is a very powerful model, invariant
to some transformations like in-plane rotation and scaling. To obtain such invari-
ance, CNN requires a huge amount of training data. To achieve such invariance
in a computationally efficient manner, spatial transformer network [26] is used as
the input layer, called here as the spatial transformer layer. This allows spatial
manipulation of the data within the network. This differentiable module, when
combined with the CNN, infuses invariance to rotation, scaling, and translation,
with less training data than that needed by the normal CNN.

Sobel and Laplacian Operators: The gradient captures information such as
the direction of the maximum change and the Laplacian identifies regions of rapid
changes in the intensity. Thus, by adding the gradient and Laplacian images as
additional inputs, we can largely obviate the need for extracting the fiducial or
the landmark points. The gradient and Laplacian of an image f(x, y), denoted
by Δf(x, y) and Δ2f(x, y), can be approximated by applying Sobel [27] and
Laplacian [28] operators on an image. We have taken the input images from the
dataset and applied Sobel and Laplacian operators on them to obtain their first
and second derivatives, respectively. They detect the intensity discontinuities as
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contours. These images are fed as inputs, in series or parallel with the original
image, into the state of art models for FER.

Global Average Pooling and DepthSep Layers: The real time convolutional
neural network (RTNN) architecture selected by us [17] uses global average pool-
ing (GAP) [29]. The GAP layer has multiple advantages over the dense layer:
(i) it reduces over-fitting to a large extent; (ii) huge reduction in the number
of parameters compared to dense layer; (iii) the spatial average of feature maps
is fed directly to the soft-max layer. The latter enforces better correspondence
between the feature maps and the categories.

The RTNN model also employs depthwise separable convolution (DepSep)
layers [16]. The advantage of using depthwise separable convolution layer is that
it greatly reduces the number of parameters compared to the convolution layer.
At a particular layer, let the total number of filters be N, the depth of the feature
maps be D, and the size of the filter (spatial extent) used be Se. In such a case,
the total number of parameters in normal convolution is Se×Se×D×N . DepSep
is a two-step process: (i) filters of size Se × Se × 1 are applied to each feature;
therefore, the total number parameters at this step is Se × Se × D; (ii) then, N
filters of size 1×1×D are applied. So, the number of parameters required at this
step are D × N . Combining steps (i) and (ii), the total number of parameters in
DepSep layer are Se × Se × D + D × N . Hence, the reduction in the number of
parameters compared to normal convolution at each layer, where convolution is
replaced by DepSep convolution, is: Se×Se×D+D×N

Se×Se×D×N = (1/N) + (1/S2
e )

Our Contributions: In this work, our main contributions are:

– By adding the spatial transformer layer as the input processing block, we
have introduced robustness to scaling, rotation and translation.

– By adding the gradient and/or Laplacian image(s) as additional inputs to the
system, we have improved the recognition accuracies of three different FER
architectures by a good margin (see Tables 1, 2 and 4).

– We have trained multiple models to validate the performance gain obtained
due to the addition of gradient and Laplacian, on KDEF [23] and FER-
Plus [24] datasets.

– We have proposed an efficient architecture (refer Table 3) that performs better
than the state-of-the-art system on FERplus dataset (refer Table 4), while
reducing the number of parameters by a factor of 24.

– Our proposed architecture (reported in Table 3) has model size of around
9.7 MB compared to the original VGG-13 [24], which has the model size of
107.4 MB. Thus, our model can be run on a mobile phone more efficiently.

5 Experiments and Results

Three sets of different experiments have been carried out.

Experiment 1: In the first set of experiments, the Real-time neural network
(RTNN) model, with all the modifications proposed by us, has been tested on
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Fig. 3. Inverted bottleneck module used in MobileNetV2 [31].

Table 1. FER results of RTNN and its various modifications proposed by us (parallel
networks) on the KDEF dataset (4900 images with 7 classes).

Architecture details Accuracy %

Orig. RTNN by Arriaga et al. [17] 83.16

STL + RTNN 84.08

RTNN + Lap. RTNN 84.39

STL with RTNN + Grad RTNN 85.10

STL with RTNN + Lap RTNN 85.51

STL with Orig., Grad and Lap. RTNN 88.16

the KDEF dataset. RTNN is the model proposed by Arriaga et al. [17], trained on
the KDEF dataset and validated. Table 1 reports the results of the experiments
conducted. STL + RTNN is the RTNN model trained with the addition of STL
at the input. RTNN + Lap. RTNN is the architecture, where the input image
and its Laplacian are fed in parallel. The outputs of these parallel networks are
combined and passed to a soft-max layer for classification. STL with RTNN +
Grad RTNN is the case when the input image and its gradient are first fed
to a STL, followed by the parallel subnetworks. The parallel networks extract
more useful features in the beginning layer, which are combined to obtain better
accuracy. STL with RTNN + Lap. RTNN is the architecture, where the model
is trained in parallel with the input image and its Laplacian. STL with Orig.,
Grad & Lap. RTNN is the case, where the model is trained in parallel with the
original, the gradient, and the Laplacian images. These input streams are first
fed independently to a STL, before being fed to the subnetworks in parallel.

Experiment 2: We have reimplemented the VGG13 network, used in [24],
in Tensorflow. We use the majority voting technique, as described in [24], for
labelling each image. The only modification we have made to the original model
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is the use of Adam optimizer [30] instead of momentum optimizer. Table 2 com-
pares the results of the original network with those after our enhancements. In
our setup, we get an average accuracy of 83.56% instead of 83.85% as reported in
the original paper. Next we propose two experimental setups. First, we modify
the input by taking the Laplacian of the original image and channel wise con-
catenating it with the original image. The resultant image is a 2 channel 64*64
input. In this setup, without modifying the learning rate, we get an average
accuracy improvement of close to 3% on an average, compared to our VGG13
implementation. In the second setup, we use Sobel operator instead of Laplacian,
and get gradients in x and y directions. The resultant gradients are again con-
catenated to the original image channelwise to get 3 channel input. This setup
again gives an improvement of close to 3%.

Table 2. FER accuracies on FERPlus dataset and the number of parameters (in
millions) of our models vs. VGG13 [24]. Each type of model has been trained 4 times
and its maximum, minimum and average accuracies are reported. Training set: 28000
images; validation and test sets: 3500 images each; number of classes: 8.

Models Avg Min Max Parameters

VGG13 (reported) 83.85 83.15 84.89 8.75

VGG13 (our implementation) 83.56 82.99 84.08 8.75

VGG13 + Laplacian (input concatenated) 86.22 85.94 86.56 8.75

VGG13 + Sobel (input concatenated) 86.42 86.08 86.55 8.75

Experiment 3: We propose our own architecture (details listed in Table 3,
having (1/24)-th the number of parameters compared to all the architectures
reported in Table 2), developed using inverted bottleneck module (refer Fig. 3)
reported in [31]. Even in this model, fusion of the Laplacian or the gradient image
to the input image (by concatenation) enhances the recognition performance by
2.3 and 2.5 %, respectively. The results with this proposed model and its feature-
fusion enhancements are listed in Table 4. The base+Sobel model performs better
than the original VGG13 model listed in Table 2 by 0.62%.

6 Conclusion

We have shown that feeding the gradient and/or Laplacian of the image, in
addition to the input image, improves the performance of any FER system.
We have performed many experiments on KDEF and FERplus datasets and
enhanced the recognition accuracies of state-of-the-art techniques [17,24]. We
believe that our proposed approach will largely impact the community working
on similar area. The advantages of our proposal are many folds: (i) improves
the recognition accuracy of any classifier (ii) the dataset size increases by two or
three times (depending on the Laplacian or/and gradient used together with the
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Table 3. Details of the architecture proposed by us, with inverted bottleneck 3 as the
core module. c, s and t denote the number of output channels from each layer, stride
and expansion factor used in the bottleneck module, respectively.

Layer Parameters Input (H ×W × C) c s t

conv2d 3 × 3 64 64 × 64 × 1 64 2 –

bottleneck 6720 64 × 64 × 32 32 1 1

bottleneck 12480 32 × 32 × 32 24 2 6

bottleneck 8208 16 × 16 × 24 24 1 6

bottleneck 9360 16 × 16 × 24 32 2 6

bottleneck 14016 8 × 8 × 32 32 1 6

bottleneck 14016 8 × 8 × 32 32 1 6

bottleneck 20160 8 × 8 × 32 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 52608 8 × 8 × 64 64 1 6

bottleneck 77184 8 × 8 × 64 128 1 6

conv2d 1 × 1 40960 8 × 8 × 128 320 1 –

avg pool 0 8 × 8 × 320 320 – –

conv2d 1 × 1 2048 1 × 1 × 320 8 1 –

Total 363616 – – – –

input), which is desirable in most deep learning tasks; (iii) the variability in the
input image space increases (iv) DepSep, inverted bottleneck module and GAP
layers help in reducing the computational complexity of the model. The proposed
enhancements result in absolute performance improvements, as listed in Tables 1,
2 and 4, over those of the original models. Researchers working on similar areas
can use our proposed features to add performance gain to any existing DNN
based classifier, thus obviating the need for designing a new classifier to achieve
similar performance gain. We have also proposed an efficient architecture that
performs better than the state of the art algorithm proposed in [24] with (1/24)-
th the number of parameters. Thus, if there is any need for designing any new

Table 4. FER performance of our models, with less complexity than VGG13, on
FERPlus [24] dataset. Models are trained 4 times with the same hyper-parameter
settings and their average, maximum and minimum accuracies are reported.

Models Avg Min Max Parameters

Base model (given in Table 3) 81.95 81.79 82.15 0.36 million

Base + Laplacian (input concatenated) 84.26 83.84 84.87 0.36 million

Base + Sobel (input concatenated) 84.47 84.21 84.69 0.36 million
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classifier, it can be made computationally efficient to a good extent with our
proposed approaches.

One might argue that the gradient and Laplacian of the input image can very
well be computed by the CNN. However, there are strong evidences for the need
for appropriate representations in accomplishing certain vision and motor control
tasks [32]. It is also clear from the results that at least the networks proposed
by Arriaga et al. [17] and VGG13 [24] are not able to compute these derived
images internally. On the other hand, pre-computing these features and feeding
them to the same network in parallel or in series, is clearly able to improve the
performance of the network. Thus, our experiments show that there is a clear
case for optimally combining appropriate feature extractors with learning neural
networks, to obtain better performance for specific pattern recognition tasks.
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