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Abstract. Providing algorithmic explanations for the decisions of
machine learning systems to end users, data protection officers, and
other stakeholders in the design, production, commercialisation and use
of machine learning systems pipeline is an important and challenging
research problem. Much work in this area focuses on image classifica-
tion, where the required explanations can be given in terms of images,
therefore making explanations relatively easy to communicate to end-
users. For a classification problem, a contrastive explanation tries to
understand why the classifier has not answered a particular class, say B,
instead of the returned class A. Sparse dictionaries have been recently
used to identify local image properties as main ingredients for a system
producing humanly understandable explanations for the decisions of a
classifier developed based on machine learning methods. In this paper,
we show how the system mentioned above can be extended to produce
contrastive explanations.

Keywords: XAI · Explainable artificial intelligence ·
Machine learning · Sparse coding · Contrastive explanations

1 Introduction

Machine Learning (ML) techniques make possible to develop systems that learn
from observations. Many ML techniques (e.g., Support Vector Machines (SVM)
and Deep Neural Networks (DNN)) give rise to systems the behaviour of which
is often hard to interpret [18]. A crucial ML interpretability issue concerns the
generation of explanations for an ML system behaviour that are understandable
to a human being. In general, this issue is addressed as a scientific and techno-
logical problem by so-called explainable artificial intelligence (XAI) [1,9,20,23].
Providing XAI solutions to the ML explainability problem is important for many
AI and computer science research areas: to improve intelligent systems design,
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testing and revision processes, to make the rationale of automatic decisions more
transparent to end users and systems managers, thereby leading to better forms
of HCI and HRI involving learning systems, to improve interactions between
learning agents in Distributed AI, and so on. Providing a solution to the ML
explainability problem is also important from an ethical and legal viewpoint. ML
systems are being increasingly used to make or to support decisions that have
an impact on the life of persons, including career development, court decisions,
medical diagnosis, insurance risk profiles and loan decisions.

Various senses of interpretability and explainability for learning systems have
been identified and analysed [9], and various approaches to overcoming their
opaqueness are now being pursued [11,27]. For example, in [24] a series of tech-
niques for the interpretation of DNN are discussed, and in [20] a wide variety
of motivations underlying interpretability needs are examined, thereby refining
the notion of interpretability in ML systems. In the context of this multifaceted
interpretability problem [34,35], we focus on the issue of what it is to explain the
behaviour of ML perceptual classification systems for which only I/O relation-
ships are accessible, i.e., the learning system is seen as a black-box. In literature,
this type of approach is known as model agnostic [31].

Various model agnostic approaches have been proposed to give global expla-
nations by exhibiting a class prototype to which the input data can be associ-
ated [11,24,27,34]. These explanations are given in response to requests usually
expressed as why-questions: “Why was input x associated to class C?”. Specific
why-questions which may arise in connection with actual learning systems are:
“Why was this loan application rejected?” and “Why was this image classified as
a fox?”. However, prototypes often make rather poor explanations available. For
instance, if an image x is classified as “fox”, the explanation provided by means
of a fox-prototype is nothing more than a “because it looks like this” explana-
tion: one would not be put in the position to understand what features (parts)
of the prototype are associated to what characteristics (parts) of x. In order to
go beyond this level of understanding, instead of merely giving the user a global
explanation, one might attempt to provide a local explanation, which highlights
salient parts of the input [31]. Furthermore, [13,23] highlight that an human
explanation of an event is often given in contrastive terms, that is, instead of
trying to answer to the question “why this outcome?”, a possible answer to the
question “why this outcome and not another one?” is given. This result can be
reached considering, during the generation of the explanation, an event that did
not occur instead of the event that really happened, for example searching for
an explanation on the reasons behind an classifier returns “dog” as answer to
a given input image and not “cat”. So, in contrastive explanation approaches,
a different hypothetical outcome, which [19] calls the “foil”, is always used to
build the explanation.

In this paper, we exploit a model agnostic framework that returns local expla-
nations of classifications [2,29] in order to obtain an explanation in contrastive
terms. This framework, which is based on dictionaries of local and humanly inter-
pretable elements of the input, can be functionally described as a three entities
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model, composed of an Oracle (an ML system, e.g. a classifier), an Interroga-
tor raising explanations requests about the Oracle’s responses, and a Mediator
helping the Interrogator to understand the answer given by the Oracle. In this
framework, local explanations are provided by a module (the Mediator) which
is different from the classifier itself. The Mediator plays the crucial explana-
tory role, by advancing hypotheses on what humanly interpretable elements are
likely to have influenced the Oracle output, building explanations both in clas-
sical terms (“why P?”) and in contrastive terms (“why P and not Q?”). More
specifically, elements are computed which represent humanly interpretable fea-
tures of the input data, with the constraint that both prototypes and input
can be reconstructed as linear combinations of these elements. Thus, one can
establish meaningful associations between key features of the prototype and key
features of the input. To this end, we exploit the representational power of sparse
dictionaries learned from the data, where atoms of the dictionary selectively play
the role of humanly interpretable elements, insofar as they afford a local repre-
sentation of the data. Indeed, these techniques provide data representations that
are often found to be accessible to human interpretation [22]. The dictionaries
are obtained by a Non-negative Matrix Factorisation (NMF) method [4,14,17],
and the explanations are determined using an Activation-Maximisation (AM)
[11,34] based technique.

The paper is organised as follows: Sect. 2 briefly reviews related approaches,
in Sect. 3 we present the overall architecture; experiments and results are dis-
cussed in Sect. 4, while Sect. 5 is devoted to concluding remarks and future
developments.

2 Related Work

In recent years, various attempts have been made to interpret and explain the
output of a classification system. Initial attempts concerned SVM classifiers (see
for example [28]) or rule-based systems [6,8].

In the neural network context, recent surveys on explainable AI are pro-
posed in [1,12,30,40]. A significant attempt to explain in terms of images what
a computational neural unit computes is found in [11] using the Activation Max-
imisation method. AM-like approaches applied to CNN were proposed in [21,34].
Additional attempts to give interpretability to CNNs were proposed in [37] and
[10], where Deconvolutional Network (already presented by [38] as a way to do
unsupervised learning) and up-convolutional network are proposed, while [26,27]
uses an image generator network (similar to GANs) as priors for AM algorithm
to produce synthetic preferred images. In these approaches, explanations are
given in terms of prototypes or approximate input reconstructions. However,
one does not take into account the issue whether the given explanations are
in some manner interpretable by humans. Moreover, the proposed approaches
seem to be model-specific for CNN, differently from our model which is to be
considered as model-agnostic, and consequently applicable in principle to any
classifier. From another point of view, [36] studies the influence on the output of
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hardly perceptible perturbation on the input, empirically showing that it is pos-
sible to arbitrarily change the network’s prediction even when the input is left
apparently unchanged. Although this type of noise is extremely unlikely to occur
in realistic situations, the fact that such noise is imperceptible to an observer
opens interesting questions about the semantics of network components. How-
ever, approaches of this kind are quite distant from our present concerns, insofar
as they focus on entities that are hardly meaningful to humans. Important works
are also made into [3,5,25] where Pixel-Wise Decomposition, Layer-Wise Rel-
evance propagation ad Deep Taylor Decomposition are presented. [33] builds
explanations as difference in output from a “reference” output in terms of the
difference of the input from a “reference” input.

[41] presents a work based on prediction difference analysis [32] where a fea-
tures relevance vector is built which estimates how much each feature is “impor-
tant” for the classifier to return the predicted class. In [31] , the model-agnostic
explainer LIME is proposed, which takes into account the model behaviour in the
proximity of the instance being predicted. The LIME framework is more similar
to our approach than the other approaches mentioned in this section, and many
other approaches found in the literature. The LIME framework differs from our
own mainly in its use of super-pixels instead of a learned dictionary constrained
in order to have a compact representation.

In [39] a XAI methods based on the contrastive explanations is proposed.
However, this method relies on Deep Neural Network (specifically a CNN), mak-
ing this approach model-specific, differently from our proposed model which is
model-agnostic, that is independent by the chosen model to explain.

3 Proposed Approach

Given an oracle Ω, an input x and an Ω’s answer ĉ (regardless of whether it is
correct or not), we want to give an explanation of the answer provided by the
model Ω that is humanly interpretable. As we want to obtain humanly inter-
pretable elements which, combined together, can provide an acceptable explana-
tion for the choice made by Ω, we search for an explanation having the following
qualitative properties:

1. the explanation must be expressed in terms of a dictionary V whose elements
(atoms) are easily understandable by an interrogator;

2. the elements of the dictionary V have to represent “local properties” of the
input x;

3. the explanation must be composed by few dictionary elements.

We claim that considering as elements atoms of a sparse coding from a sparse
dictionary, and using sparse coding methods together with an AM-like algorithm
we obtain explanations satisfying the properties described above. Furthermore,
since the proposed method gives explanations in terms of relevant components
(atoms) which contributed to the classifier decision, we take advantage of this
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property to generate discriminative explanations comparing the explanation pro-
duced for the real classifier outcome with the explanation produced for a contrast
class given the same input. We think that, showing explanations generated for
different classes can help in understanding the reason behind the “preference”
given by an Oracle to an answer instead of another one.

3.1 Sparse Dictionary Learning

The first step of the proposed approach consists in finding a “good” dictionary
V that can represent data in terms of humanly interpretable atoms.

Let us assume that we have a set D = {(x(1), c(1)), (x(2), c(2)). . . . , (x(n),
c(n))} where each x(i) ∈ R

d is a column vector representing a data point, and
c(i) ∈ C its class. We can learn a Dictionary V ∈ R

d×k of k atoms across
multiple classes and an encoding H ∈ R

k×n s.t. X = V H + ε where X =
(x(1)|x(2)| . . . |x(n)) and ε is the error introduced by the coding. Every column
x(i) in X can be expressed as x(i) = V hi with hi i−th column of H. The
dictionary forms the basis of our explanation framework for an ML system.

We selected as dictionary learning algorithm an NMF scheme [17] with the
additional sparseness constraint proposed by [14]; this choice is motivated by
the fact that it respects our requirements described above, giving a “local” rep-
resentation of data, and non-negativity, that ensures only additive operations in
data representations, giving a better human understanding with respect to other
techniques. The sparsity level can be set using two parameters γ1 and γ2 which
control the sparsity on the dictionary and the encoding, respectively.

3.2 Explanation Maximisation

Unlike traditional dictionary-based coding approaches, our main goal is not to
get an “accurate” representation of the input data, but to get a representation
that helps humans to understand the decision taken by a trained model. To this
aim, we modify the AM algorithm so that, instead of looking for the input that
just maximises the answer of the model, it searches for the dictionary-based
encoding h that maximises the answer and, at the same time, is sparse enough
but without being “too far” from the original input x. More formally, indicating
with Pr(ĉ|x) the probability given by a learned model that input x belongs to
class ĉ ∈ C, V the chosen dictionary, S(·) a sparsity measure, the objective
function that we optimise is

max
h≥0

log Pr
(
ĉ|V h

) − λ1||V h − x||2 + λ2S
(
h

)
(1)

where λ1, λ2 are hyper-parameters regulating the input reconstruction and the
encoding sparsity level, respectively. The first regularisation term leads the algo-
rithm to choose dictionary atoms that, with an appropriate encoding, form a
good representation of the input, while the second regularisation term ensures a
certain sparsity degree, i.e., that only few atoms are used. The h ≥ 0 constraint
ensures that one has a purely additive encoding. Thus, each hi, ∀i.1 ≤ i ≤ d,
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Algorithm 1: Explanation Maximization procedure
Input: data point x ∈ R

d, the output class ĉ ,learned model Γ , a dictionary
V ∈ R

d×k, λ1, λ2

Output: the encoding h ∈ R
d

1 h ∼ Ud(0, 1);
2 while ¬ converge do
3 r ← V h;
4 h ← arg max

h
Pr

(
ĉ|r; Γ

) − λ1||r − x||2;
5 h ← proj(h, λ2); � proj(·, ·) is given by [14]

6 end
7 return h ;

measures the “importance” of the i-th atom. Equation 1 is solved by using a
standard gradient ascent technique, together with a projection operator given
by [14] that ensures both sparsity and non-negativity. The complete procedure
is reported in Algorithm 1.

3.3 Contrastive Explanation Maximisation

The aim of this we paper is to obtain a contrastive explanation approach exploit-
ing the EM procedure described in Sect. 3.2. We remember that, instead of
answering to the question “why the classifier returns the class P?”, contrastive
explanations wants to answer to the question “why the Oracle returns the class
P and not the class Q?”. The described EM procedure generates a possible
explanation searching for a good subset of atoms which pushes the classifier
toward the predicted class and, at the same time, is similar enough to the input
under investigation. We can easily use the same procedure to push the classifier
towards a contrastive class, so searching for a good set of atoms which is again
near enough to the input but that gives a different outcome if fed to the classi-
fier. An answer to the question “why the Oracle returns the class P and not the
class Q?” can be given inspecting the difference between atoms in the generated
explanations. For example, in a dataset of letters, if I have an image of an “e”
and a classifier gives the correct class, I expect that the explanation of “why is
it an “e”? ” differs from the explanation of, for example, “why should it be a
“c”?” by the use of some atom representing a centre line which characterises the
“e” letter respect to the “c” letter. In other words, we search for two (or more)
good enconding hc∗ and hc such that

hc∗ = arg max
h≥0

log Pr
(
c∗|V h

) − λ1||V h − x||2 + λ2S
(
h

)

hc = arg max
h≥0

log Pr
(
c|V h

) − λ1||V h − x||2 + λ2S
(
h

) (2)

with c∗, c ∈ C, c∗ classifier outcome for the input x and c �= c∗.
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Algorithm 2: Contrastive Explanation Maximization procedure
Input: data point x ∈ R

d, the number of antagonist classes q, the Oracle Ω, a
dictionary V ∈ R

d×k

Output: the encoding h ∈ R
d

1 p ← getClassProbabilities (x, Ω);
2 (c1, c2, . . . , cq+1) ← getBestClasses(p, q + 1);
3 hexpl ← EMExplanationBuilder(x,c1,Ω,V );
4 for i = 2 to q + 1 do

5 h
(i)
anta ← EMExplanationBuilder(x,ci,Ω,V );

6 end

7 return hexpl,h
(2)
anta, . . . ,h

(q+1)
anta

4 Experimental Assessment

To test our framework, we chose as Oracle a convolutional neural network archi-
tecture, LeNet-5 [16], generally used for digit recognition as MNIST. We have
trained the network from scratch using two different datasets: MNIST [16], and
a subset of the e-MNIST dataset [7] composed of the first 10 lowercase letters.
The model is learned using the Adam algorithm [15].

NMF with sparseness constraints [14] is used to determine the dictionaries.
We set the number of atoms to 200, relying on PCA analysis which showed that
the first 100 principal components explain more than 95% of the data variance.
We construct different dictionaries with different sparsity values in the range
γ1, γ2 ∈ [0.6, 0.8] [14], then we choose the dictionaries having the best trade-off
between sparsity level and reconstruction error. The dictionaries are determined
by looking for a good trade-off between reconstruction error and sparsity level.

The atoms forming our explanations are selected by taking those with larger
encoding values (i.e., those that are more “important” in the representation).

In Fig. 1 we show the proposed explanation from different inputs. The expla-
nations are expressed in terms of two different set of atoms which in Sect. 3.3
we computed using hc∗ and hc: the first one is the set of atoms which mostly
contribute (in terms of weights) to the outcome of the Oracle, the second one
the set of atoms which mostly contribute to a given constrastive outcome. For
clarity, we chose the first five.

We can see that the atoms selected by hc∗ provide elements which can be
considered discriminative for the selected outcome, for example in Fig. 1a (red)
EM selects many components which represent a diagonal line, showing that
it is probably one of the main feature selected by the classifier to make its
choice. In the second column (blue) we chose a contrast class (a “3”) and we
ask to the algorithm to make an explanation. We can see that the selected
components which are mostly different and varied, showing that the given image,
to be classified as a “3”, should have also other characteristics, as the central
horizontal line.
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Fig. 1. Examples of direct and contrastive explanations. See discussion in Sect. 4 for
more details (Color figure online)
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Similar considerations can be made for the example shown in Fig. 1b, where
the choice of a “five” can be motivated by the presence of the showed components
(red), while in the blue column, we can notice the total absence of component on
the left side, suggesting that the absence of a “left side” on the input image can
be an explanation of why the given input has not been classified as a “3”. in other
terms, the input, to be classified as a “3”, should have the visual components
on the right side not relevant in terms of weights. In Fig. 1c the given input is
correctly classified by the presence of the red component with high weights. The
presence of the central line can be considered as the main discriminative feature
between the outcome “H” and “c” (which is absent in the blue column). Similar
considerations can be made for the input in Fig. 1d.

5 Conclusions

We proposed a model-agnostic framework to explain the answers given by classi-
fication systems. To achieve this objective, we started by defining a general expla-
nation framework based on three entities: an Oracle (providing the answers to
explain), an Interrogator (posing explanation requests) and a Mediator (helping
Interrogator to interpret the Oracle’s decisions). We propose a Mediator using
known and established techniques of sparse dictionary learning, together with
Interpretability ML techniques, to give a humanly interpretable explanation of
a classification system outcomes. The proposed mediator can give explanation
both in traditional and contrastive terms, since “why not?” questions are partic-
ularly relevant, from an ethical and legal viewpoint, to address user complaints
about purported misclassifications and corresponding user requests to be classi-
fied otherwise. We tried our proposed approach by using an NMF-based scheme
as sparse dictionary learning technique. However, we expect that any other tech-
nique that meets the requirements outlined in Sect. 3 may be successfully used
to instantiate the proposed framework. The results of the experiments that we
carried out are encouraging, insofar as the explanations provided seem to be
qualitatively significant. Nevertheless, more experiments are necessary to probe
the general interest of our approach to explanation. We plan to perform both
a quantitative assessment, to evaluate explanations by techniques such as those
proposed in [24], and a subjective quality assessment to test how do humans
perceive and interpret explanations of this kind.

The proposed approach does not take so far into account factors such as
the internal structure of the dictionary used. Accordingly, the present work can
be extended by considering, for example, whether there are atoms that are suf-
ficiently “similar” to each other or whether the presence in the dictionary of
atoms which can be expressed as combinations of other atoms may affect the
explanations that are arrived at.
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29. Prevete, R., Apicella, A., Isgrò, F., Tamburrini, G.: Explaining the behavior of
learning classification systems: a black-box approach. In: Proceedings of the 15th
Conference of the Italian Association for Cognitive Sciences (2018)

30. Qin, Z., Yu, F., Liu, C., Chen, X.: How convolutional neural network see the world-
a survey of convolutional neural network visualization methods. arXiv preprint
arXiv:1804.11191 (2018)

31. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-
dictions of any classifier. In: ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 1135–1144. ACM (2016)
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