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Abstract. This paper presents a gesture recognition approach for CAD
interfaces where the Leap Motion Controller is used for its high pre-
cision in modelling user hands. A simple, compact and effective hand
representation is proposed to encode trajectory and pose across time.
Recognition is based on Recurrent Neural Networks, particularly suited
for processing data sequences. An effective data augmentation technique
is also described to increase the size of the training set. Experiments con-
ducted on a novel dataset of gesture performed by 30 volunteers show
the effectiveness of the proposed technique; the dataset will be made
available to the community for future studies.
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1 Introduction

Gestures are one of the most common and natural ways people use to commu-
nicate; humans move arms, hands, fingers or even the whole body to transmit
information or interact with the environment. In recent years, the development of
Human-Computer Interaction systems received great attention from the research
community with the aim of developing natural and unobtrusive interfaces, and
making users able to interact with the system without any hand-held device.
Gesture recognition systems can be profitably used in a variety of applications
[4]; among others, sign language translation, daily assistance to elders or disabled
people, security application and gaming are probably the most relevant.

This work focuses on the development of a gesture recognition system for
CAD interfaces. Although the realisation of a complete 3D model requires fine
user movements quite difficult to realise outside the sophisticated traditional
CAD interfaces, more intuitive and natural interactions can be useful for initial
prototyping or successive interaction with existing models. The widespread dif-
fusion of low-cost RGB-D sensors (e.g. Kinect) and their ability to track users’
movements greatly fostered research in this field. The approach proposed in this
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paper is based on the use of the Leap Motion Controller (LMC) [13,17], which
provides interesting functionalities for detecting and tracking user’s hands; being
it designed to work at short distance, hands information is provided with a
noticeably higher level of precision with respect to previous devices operating at
larger distances and tracking the whole human body.

The proposed gesture recognition approach is based on a novel, compact but
effective hand representation coupled with Long-Short Term Memory networks
(LSTM), which represent a natural choice for their ability of managing sequences
of inputs over time. When dealing with networks, the level of accuracy reachable
is often influenced by the availability of training data; while, for its nature,
gesture recognition is in general considered a small-scale problem, the set of
data for network training can be incremented by artificially generated data.
One further contribution of this paper is the definition of data augmentation
techniques able to produce additional data for training while keeping unaltered
the semantic of gestures. Finally, a new dataset of gestures will be made available
to the research community to allow for future comparisons.

The paper is organised as follow: Sect. 2 presents the state of the art, with
particular reference to gesture recognition for CAD applications, Sect. 3 describes
the proposed approach, the experiments are described in Sect. 4 and Sect. 5 draws
some conclusions.

2 Related Works

The recent literature on human gesture recognition is huge and a comprehensive
review goes beyond the scope of this work; interested readers can refer to [3,4,15]
for recent surveys on 3D hand gesture recognition. Several solutions for natu-
ral CAD interfaces have been proposed in the literature. Many works propose
contact-based solutions where the user interacts with the system by means of
ad-hoc input devices. In [10] different techniques for sketch-based modeling are
described, where the users interact with CAD applications by means of sketches;
in [19] a Virtual Reality based system is described, where an electronic data glove
is suggested as input device. Several vision-based techniques have also been pro-
posed as an alternative to contact-based solutions, with the aim of providing to
the user a more natural interface. No direct interactions with input devices are
requested in this case; gesture interpretation is based on data streams acquired
by cameras of different nature (e.g. RGB or depth). One of the most interest-
ing sensors in this context is Microsoft Kinect [12,18], a low-cost device able to
capture in parallel RGB and Depth data streams; its success is largely related
to the skeleton representation provided by the SDK which allows to easily track
subjects and analyze their behaviour. The use of Kinect for gesture recognition
in CAD applications is proposed in some works [7,8,16]; however it is worth
noting that the fine hand gestures needed to precisely interact with the system
are difficult to capture with Kinect due to its simplified skeleton model where
hands are simply identified by a single joint (in the palm) and no information
about fingers is provided. Leap Motion Controller works at smaller distances
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with respect to Kinect and offers a much more detailed hand representation,
where each finger is represented by several joints. In [2] LMC multiple applica-
tions in Human-Computer Interaction are described, ranging from the medical
field to human-robot interaction, from games and gamification to sign language
recognition. A CAD interface based on LMC is described in [14] where a proof
of concept system able to recognize a set of gestures is described; the details of
the recognition approach are not given and the dataset used for testing is not
available, thus making impossible a comparison with our proposal. A relevant
work for our study is [1] where the use of LMC coupled with recurrent neural
networks is discussed for sign language and semaphoric gesture recognition. The
authors adopt a complex hand model and a deep network to deal with gestures
of different nature with interesting results; we will show in our experiments that,
for the specific CAD context, also a simplified representation and a relatively
small network allow to reach fully satisfactory results.

3 Proposed Approach

This paper proposes a novel approach for gesture recognition based on the use
of Leap Motion Controller. The Leap Motion Controller is a device designed to
detect and track user hands, usually placed on the user physical desktop in front
of the computer, or mounted on a headset for virtual reality. The device has two
monochromatic IR cameras and three infrared LEDs. The IR light emitted from
the LEDs is reflected by the user hands and then read by the cameras. Thanks to
these tools, the device is able to perceive user hands inside a hemispherical area
until a distance of 1 m, with a precision of 0,7 mm and a frame rate up to 200
fps. The information acquired by the sensor is then used to create an internal
representation of the two hands, easily accessible thanks to the provided SDK.

3.1 Hand Representation

The hand skeleton information extracted by the LMC consists of a set of
attributes, providing geometric data about the user palm, fingers and arm, but
also high-level information like acquisition confidence and grabbing or pinching
strength. Among the different data provided, the geometric ones are more rel-
evant to our model. Our objective is to define a representation capturing the
gesture evolution represented by hand pose, without including any information
related to hand shape which is user-specific and not meaningful for gesture recog-
nition. For this reason we neglect most of the data related to the hand position in
space (except palm position, used as a reference to evaluate hand translation in
time), and we mainly rely on the directions characterizing hand and fingerprints.
In particular we exploited for our representation (see Fig. 1a):

– arm: described by its direction da;
– palm: described by its 3D position p and its direction dp;
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– fingers: each finger is a complex object, consisting of a list of bones represent-
ing the single phalanges. We consider the direction of each bone dbf,p

, with
f being the finger index (f = 1, .., 5) and p the phalanx index (p = 1, .., 3).

Starting from the hand information provided by LMC, we defined a set of numer-
ical features able to encode the hand pose as well as its movement in space across
time. The use of angle values, instead of joint positions, allows to achieve a good
level of invariance with respect to users’ specific hand characteristics. In this
work only gestures involving a single hand are considered, but the proposed
model can be easily extended to a more general case where the user exploits
both hands.

Using the above described raw data, different types of features are extracted
for each frame i:

– the translation Δp(i) of the palm position with respect to frame i − 1:

Δp(i) = p(i) − p(i − 1)

– the angle ω(i) between the palm direction and the arm direction, computed as:

ω(i) = arccos(
dp(i) · da(i)

|dp(i)| · |da(i)| )

– a set of angles αf,p(i), with f = 1, .., 5 and p = 1, .., 3, representing for each
finger the angle between the palm direction and each finger phalanx:

αf,p(i) = arccos(
dp(i) · dbf,p

(i)
|dp(i)| · |dbf,p

(i)| )

Please note that for the thumb finger, only the αf,p angles referred to two
phalanges can be computed (i.e. for f = 1, p = 1, 2).

The angles αf,p are computed to capture the finger extension or closure; ω angle
can detect the wrist movement during the gesture. Each angle is measured in
the plane formed by the two directions involved. In order to keep track of the
hand spatial movement, we decided to consider only the variation of the palm
center coordinates; by considering only point variation and not its absolute coor-
dinates, the resulting features are invariant from the initial hand position. Each
frame of the video sequence is therefore represented by a 18-dimensional vector
obtained by the ordered concatenation of the above described values (3 values
for translation on the three axis, 1 ω angle, and 14 αf,p values). The sequence
length is fixed to 60 frames per gesture.

3.2 Network Structure

Our approach exploits Recurrent Neural Network to recognize gestures; in partic-
ular we evaluated two variants: Long Short-Term Memory [9] and Gated Recur-
rent Unit [5]. All RNNs have internal state vectors than can store past events
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Fig. 1. Hand model: the palm direction (red) intersects the different phalanges direc-
tions (blue) and the arm direction (green), forming the angles used to model the hand
pose (for instance, the features are represented for each phalanx i = 1, .., 3 for f = 2).
The palm position (black dot) is used to keep track of the hand movement. (Color
figure online)

and process current data based on the past, but in particular LSTM and GRU
are able to handle longer-term dependencies characterising longer sequences of
data. The results obtained using LSTM or GRU are often comparable in terms
of accuracy [6]. We chose a many-to-one network model; in fact the network pro-
cesses all the sequence elements before returning the predicted class. We chose
a fixed length of 60 frames the sake of simplicity, because it has proved to be a
sufficient time span for every gesture (about 2–3 s per gesture). The model can
be easily adapted to different frame lengths or even variable lengths among sam-
ples. For our problem, we sized the network as shown in Fig. 2: the input layer
has 18 neurons, corresponding to the size of feature vectors; it is then connected
to two hidden layers, each one composed by 200 LSTM neurons. The final layer

Fig. 2. Network structure unrolled through time.



190 L. Mazzini et al.

is a fully-connected layer, which takes as input the last output of the second
hidden layer; this layer works as a classifier and it will return the probability
of each class for the current gesture. As optimizing algorithm to minimize the
loss function during the training phase, we chose Adam Optimizer because it
provides in several contexts better performance than other optimizers [11]. The
learning rate is fixed to 0.0005.

3.3 Data Augmentation

In order to increase the data available for network training, a data augmenta-
tion technique is proposed; in particular, some transformations to the original
data are applied to produce new gestures which reproduce the main gesture
characteristics without introducing “unnatural” movements or hand poses.

Please note that the same random transformations are applied to the whole
gesture since applying independent variations to the single frames would produce
a noisy, non-smooth pattern.

Trajectory Rotation and Scaling. The first transformation applies to hand
trajectory, described by the palm position pi across time. An affine transform is
applied to produce trajectory rotation and scaling; trajectory translation would
be totally ineffective, since the trajectory is finally encoded in terms of pose
variations (Δpi features) to achieve independence from the absolute coordinates.
The affine transform given in Eq. (1) produces:

– a trajectory rotation of θx, θy and θz degrees on the X, Y and Z axis,
respectively;

– a trajectory scaling of sx, sy, sz on the three axis.

The transformation parameters are randomly generated within the ranges given
in Table 1. The rotation on the X axis is quite small, because higher values would
affect excessively the gesture nature; larger variations on the Y and Z axes can
be applied. Moreover a uniform scaling is applied.

⎡
⎢⎢⎢⎢⎣

p′
x

p′
y

p′
z

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos(θy) 0 sin(θy)
0 1 0

−sin(θy) 0 cos(θy)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

px
py
pz

⎤
⎥⎥⎥⎥⎦

(1)

Hand Pose Variation. The second transformation applies to hand pose, rep-
resented by the αf,p angles. Each angle is slightly modified to generate a new
pose that is still natural and realistic. In particular, to emulate effectively the
natural movement of fingers, the amplitude of the variation applied is directly
proportional to the phalanx distance from the palm (see v1, v2 and v3 in Table 1).
In fact, the farther the phalanx is from the palm, the wider is the angle resultant
from the variation applied.
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For this reason, the transformation factor chosen for the fingers is slightly
modified from phalanx to phalanx. Let α′

f,p be the generated angle from the
original αf,p, it can be computed as:

α′
f,p = vp · αf,p

Variations can be applied in both directions evenly (extending all the fingers or
making them more closed).

Table 1. Transformations applied in data augmentation for trajectory rotation and
scaling and for hand pose modification.

Variation Range Variation Range

θx ±(5◦ − 10◦) v1 [0.95, 0.99] ∪ [1.01, 1.05]

θy, θz ±(10◦ − 15◦) v2 [0.945, 0.989] ∪ [1.011, 1.055]

sx, sy, sz [0.85, 0.9] ∪ [1.1, 1.15] v3 [0.94, 0.988] ∪ [1.012, 1.06]

Fig. 3. Examples of data augmentation: (a) hand pose variation (example on a single
finger) and (b) gesture trajectory scaling. Solid blue lines represent the original data,
orange dotted lines the derived one. (Color figure online)

4 Experiments

4.1 Dataset

To the best of our knowledge no public benchmarks including raw data acquired
by LMC are available. The authors of [1] share their dataset but only in terms
of extracted features; the raw data needed to derive our representation are not
available thus making impossible the evaluation. We decided therefore to collect
a new dataset including gestures that can be applied in a hypothetical CAD
software. In particular, starting from the interface described in [14], we defined
8 gesture:
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– Translation: using only index finger, the user draws a straight trajectory.
– Rotation: extending both index and middle finger, the user rotates the hand

of 180◦, facing the palm upwards.
– Extrusion: extending thumb, index and middle finger, the user draws a

straight or undulating trajectory.
– Left swipe: using only index finger, the user moves the hand quickly from

right to left.
– Right swipe: using only index finger, the user moves the hand quickly from

left to right.
– Close: using only index finger, the user moves down the hand quickly.
– Scale enlargement : starting with thumb, index and middle finger tips close

together, the user moves them apart.
– Scale reduction: starting with thumb, index and middle finger far apart, the

user moves them close together.

Each of the 30 volunteers used his/her dominant hand to perform the ges-
ture, so there are also left-handed samples; a small training about the gestures is
provided by letting them to watch a short video (available at https://youtu.be/
ZWPTjusyaoo). Then, they proceeded to perform the gestures, at their chosen
speed (keeping the difference between standard speed gestures and quick ges-
tures). Each person performed each gesture twice, so 16 gestures were obtained
per person, overall 480 gesture samples. The dataset is available at http://biolab.
csr.unibo.it/CADGestures.html.

4.2 Result and Discussion

The main indicator used for performance evaluation is accuracy, which is simply
computed as the number of correct predictions C made by the network over the
total number of examined instances N : accuracy = C

N . Furthermore, to extract
more precise and class-specific information about the recognition accuracy, we
also analyzed the confusion matrix where the rows refer to the real gesture class
and the columns to the predicted one. All tests have been performed on a PC with
Linux OS, on a GeForce GTX1070 GPU with 8 GB of dedicated memory and
16 GB RAM. We implemented the LSTM and GRU networks using Tensorflow,
while Scikit-learn was used test SVM.

The dataset is partitioned in training set and test set in proportion 80–20, so
we have 384 gestures for network training, and 96 for testing purpose. This basic
training set is referred to as TSBase. Moreover, to evaluate the effectiveness of
data augmentation, we derived two additional training set, TSA1 and TSA2,
obtained generating respectively 1 or 2 gestures for each original gesture in
TSBase; the resulting cardinality is then |TSA1| = 768 and |TSA2| = 1152.

We tested two versions of the proposed network, i.e. built with LSTM and
GRU cells; moreover, as a term of comparison, we also evaluated the proposed
hand model coupled with a SVM classifier. Since SVMs are not able to pro-
cess data sequences, we concatenated in a single vector all the sequence feature
vectors (overall 1080 features).

https://youtu.be/ZWPTjusyaoo
https://youtu.be/ZWPTjusyaoo
http://biolab.csr.unibo.it/CADGestures.html
http://biolab.csr.unibo.it/CADGestures.html
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The results obtained with the base and augmented training sets are sum-
merized in Table 2 and Fig. 3. Both LSTM and GRU reach 100% accuracy on
the training set, but the first one better generalizes its knowledge on the test
set, thus producing overall better results. SVMs are not designed to evaluate
the sequential nature of the input, which is significant in this particular problem
and this may be the reason of their lower accuracy.

In general, even if a good testing accuracy is reached with TSBase, the results
clearly show that data augmentation is important and significantly impacts per-
formance for all the tested classifiers (+6% accuracy for LSTM). We can then
deduce that the proposed data augmentation allows to produce new instances
maintaining the nature and the spontaneity of the gesture performed.

Table 2. Results obtained using different algorithms and training sets.

Algorithm Training set Acc. on test set

LSTM network TSBase 87,3%

TSA1 91,6%

TSA2 93,7%

GRU network TSBase 84,3%

TSA1 87,5%

TSA2 88,5%

SVM TSBase 70,8%

TSA1 75,0%

TSA2 71,8%

An analysis of the confusion matrices in Fig. 3 shows that the most difficult
gesture to recognize is Extrusion, probably due to its similarity with the Rotation
gesture pose (the only difference is the extension of the thumb), even if Extrusion
requires a well defined trajectory in the space, whilst Rotation is almost static.
This is comprehensible if we consider that in the proposed model, only one
feature value is related to trajectory and the pose information has a much higher
influence on the final decision.

Even though a direct comparison with [1] is not possible since different ges-
ture datasets are used, we can observe that our compact representation, coupled
with proper data augmentation techniques, allows to reach an overall accuracy
of 93,7%, comparable to that of more complex systems, like the one proposed in
[1] where the reached accuracy is 96,4% (Fig. 4).
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Fig. 4. Confusion matrix of the LSTM network (on the left) and the GRU network (on
the right).

5 Conclusions

In this paper a new approach to gesture recognition has been proposed, based on
LSTM recurrent networks and Leap Motion Controller. The results obtained are
overall quite satisfactory; the fine representation of user hands allows to discrim-
inate precise gestures with a good accuracy. Moreover, the data augmentation
technique proposed to increase the set of data for network training allowed to
achieve a further performance improvement. An analysis of the main causes of
errors suggests some possible future works; in particular, the extracted features
are mainly related to hand pose, while hand trajectory contributes to a little
extent to the whole representation. Improving this aspect would allow to bet-
ter discriminate gestures characterized by a similar hand posture by different
trajectories across space.
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