Skip to main content

Deep Global-Relative Networks for End-to-End 6-DoF Visual Localization and Odometry

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Abstract

Although a wide variety of deep neural networks for robust Visual Odometry (VO) can be found in the literature, they are still unable to solve the drift problem in long-term robot navigation. Thus, this paper aims to propose novel deep end-to-end networks for long-term 6-DoF VO task. It mainly fuses relative and global networks based on Recurrent Convolutional Neural Networks (RCNNs) to improve the monocular localization accuracy. Indeed, the relative sub-networks are implemented to smooth the VO trajectory, while global sub-networks are designed to avoid drift problem. All the parameters are jointly optimized using Cross Transformation Constraints (CTC), which represents temporal geometric consistency of the consecutive frames, and Mean Square Error (MSE) between the predicted pose and ground truth. The experimental results on both indoor and outdoor datasets show that our method outperforms other state-of-the-art learning-based VO methods in terms of pose accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  2. Özyeşil, O., Voroninski, V., Basri, R., Singer, A.: A survey of structure from motion. Acta Numerica 26, 305–364 (2017)

    Article  MathSciNet  Google Scholar 

  3. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  4. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225–234 (2007)

    Google Scholar 

  5. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  6. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(3), 611–625 (2018)

    Article  Google Scholar 

  7. Li, R., Wang, S., Gu, D.: Ongoing evolution of visual SLAM from geometry to deep learning: challenges and opportunities. Cogn. Comput. 10(6), 875–889 (2018)

    Article  Google Scholar 

  8. Clark, R., Wang, S., Markham, A., Trigoni, N., Wen, H.: VidLoc: a deep spatio-temporal model for 6-DoF video-clip relocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, pp. 2652–2660 (2017)

    Google Scholar 

  9. Valada, A., Radwan, N., Burgard, W.: Deep auxiliary learning for visual localization and odometry. arXiv preprint arXiv:1803.03642 (2018)

  10. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DoF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2938–2946 (2015)

    Google Scholar 

  11. Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMS for structured feature correlation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 627–637 (2017)

    Google Scholar 

  12. Costante, G., Ciarfuglia, T.A.: LS-VO: learning dense optical subspace for robust visual odometry estimation. IEEE Robot. Autom. Lett. 3(3), 1735–1742 (2018)

    Article  Google Scholar 

  13. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: SfM-Net: learning of structure and motion from video. arXiv preprint arXiv:1704.07804 (2017)

  14. Iyer, G., Murthy, J.K., Gunshi Gupta, K., Paull, L.: Geometric consistency for self-supervised end-to-end visual odometry. arXiv preprint arXiv:1804.03789 (2018)

  15. Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2616–2625 (2018)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  17. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  18. Wang, S., Clark, R., Wen, H., Trigoni, N.: End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks. Int. J. Robot. Res. 37(4–5), 513–542 (2018)

    Article  Google Scholar 

  19. Zaremba, W., Sutskever, I.: Learning to execute. arXiv preprint arXiv:1410.4615 (2014)

  20. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2930–2937 (2013)

    Google Scholar 

  21. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  22. Mohanty, V., Agrawal, S., Datta, S., Ghosh, A., Sharma, V.D., Chakravarty, D.: DeepVO: a deep learning approach for monocular visual odometry. arXiv preprint arXiv:1611.06069 (2016)

  23. Zhao, C., Sun, L., Purkait, P., Duckett, T., Stolkin, R.: Learning monocular visual odometry with dense 3D mapping from dense 3D flow. arXiv preprint arXiv:1803.02286 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y. et al. (2019). Deep Global-Relative Networks for End-to-End 6-DoF Visual Localization and Odometry. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics