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2.1 Introduction

In data ecosystems, vast amounts of data move among actors within complex
information supply chains that can form in different ways around an organisation,
community technology platforms, and within or across sectors. This chapter
explores the role a data ecosystem can play in the design of intelligent systems to
support data-rich Internet of Things (IoT)-based smart environments. The chapter
examines different elements of an intelligent systems data ecosystem that are critical
to understanding the data management and sharing challenges they present.

In Sect. 2.2, we establish the foundations of an intelligent systems data
ecosystem and explore the increasing role data is playing in the design of intelligent
systems. Section 2.3 details the challenge to support the exchange of knowledge
within open systems in dynamic environments, with Sect. 2.4 outlining the
Knowledge Value Ecosystem (KVE) Framework to support knowledge sharing.
Sections 2.5, 2.6, and 2.7 explain the framework in more detail and how knowledge,
value, and ecosystem barriers are overcome. A pay-as-you-go iterative boundary
crossing process to overcome these barriers is discussed in Sect. 2.8. Section 2.9
details the requirements for data platforms to support the sharing of data
between intelligent systems within Internet of Things-based smart environments
and a summary is provided in Sect. 2.10.

2.2 Foundations

As we begin the third decade of the twenty-first century, we are at the beginning of a
great wave of convergence of enabling technologies from the Internet of Things
(IoT), 5G, high-performance computing, and edge computing to big data, cloud
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computing, and Artificial Intelligence (AI). Smart environments are generating
significant quantities of data from digital infrastructure that is driving a new wave
of data-driven intelligent systems. Over the last decade, the term “Big Data” was
used by different major players to label data with different attributes. The first
definition, by Doug Laney of META Group (later acquired by Gartner) defined
big data using a three-dimensional perspective: “Big data is high volume, high
velocity, and/or high variety information assets that require new forms of processing
to enable enhanced decision-making, insight discovery and process optimization”
[20]. Loukides [21] defines big data as “when the size of the data itself becomes part
of the problem and traditional techniques for working with data run out of steam.”
Jacobs [22] describes big data as “data whose size forces us to look beyond the tried-
and-true methods that are prevalent at that time”. Big data brings together a set of
data management challenges for working with data under new scales of size and
complexity. Many of these challenges are not new. What is new, however, are the
challenges raised by the specific characteristics of big data related to the three V’s:

• Volume (amount of data): Dealing with large scales of data within data processing
(e.g. healthcare and logistics)

• Velocity (speed of data): Dealing with streams of high-frequency incoming real-
time data (e.g. sensors and IoT devices)

• Variety (range of data types/sources): Dealing with data using differing syntactic
formats (e.g. spreadsheets, XML, DBMS), schemas, and semantic meanings
(e.g. Enterprise Data Integration).

The V’s of big data challenge the fundamentals of existing technical approaches
and require new forms of data processing to enable enhanced decision-making,
insight discovery, and process optimisation. As the big data field matured, other
V’s have been added, such as Veracity (documenting quality and uncertainty) and
Value. The value of data within a smart environment can be considered in the
context of the dynamics of knowledge-based organisations [23], where the processes
of decision-making and organisational action are dependent on the process of sense-
making and knowledge creation.

Through the generation and analysis of data from the smart environment, data-
driven systems are transforming our everyday world. From the digitisation of
traditional infrastructure (smart energy, water, and mobility), the revolution of
industrial sectors (smart autonomous cyber-physical systems, autonomous vehicles,
and Industry 4.0), to changes in how our society operates (smart government and
cities). At the other end of the scale, we see more human-centric thinking in our
systems where users have growing expectations for highly personalised digital
services for the “Market of One”.

The digital transformation is creating an ecosystem with data on every aspect of
our world spread across a range of information systems. Data ecosystems present
new challenges to the design of intelligent systems that require a reconsideration of
how we deal with the data management needs of large-scale, data-rich smart
environments. Intelligent systems need to support openness, flexibility, and
dynamicity [24] with the ability to deal with incremental change at minimum cost.
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To understand the emerging data management challenges, we explore the design of
intelligent systems within smart environments and the need to support knowledge
flows within data ecosystems.

2.2.1 Intelligent Systems Data Ecosystem

Within a data ecosystem, participants (individual or organisation) can create new
value that no single participant could achieve by itself [25]. A data ecosystem can
form in different ways, around an organisation, a community of interest (music), a
geographical location (city), or within or across industrial sectors (manufacturing,
pharmaceutical). In the context of a smart environment, the data ecosystem metaphor
is useful to understand the challenges faced with the cross-fertilisation and exchange
of knowledge from different intelligent systems within the environment.

A key challenge within the design of intelligent systems is the need to extract
valid and accurate insights from the data generated by a smart environment to make
useful and meaningful decisions for business and society. Figure 2.1 details the data
ecosystem for a connected autonomous vehicle where a community of interacting
information systems share and combine their data to provide a holistic functional
view of the car, passengers, city mobility, and service and infrastructure providers.
Data may be shared about the current operating conditions of the vehicle, traffic
flows, or context of the passengers (e.g. a family on holiday or a business executive
moving between meetings) to support real-time decision-making, personalised dig-
ital services, or data on past observations to improve learning processes.

An intelligent systems data ecosystem (see Fig. 2.2) describes a community of
interacting information systems that can share and combine their data to provide a
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functional view of the environment [1]. The ecosystem supports the flow of data
among systems, enabling the creation of data value chains to understand, optimise,
and reinvent processes that deliver insight to optimise the overall environment. In a
data value chain, information flow is described as a series of steps needed to generate
value and useful insights from data [15]. Systems within the ecosystem can also
come together to form a System of Systems.

2.2.2 System of Systems

The need for multiple intelligent systems within a smart environment to work
together is becoming a standard requirement. Sharing data among intelligent systems
is critical if we are to extract the maximum value from IoT-based smart environ-
ments. Smart cities are showing how different systems within the city (e.g. energy
and transport) can collaborate to maximise the potential to optimise overall city
operations [26]. Digital services are expected to deliver a personalised and seamless
user experience by bringing together relevant user data from multiple systems
[16]. Building these systems requires a System of Systems (SoS) approach to
connect systems that cross organisational boundaries, come from various domains,
(e.g. finance, manufacturing, facilities, IT, water, traffic, and waste) and operate at
different levels (e.g. region, district, neighbourhood, building, business function,
individual). The joint ISO/IEC/IEEE definition of an SoS is that it “brings together a
set of systems for a task that none of the systems can accomplish on its own. Each
constituent system keeps its management, goals, and resources while coordinating
within the SoS and adapting to meet SoS goals” [27]. Maier [28] identified a set of
characteristics to describe an SoS:
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• Operational Independence: Constituent systems can operate independently from
the SoS and other systems.

• Managerial Independence: Different entities manage the constituent systems.
• Geographic Distribution: Is the degree to which a system is widely spread or

localised.
• Evolutionary Development: The SoS, and its behaviour evolves, requiring

changes to system interfaces to be maintained and kept consistent.
• Emergent Behaviour: New emergent behaviour can be observed when the SoS

changes.

There are many systems engineering challenges in bringing together the constit-
uent systems into an SoS at the data, service, process, and organisational levels.
Many of the above characteristics of an SoS give us insights into the knowledge,
value, and ecosystem boundaries that exist in bringing an SoS together, and the
different types of interests possible at management and operational levels of systems.
At the data level, intelligent systems can benefit from leveraging data from the
availability of large volumes and variety of data and streams in the smart environ-
ment, which can be used to fuel intelligent, evidence-based decision-making.

2.2.3 From Deterministic to Probabilistic Decisions
in Intelligent Systems

When it comes to making decisions in intelligent systems, there are two general
approaches: deterministic (model-driven) and probabilistic (data-driven). A critical
difference between the approaches can be explored by considering the costs and
level of reliability and adaptability they provide within intelligent systems. There is a
tension between reliability, predictability, and cost [29]: usually the more depend-
able and reliable the intelligent system needs to be, the more cost is associated with
its development. Typically, we can see deterministic systems as reliable but with
high costs to develop and adapt, and probabilistic as low cost to build and adapt, but
less reliable. Take the example of the autonomous connected car, where we have the
strict requirements of safety-critical autonomous driving systems (where a failure
may lead to loss of life or serious personal injury) to the “good enough” requirements
of the infotainment systems (where a failure is acceptable and merely an inconve-
nience to the user).

Within early smart environments, the level of data available was limited due to
the high cost of digitisation. Sensors were expensive to purchase and install,
resulting in the prudent use of resources. Conventional intelligent systems typically
targeted “high-value” opportunities where the cost savings and benefits could justify
the high cost of investment needed. Often these would be safety- or mission-critical
systems that required higher levels of reliability. Due to the lack of sensor data and
the need for high levels of reliability, deterministic approaches were an obvious
choice for “conventional” intelligent systems. In this approach, the environment is
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optimised based on a formal deterministic model where a set of rules and/or
equations detail the decision logic for the intelligent system that is used to control
the activity in the environment efficiently and predictably. Adapting the intelligent
system to meet changes in the environment is a costly process as the model, and its
rules, need to be updated by expert systems engineers.

In the probabilistic approach, the core of the decision process is a statistical model
that has been learnt from an analysis of “training” data to “discover” the structure of
a decision model automatically from the observed data (e.g. driver behaviour). Thus,
a fundamental requirement of data-driven approaches is the need for data to fuel the
training of the algorithms. A lack of data, and training data, within a smart environ-
ment has limited the use of data-driven approaches.

As the IoT is enabling the deployment of lower-cost sensors, we are seeing more
extensive adoption of IoT devices/sensors and gaining more visibility (and data) into
smart environments. Smart environments are generating different types of data with
an increase in the number of multimedia devices deployed, such as vehicle and
traffic cameras. The emergence of the Internet of Multimedia Things (IoMT) is
resulting in large quantities of high-volume and high-velocity multimedia event
streams that need to be processed [30]. The result is a data-rich ecosystem of
structured and unstructured data (e.g. images, video, audio, and text) detailing the
smart environment that can be exploited by data-driven techniques. It is estimated
that a single connected car will upload about 25 gigabytes of data per hour, while a
vehicle fitted with an Autonomous Vehicle Imaging and Scanning system generates
and processes about 4 TB of data for every autonomous driving hour (https://www.
datamakespossible.com/evolution-autonomous-vehicle-ecosystem/).

The increased availability of data has opened the door for the use of data-driven
probabilistic models, and their use within smart environments is becoming more and
more commonplace for “good enough” scenarios. As a result, the conventional rule-
based approach is now being augmented with data-driven approaches that support
optimisations driven by machine learning, cognitive and AI techniques that are
opening new possibilities for the design of intelligent systems. For example, pedes-
trian detection is challenging to implement in a rule-based approach. However, deep
learning models for object detection and semantic segmentation using a dash-
mounted camera are highly effective at detecting pedestrians.

Intelligent systems can now adapt to changes in the environment by leveraging
the data generated in the environment within their learning process to improve
performance. If intelligent systems share data on their operational experiences, a
pool of data can be created to improve the overall learning processes of all the
systems, a form of collective AI through the “wisdom of the systems”. Because the
process is data-driven, it can be run and re-run at low cost. This critical role of data in
enabling adaptability and collective machine intelligence makes it a valuable
resource.

Within the context of smart environments, data-driven approaches have been
used to optimise the operation of infrastructure, such as the energy and transportation
systems [31]. However, the adoption of data-driven approaches is about to increase
significantly across a range of industries and sectors with the use of Digital Twins.
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2.2.4 Digital Twins

Within the business community, the metaphor of a “Digital Twin” is gaining
popularity as a way to explain the potential of IoT-enabled assets and smart environ-
ments [32]. A digital twin refers to a digital replica of a physical asset (car),
processes (value chain), system (transport), or physical environment (building).
As illustrated in Fig. 2.3, the digital twin provides a digital representation
(i.e. simulation model or data-driven model) that updates and changes as the
“physical twin” changes. The digital representation provided by the digital twin
can be analysed to optimise the operation of the physical twin.

Digital twins are constructed from multiple sources of data, including real-time
IoT sensors, historical sensor data, traditional information systems, and human input
from domain and industrial experts. With the use of advanced analytics, machine
learning, and AI techniques, the digital twin can learn the optimal operating condi-
tions of the physical twin and optimise the physical twins’ operations in areas such as
performance, maintenance, and user experience. One of the most promising outputs
from a digital twin analysis is the possibility to find root causes of potential
anomalies which can happen (prediction) and improve the physical process
(innovation).

Digital twins can range from human organs such as the heart and lungs to aircraft
engines and city-scale twins. For example, the SmartSantander smart city project has
deployed tens of thousands of IoT-connected sensor devices in large cities across

Real World Digital World

Sensors Orient

DecideActuators Act

Observe Orien

DecidAct

Observe

Physical Twin
(Asset-centric)

Digital Twin
(System-centric)

Fig. 2.3 Information flow and processing steps within a digital twin

2.2 Foundations 21



Europe [33]. The sensing capabilities of these devices are wide-ranging, including
solar radiation, wind speed and direction, temperature, water flow, noise, traffic,
public transport, rainfall, and parking. The devices provide a digital representation of
the city, which enables visibility into city processes and operations to support
analysis and optimisation.

Datafication is creating an ecosystem of data on every aspect of our world spread
across a range of information systems. In order for digital twins and intelligent
systems to maximise the benefits from the resulting data ecosystems, we need to
rethink how we exchange knowledge among open intelligent systems in dynamic
environments.

2.3 Knowledge Exchange Between Open Intelligent
Systems in Dynamic Environments

The design of intelligent systems, especially ones enabled by IoT, has to accommo-
date the needs of dynamic environments, where system participants continuously
join and leave the environment. Vermesan et al. call this phenomenon “fluid
systems” that are continuously changing and adapting, “in IoT systems it is very
common to have nodes that join and leave the network spontaneously” [34]. This
dynamic nature puts constraints on the assumptions that can be made within the
design of intelligent systems and the assumption of having full understanding or
control over the systems in the environment. This has led to the need for “open”
intelligent systems which can adapt to their environment and learn from its interac-
tion with the changing dynamics of the environment and the different systems
operating within it.

While the term “open” has been frequently used in the literature to describe large-
scale distributed systems, for example, Ciliaet et al. [35], a broad consensus has not
been reached on its definition. Looking to the early works in system theory, we can
draw upon the definition commonly used in this field as a system that has external
interactions in the form of information, energy, or matter transfer through the system
boundary [36]. A boundary here separates the system from its environment. For
example, in biology, a cell exchanges chemicals with its environment through its
membrane, and thus, it is an open system from this perspective.

The concept of boundary objects is established in the literature on knowledge
sharing and reuse. Boundary objects are used to understand and coordinate the
interactions among actors with varying information and knowledge needs to estab-
lish a shared point of reference during interactions [37]. Carlile formulates sugges-
tions for managing knowledge across boundaries and provides the 3-T framework
for knowledge exchange across system boundaries within the area of organisation
science [37]. While Carlile’s framework focuses on the exchange of knowledge
between product development teams (the “systems” in this case), its foundations can
be traced back to the Shannon-Weaver model with implications for information
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systems. The 3-T framework defined the task of knowledge exchange as a task of
crossing three boundaries among systems: syntactic, semantic, and pragmatic. We
interpret these boundaries from Carlile for knowledge exchange among open sys-
tems in dynamic environments and extend them with new boundaries for value
exchange and ecosystem coordination.

In Fig. 2.4, the inverted pyramidal frustum shape shows the spectrum of tasks
between well-known and novel tasks that need to be undertaken to exchange
knowledge within an ecosystem. Systems A and B interact within this spectrum
with correspondence to boundary objects that exist at three levels:

• Knowledge Boundaries: Exist where differences and dependencies among sys-
tems exist at the semantic and the administrative levels. A common lexicon needs
to be developed to transfer and assess knowledge among systems in the classical
sense from Shannon [38]. However, as Shannon noted, a common lexicon may
not always be sufficient to share knowledge among systems. Distinct systems will
have differences and dependencies that are unclear with multiple possible inter-
pretations which create a semantic boundary to knowledge sharing. The admin-
istrative boundary describes how close or far in terms of control are the systems.
A close control means that many assumptions can hold concerning data manage-
ment guarantees (e.g. data consistency, availability, and quality), while a far
control refers to weaker or no guarantees. To cross the knowledge boundary, it
is necessary to develop common meanings to provide a means of sharing and
assessing knowledge at a boundary. This requires new agreements on the trans-
lation of each system to the commonly shared meaning and an agreed upon
protocol for access.

• Value Boundaries: Systems generally serve the interest of their participants, with
different systems serving the different interests of their users. Cultural,
organisational, and social interests can impede the sharing of knowledge among
systems. To overcome the value boundary, it is necessary to develop common

Ecosystem

Value

Knowledge

Sys. A Sys. B

Increasing 
System 

Openness• Resource control
• Interdependence

Known System Boundaries

Increasing 
System 

Openness

Scale of Boundary Complexity

?

?

??

?

?

• Realisa�on
• Propaga�on

• Seman�c
• Administra�ve

Fig. 2.4 Knowledge exchange between two systems within an ecosystem. Based on concepts from
the 3-T Framework [37]

2.3 Knowledge Exchange Between Open Intelligent Systems in Dynamic Environments 23



interests among systems, and their participants, to provide sufficient motivation
for knowledge sharing. The value transformation necessary to create common
interests requires significant practical and political effort, and the value must be
propagated within the ecosystem.

• Ecosystem Boundaries: Ecosystems generally have different levels of
interdependence between systems in both the technical and management sense.
The ecosystem can create the conditions for a marketplace competition among
participants or enable collaboration among diverse, interconnected participants
that depend on each other for their mutual benefit. Another key factor is the
control of key data resources within the ecosystem. Who own the key data
resources? Is the data available to all participants in the ecosystem? Are there
commercial terms of use? A close ecosystem coordination framework would
provide clear answers to these questions, while loose coordination means less
predictability on the behaviour of participants within the data ecosystem. To
overcome ecosystem boundaries, it is necessary to understand and support the
social, political, organisational, and business changes needed for ecosystem
coordination.

The more open, distributed, and heterogeneous the environment becomes, the
more significant these boundaries become, especially the latter ones where openness
may introduce more novelty and uncertainty. Crossing boundaries requires mutual
agreements among participants, which implies cost. The need for mutual agreements
among participants adds to the technical issues an essential social dimension.
Overcoming the differences among systems generates costs to the systems involved
where domain-specific knowledge, as well as the common knowledge used, may
need to be transformed to share and assess knowledge among the systems
effectively.

There is an inherent need to design intelligent systems with the ability to scale and
cross system boundaries. To effectively cross the ecosystem boundary for multiple
systems within an open environment, each system must be able to represent current
and more novel forms of knowledge, learn about their consequences, and transform
their domain-specific knowledge accordingly. Intelligent systems within dynamic
environments need to support the “social” agreement needed to share knowledge
among them. We capture the capabilities needed to overcome knowledge sharing
barriers among intelligent systems in the KVE Framework.

2.4 Knowledge Value Ecosystem (KVE) Framework

In order to cross the three boundaries of sharing knowledge among open intelligent
systems in dynamic environments, we propose the Knowledge Value Ecosystem
(KVE) Framework (Fig. 2.5). The KVE Framework, an extension of the 3-Ts
Framework, tackles each boundary using the following capabilities:
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• Knowledge Transfer and Translation: Knowledge boundaries are crossed by
tackling administrative barriers using capabilities for the transfer of data using
open web standards for data publishing and sharing knowledge as linked data,
while semantic boundaries are crossed with capabilities to establishing common
meanings among intelligent systems using knowledge graphs (see Sect. 2.5.3).
Together, linked data and knowledge graphs can be used to support an incremen-
tal approach to reaching agreements on the transfer and translation of meaning
among multiple intelligent systems.

• Continuous and Shared Value Transformation: Value boundaries are crossed
with capabilities for transforming the interests of individual participants into
common interests within new shared data value chains. The shared data value
chain approach can provide a clear value proposition to support the political effort
necessary from both a business case and an organisational perspective. It is
important that the value created is continuously shared between participants
along the value chain to motivate their contribution and support the sustainability
of the data ecosystem.

• Ecosystem Governance and Collaboration: The nature of the ecosystem, the
participants, and their dynamics will affect the management strategies needed to
support the social, political, and organisational changes needed. Within a well-
functioning data ecosystem, the participants are efficiently and effectively col-
laborating to exchange knowledge to maximise value creation.

• Iterative Pay-As-You-Go Process: Typically, the process of crossing boundaries,
especially ecosystem boundaries, cannot be resolved with a single attempt.
It requires an Iterative Boundary Crossing Process which supports trial and
error in transforming complex knowledge across system boundaries. An iterative
approach can support a learning process to improve the boundary crossing
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capability. Dataspaces provide a pay-as-you-go approach to support incremental
data management within the ecosystem.

Within this approach, there is natural support between the different capabilities as
linked data can support the definition and sharing of knowledge graphs, which can
then both support the creation of value chains in a data ecosystem and motivate the
need for collaboration between participants. The first capabilities (knowledge trans-
fer and translation) can be captured in the technical design of a data platform. The
second (continuous and shared value transformation) requires a higher-level value
transformation among systems together with a cultural transformation of the stake-
holders to promote data sharing and creation of new data value chains among
systems. The purpose of the third capability (governance and collaboration) is to
gradually improve the overall operation of the ecosystem to maximise benefits for all
participants. Finally, the iterative boundary crossing process can support all the
capabilities to improve over time following a pay-as-you-go approach. The align-
ment of the boundaries, barriers, capabilities, and their implementation is detailed in
Table 2.1. We will now introduce each of these capabilities in more detail and
explore how they can be implemented within the design of a data platform to support
knowledge sharing among intelligent systems in a data ecosystem.

2.5 Knowledge: Transfer and Translation

In order to cross the knowledge boundaries of systems, two capabilities are needed:
transfer and translation. Within the KVE Framework, knowledge boundaries are
crossed by using an entity-centric model that establishes common meanings among
systems using knowledge graphs expressed using linked data.

Table 2.1 Boundaries, barriers, and capabilities within the KVE Framework and proposed imple-
mentation within a data platform

Boundary Barrier Capability Data platform implementation

Knowledge Administrative Transfer Linked data

Semantic Translation Knowledge graphs

Value Realisation Transformation Data value chains

Propagation Continuous and shared Value disciplines for data
networks

Ecosystem Resource control Governance Management strategies

Interdependence Collaboration Maximise value creation

Iterative boundary process Pay-as-you-go dataspaces
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2.5.1 Entity-Centric Data Integration

Data integration projects typically focus on one-off point-to-point integration solu-
tions among two or more systems in a customised but inflexible and non-reusable
manner—this limits both the information flow and its oversight among systems to
those that have been integrated. Entity-centric data integration takes a different form
to traditional schema-level integration within the relational model. The entity-centric
data integration model is based on global identifiers representing objects or concepts
that can be reused or reconciled among different datasets (or systems).

Entity-centric data integration facilitates the co-existence of different perspectives
and points of view of entities and a decentralised evolution of the data. At the same
time, the use of linked data vocabularies, and the specification of conceptual models
for a domain under the Resource Description Framework (RDF) model are used to
facilitate the interoperability and semantic integration among different datasets for
specific domains. This entity-centric integration of knowledge graphs using linked
data has a number of virtues to represent large, complex, and heterogeneous con-
ceptual models as detailed by [39–41]:

• Support for the representation of sparse data: RDF(S) is based on a graph data
model, which supports a sparse data model.

• Schema flexibility: RDF(S) datasets are schema-less and can evolve in a
decentralised manner.

• Represent and map to/from other data models: Data in a relational or in other
formats (e.g. CSV) can be represented and systematically mapped to RDF [42].

These characteristics make entity-centric knowledge graphs an ideal approach for
establishing a shared meaning among systems to cross knowledge boundaries. When
knowledge graphs are expressed using linked data, they can be created in a fashion
that allows two systems to be easily linked to each other on the information-level
(data) not the infrastructure-level (system) by focusing more on the conceptual
similarities (shared understanding). The combination of knowledge graphs and
linked data meets many of the FAIR data principles for data management (see
Sect. 2.8), including persistent identifiers, metadata, and open protocols. The
approach provides a means for translating knowledge across the knowledge bound-
aries among systems. It allows separate systems that were designed independently to
be later joined/linked at the edges, for interoperability to be added incrementally
when needed and where cost-effective, and for the meaning of data to be expressed
in a mixture of vocabularies.

2.5.2 Linked Data

In order to cross the administrative boundaries of systems to support data transfer,
we propose the use of linked data. Linked data leverages open protocols and W3C
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standards of the web architecture for sharing structured data on the web. The
fundamental concept of linked data is that data is created with the mindset that it
will be shared and reused by others. The objective is to expose the data within
existing systems but only link the data when it needs to be shared. Linked data
provides a decentralised incremental approach for information sharing based on the
creation of a global information space [43]. Linked data has the following
characteristics:

• Open: Linked data is accessible through a variety of applications because it is
expressed in open, non-proprietary syntactic format.

• Modular: Linked data can be combined (mashed-up) with any other pieces of
linked data. No planning is required to integrate two data sources if they both use
linked data standards.

• Scalable: It is easy to add and connect more linked data to existing linked data,
even when the terms and definitions that are used change over time.

Linked data uses standards, tools, and techniques from work on the semantic web
to facilitate sharing and reuse of data across domains. It primarily uses a graph-based
representation framework for structuring data and uses standard ontology languages
for defining the semantics of data. Ontologies (or vocabularies) provide a shared
understanding of concepts and entities within a domain of knowledge which sup-
ports automated processing for data using semantic web tools. Thus, the use of
linked data at the syntactic level can support the establishment of a common lexicon.
At the semantic level, it can also support the establishment of shared meanings.

Linked data when used together with the dataspace approach provides a frame-
work for a decentralised pay-as-you-go data integration with a standardised data
model representation providing a minimum level of integration and where Universal
Resource Identifiers (URIs) and the Domain Name Systems (DNS) provide a global-
level identification scheme, which facilitates the referencing of data entities among
different datasets. The RDF standard provides a common interoperable format and
model for data linking and sharing on the web. RDF is the basic machine-readable
representational format used to represent information. It is a general method for
encoding graph-based data that is self-describing, meaning that the labels of the
graph describe the data itself.

Linked data uses web standards in conjunction with four basic principles for
exposing, sharing, and connecting data. These principles are:

• Naming: Use of URIs as names to identify things such as a person, a building, a
device, an organisation, an event or even concepts such as risk exposure or energy
and water consumption, simplifies reuse and the integration of data.

• Access: Use of URIs based on HyperText Transfer Protocol (HTTP) so that
people can look up those names—URIs are used to retrieve data about objects
using standard web protocols. For an employee, this could be their organisation
and job classification, for an event, this may be its location time and attendance,
for a device, this may be its specification, availability, and price.
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• Format: When a URI is looked up (dereferenced) to retrieve data, it provides
useful information using a standardised format, ideally, in web standard formats
such as RDF.

• Contextualisation: Include links to other URIs so that more information can be
discovered. Retrieved data may link to other data, thus creating a data network;
for example, data about a product may link to all the components it is made of,
which may link to their supplier.

Using these technologies, we can support data transfer among intelligent systems
by using: (1) URIs to name things; (2) RDF for representing data; (3) Linked data
principles for publishing, linking, and integration; (4) Vocabularies to establish and
share understanding; and (5) Bottom-up incremental agreement.

2.5.3 Knowledge Graphs

Overcoming semantic boundaries among systems requires a common understanding
of meaning among systems for knowledge to be shared. Within the KVE Frame-
work, semantic boundaries are crossed by establishing common meanings among
systems using knowledge graphs expressed using linked data. Knowledge graphs
and linked data can be used to support an incremental approach to reaching agree-
ments on the translation of the meaning of knowledge among systems.

In 2012 Google coined the term “Knowledge Graph” to refer to their use of
information gathered from multiple sources to enrich their services, including search
engine results. The term has also been used to refer to Semantic Web knowledge
bases such as DBpedia or YAGO. As defined by Paulheim [44] a “knowledge graph
(1) mainly describes real-world entities and their interrelations, organised in a graph,
(2) defines possible classes and relations of entities in a schema, (3) allows for
potentially interrelating arbitrary entities with each other and (4) covers various
topical domains.” As illustrated in Fig. 2.6, a knowledge graph is just a set of entities
(e.g. Marie Curie and France), a set of relations between those entities’
(e.g. “knownFor” and “wasResidentOf”), and a set of facts (see Table 2.2). Facts
are the combination of the entities and relationships “Marie Curie, wasResidentOf,
France”. More formally, a knowledge graph is a tuple (E, R, G), where:

• E is a set of nodes, each representing an entity in the domain.
• R is a set of edge labels, each representing a predicate, or a semantic

relation type.
• G � E � R � E is a set of hsubject, predicate, objecti triples, denoting facts.

Knowledge graphs provide a flexible knowledge representation structure that can
describe entities and concepts that may come from multiple systems and domains,
and at varying levels of granularity. Knowledge graphs can be used to create large
knowledge bases (see Table 2.3). However, managing graphs of these sizes poses
several challenges regarding quality, coherence, performance, and interaction.
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Marie Curie

Pierre Curie

France

Paris

Female

7 Nov 1867

4 July 1934

Maria

Skłodowska

wasResidentOf

Radioactivity

Fig. 2.6 Example of a knowledge graph for Marie Curie

Table 2.2 Facts of the
knowledge graphs for Marie
Curie

Subject Predicate Object

Marie Curie hasGivenName Maria

Marie Curie hasFamilyName Skłodowska

Marie Curie hasGender Female

Marie Curie Spouse Pierre Curie

Marie Curie knownFor Radioactivity

Marie Curie wasBornOnDate 7 Nov 1867

Marie Curie wasResidentOf France

Marie Curie diedOnDate 4 July 1934

France hasCapital Paris

Table 2.3 Size of some schema-based knowledge bases [45]

Knowledge graph #of Entities # of Relation types # of Facts

Freebase 40 M 35,000 637 M

Wikidata 18 M 1632 66 M

DBpedia (en) 4.6 M 1367 538 M

YAGO2 9.8 M 114 447 M

Google Knowledge Graph 570 M 35,000 18,000 M
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2.5.4 Smart Environment Example

An example of an entity-centric knowledge graph expressed as linked data within the
context of a smart environment is illustrated in Fig. 2.7. Data and facts are specified
as statements and are expressed as atomic constructs of a subject, predicate, and
object, also known as a triple. The statement “Main Kitchen contains Coffee
Machine” is expressed in the triple format as:

Subject—“Main Kitchen”
Predicate—“contains”
Object—“Coffee Machine”
RDF is designed for use in web-scale decentralised knowledge graph data

models. For this reason, the statement parts need to be identified so that they can
be readily and easily reused. RDF uses URIs for identification, so by expressing the
previous statement in RDF it becomes:

http://data.deri.ie/rooms#r315
http://vocab.deri.ie/rooms#contains
http://water.deri.ie/devices#mr-coffee
URIs that describe the data can be uniformly used across systems, even if they

come from different sources. The knowledge graph structure of the linked data, as
illustrated in Fig. 2.7, easily supports optional parameters, and the evolution of parts
of the data structure does not affect any other related data. The relations are described
on a low-level; therefore, they combine (linking) pieces of data based on their
relation types, and not only on their representation.

rm:contains

foaf:name

water:consumptionsosa:platform

water:consumption

water:consumptionsosa:platform

rm:contains

“Main Kitchen” 83 L/d

40 L/d“Dishwasher” 16.5 L/d“Mr. Coffee”

h�p://data.deri.ie/rooms#r315

h�p://water.deri.ie/devices#mr-coffeeh�p://water.deri.ie/devices#dishwasher

energy:consumption

50 kWh

Fig. 2.7 Example of data linkage using URIs and RDF vocabularies in a smart environment
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The flexibility to represent data and to support different relationships is a key
benefit of linked data to support the sharing of data among systems. Linked data’s
use of vocabularies and ontologies is an important tool to establish shared meanings
among different systems incrementally. This capability is critical to cross knowledge
boundaries among systems with the use of knowledge graphs and entity-centric data
integration to support the translation of knowledge.

2.6 Value: Continuous and Shared

The next part of the KVE Framework tackles value boundaries by identifying the
common interests (data value chains) needed to support a value transformation for
systems to share knowledge.We explore value disciplines and data network effects and
how they can create new opportunities for the participants within the data ecosystem.
These value opportunities can be the source of common interest to motivate the social,
cultural, or business transformation needed to support knowledge exchange.

2.6.1 Value Disciplines

A value proposition is shaped by an underlying value discipline which describes
different ways an organisation or system can differentiate itself from competitors. A
strong value proposition can set the strategic focus that enables organisations or
systems to set its vision and objectives. It can then tailor its value disciplines to
match the need exactly. Treacy and Fred Wiersema [46] created a model to describe
three generic value disciplines: (1) Operational Excellence, (2) Product Leadership,
and (3) Customer Intimacy. The use of value disciplines has been explored in the
broader areas of digital value [47], but also more specific areas such as open data
[48]. Within the context of this work, we explore the use of data value disciplines to
understand the value opportunities that are possible from data within a data ecosys-
tem. The value of data within a smart environment can be considered in the context
of the dynamics of knowledge-based organisations [23], where the processes of
decision-making and organisational action are dependent on the process of sense-
making and knowledge creation. Based on existing work [46–48], we identify the
following three value disciplines for the participants (e.g. user, system, or organisa-
tion) of an intelligent systems data ecosystem:

• Utility: Tailors the value proposition to directly support the information needs of
the participants. The objectives and information requirements of the participants
should be defined to determine the usefulness of the data shared within the
ecosystem. The utility can be shared between or can be unique to each participant.

• Performance: Tailors the value proposition to match to the needs of the partici-
pants specifically for improving processes for operational excellence. This can
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result in greater efficiencies with associated cost avoidance. Participants with this
orientation aim to share data which support their primary performance objectives.

• User Intimacy: Tailors the value proposition to directly support the needs of users
within the environment by providing information to enhance personalised user
experiences and services.

2.6.2 Data Network Effects

A network effect is a positive effect described in economics and business where an
additional user of a product or service has a positive effect on the value of that
product/service to others. When a network effect is present, the value of the product
or service increases according to the number of others using it. Robert Metcalfe
popularised network effects (also called network externality or demand-side econ-
omies of scale) within the context of Ethernet as Metcalfe’s law [49]. Within the area
of data, network effects are starting to emerge, although in different forms, at both
the data ecosystem and data product/service levels.

At the ecosystem level, the network effect can be seen as more systems/users join
and contribute data to the data ecosystem; the overall data ecosystem becomes more
valuable for the different value disciplines, see Fig. 2.8. Initiatives such as smart cities
are showing howdifferent sectors (e.g. energy and transport) can share data tomaximise
the potential for optimisation and value return. Data network effects occur at the data
product/service level, where the data product/service becomes smarter (e.g. predictions,
recommendations, and personalisation) as it gets more data from other participants.
Leveraging data network effects requires a learning process within the data produce/
service that uses advanced analytics to extract insights from the collected data. The data
network effect from cross-fertilisation of stakeholder and datasets from different sectors
is a crucial element for advancing the big data economy in Europe [15] and is critical to
support the value proposition of data ecosystems to their participants.

PerformanceUtility

Single
System

Ecosystem
(Data Network 

Effects)

Source 
of Data

Value Discipline

Holistic and 
long-tail insight 
across systems

Global optimisations
Holistic personalised
user journey across 

systems

System-level insight Local optimisations Personalised
user journey

User Intimacy

Fig. 2.8 Value transformation opportunities across value disciplines at the single system and
ecosystem levels
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2.7 Ecosystem: Governance and Collaboration

In order to understand some of the “political” and organisational issues that occur at
ecosystem boundaries among systems, this section examines the work on business
ecosystems to see how governance and collaboration can support knowledge flows.
The section discusses data ecosystem coordination and the range of possible eco-
system design options.

2.7.1 From Ecology and Business to Data

The term Ecosystem was coined by Tansley in 1935 [50] to identify a basic ecological
unit comprising of both the environment and the organisms that use it. Within the
context of business, James F Moore [51–53] exploited the biological metaphor and
used the term to describe the business environment. Moore defined a business ecosys-
tem as an “economic community supported by a foundation of interacting organisations
and individuals” [53]. A strategy involving a company attempting to succeed alone has
proven to be limited regarding its capacity to create valuable products or services. It is
crucial that businesses collaborate among themselves to survive within a business
ecosystem [52, 54]. Innovation Ecosystems allow companies to create new value that
no company could achieve by itself [55]; often, the ecosystem is centred around the
technology platform or technology leadership of a focal firm.

The business ecosystem perspective is a more holistic way to look at the benefits
of collaboration among companies, or in the case of a smart environment, the
benefits of collaboration among systems. The ecosystem metaphor is, again, a useful
metaphor to describe the data within and surrounding a smart environment. A data
ecosystem is a socio-technical system enabling value to be extracted from data value
chains supported by interacting organisations and individuals [15]. Data ecosystems
can form in different ways around organisations, communities, technology plat-
forms, or within or across sectors. Data ecosystems exist within many industrial
sectors where vast amounts of data move among actors within complex information
supply chains. Sectors with established or emerging data ecosystems include
healthcare, finance [56], logistics, media, manufacturing, and pharmaceuticals.

In natural ecosystems, smart organisms control their energy. In business ecosys-
tems, a smart company manages information and its flows [57]. In data ecosystems, a
smart company extracts the maximum value from the available data. The ecosystem
can create the conditions for a marketplace competition among participants or enable
collaboration among diverse, interconnected participants that depend on each other for
their mutual benefit. Data ecosystems are useful for creating common interests among
systems that are needed for the value transformation required to share data. The benefits
of sharing and linking data across domains and industry sectors are becoming apparent
with the potential for new value opportunities on the Web of Data.

34 2 Enabling Knowledge Flows in an Intelligent Systems Data Ecosystem



2.7.2 The Web of Data: A Global Data Ecosystem

The web is moving from a medium for sharing documents to a medium that can also
be used to share data. Fuelled by the Open Data initiative, the emerging “Web of
Data” means easier access to data for users. Typically, open data is non-textual
material such as maps, genomes, chemical compounds, mathematical, and scientific
formulae. Open data can also include generalised business news, product informa-
tion, and financial data [56] available from an assortment of sources. Demands for
higher levels of transparency have resulted in Open Government initiatives that have
made available large numbers of statistical, financial, and economic datasets for
public consumption. A number of large-scale knowledge bases have been made
available from both private and not-for-profit initiatives, including Google Knowl-
edge Graph, DBpedia, and YAGO, to name a few. The LinkedIn Economic Graph
describes all the data on LinkedIn like companies, members, and jobs, to provide a
digital representation of the global economic activity with a focus on employment
opportunities. The Linked Open Data Cloud represents a large number of interlinked
RDF datasets within the broader ecosystem that is being actively used by industry,
government, and scientific communities [58]. The linked data cloud has been
growing in the past years and provides a foundation upon which applications can
be built. The Facebook Open Graph describes a rich object in a social graph,
simplifying the process of sharing social data on the web. The Schema.org imitative
was founded by Google, Microsoft, Yahoo, and Yandex to create shared vocabular-
ies through an open community process for publishing data. Schema.org vocabular-
ies can be used with many different encodings, including RDFa, Microdata, and
JSON-LD. These vocabularies cover entities, relations among entities and actions,
and can easily be extended through a well-documented extension model. Each of
these initiatives is part of a broader data ecosystem in the emerging Web of Data.

2.7.3 Ecosystem Coordination

Within the KVE Framework, the role of the data ecosystem and data value chains is
to support the value transformations necessary (social, cultural, value) to create new
common interests and value opportunities among intelligent systems. To achieve
this, it is necessary to understand and support the social, political, and organisational
changes needed for coordinating ecosystems. To understand the dynamics of an
intelligent systems data ecosystem we can look into the literature on System of
Systems [28] and Business Ecosystems [59] to enable us to understand the data
ecosystems that can exist [1]. In Fig. 2.9, we can see the different types of data
ecosystems that can form around intelligent systems within a smart environment.
Two critical criteria that influence the design of a data ecosystem and the relation-
ships among participants are:
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• Control of Key Data Resources: Who controls the essential data resources in the
data ecosystem? Does a single “Keystone” [57] actor control the key data
resources that all others depend on? Alternatively, is control of the critical data
resources spread across multiple actors in the data ecosystem?

• Participant Interdependence: The degree to which different participants in the
data ecosystem must interact and exchange data for performing their activities.
Reciprocal interdependence requires high levels of coordination among the
participants, while pooled interdependence enables loose coupling among
participants.

Drawing inspiration from the SoS classification by Maier [28] (including Virtual,
Collaborative, Acknowledged, and Directed) and the business ecosystem topology
by Koenig, we can (see Fig. 2.9) consider the different types of data ecosystems [1]
that may exist within a smart environment and the nature of the relationships among
the participants.

• Directed Data Ecosystems: Centrally controlled to fulfil a specific purpose.
Typically found within an organisation setting or following a keystone model.
Participants within a directed data ecosystem maintain an ability to operate
independently, but their normal operational mode is subordinated to the centrally
managed purpose of the data ecosystem.

• Acknowledged Data Ecosystems: Have defined objectives and pooled dedicated
resources. The constituent systems retain their independent ownership and objec-
tives. Changes in the data ecosystem are based on collaboration among the
distributed participants.

• Collaborative Data Ecosystems: Participants interact voluntarily to fulfil an
agreed-upon central purpose. The primary players collectively decide the means
of enforcing and maintaining standards among the federations of participants.

Directed 
Data Ecosystem
(Organisational)

PooledReciprocal

Decentralised

Centralised

Control of Key 
Data Resources

Type of Interdependence

Collaborative 
Data Ecosystem

(Federation) 

Virtual 
Data Ecosystem

(Coalition)

Acknowledged 
Data Ecosystem

(Distributed)

Fig. 2.9 Topology of data ecosystems [1]. Adapted from [59, 28]
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• Virtual Data Ecosystems: Have no central management authority and no centrally
agreed-upon purpose. Bottom-up coalitions of participants emerge from a virtual
data ecosystem to pool decentralised resources to achieve specific goals.

Within a well-functioning data ecosystem, the participants are efficiently and
effectively sharing across knowledge, value, and ecosystem boundaries. The nature
of the ecosystem and the systems and their dynamics will affect the design and
operation of the data ecosystem. To enable an intelligent systems data ecosystem, it
is clear we will need to rethink some of the fundamentals of current intelligent
system design approaches regarding governance, economics, and technical
approaches.

2.7.4 Data Ecosystem Design

Several ecosystem design characteristics are detailed in Table 2.4. It is worth
considering that multiple data ecosystems could exist at one time, and the operation
of a data ecosystem can change depending on the circumstances. Concerning the
design of intelligent systems, these design characteristics can affect the style of
infrastructure that is needed to support data sharing within the data ecosystem, from
data provided by a single dominant actor on their proprietary infrastructure, to a
community, pooling their data in a managed open source data platform.

Table 2.4 Data ecosystem design space

Design characteristics Solution design space

Governance Control Centralised Decentralised

Interdependence Reciprocal Pooled

Structure Authoritarian Democratic

Regulation None Enforceable

Independence Controlled Autonomous

Environment Stable Dynamic

Economic Model Pay Free/sharing

Connectivity Keystone Value network

Data market Single-sided Multi-sided

Collaboration Competition Cooperation

Technical Infrastructure Proprietary Open

Data availability Closed Open

Privacy Monitoring Privacy-protecting

Data formats Homogeneous Heterogeneous

Data services Exact Approximate
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2.8 Iterative Boundary Crossing Process: Pay-As-You-Go

The Iterative Boundary Crossing Processes follow a socio-technical approach to
accommodate iterations at crossing system boundaries. A key capability is the need
to support a flexible, iterative approach that facilitates incremental agreements and
investments among stakeholders. Pay-as-you-go data management approaches (such
as dataspaces) are needed for technical concerns, while data ecosystem supports are
needed to facilitate incremental transformations of political and organisational
concerns.

2.8.1 Dataspace Incremental Data Management

A dataspace is an emerging approach to data management that is distinct from
current approaches. The dataspace approach recognises that in large-scale integra-
tion scenarios, involving thousands of data sources, it is difficult and expensive to
obtain an upfront unifying schema across all sources [2]. Within the dataspace
paradigm, data management pushes the boundaries of traditional databases in two
main dimensions [2]: (1) Administrative Proximity, which describes how data
sources within a space of interest are close or far in terms of control; and (2) Semantic
Integration, which refers to the degree to which the data schemas within the data
management system are matched up. Dataspaces shift the emphasis to providing
support for the co-existence of heterogeneous data that does not require a significant
upfront investment into a unifying schema. Data is integrated on an “as-needed”
basis with the labour-intensive aspects of data integration postponed until they are
required. Dataspaces reduce the initial effort required to set up data integration by
relying on automatic matching and mapping generation techniques. This results in a
loosely integrated set of data sources. When tighter semantic integration is required,
it can be achieved in an incremental “pay-as-you-go” fashion by detailed mappings
among the required data sources. Dataspaces are described in further detail in
Chap. 3. We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as
a data platform for intelligent systems within smart environments. The RLD com-
bines the pay-as-you-go paradigm of dataspaces with linked data and real-time
stream and event processing capabilities to support a large-scale distributed hetero-
geneous collection of streams, events, and data sources [4].

The KVE Framework has outlined a high-level approach to support the exchange
of knowledge among intelligent systems within a data ecosystem. In order to realise
the sharing of knowledge between interconnected intelligent systems, there is a need
for a data platform.
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2.9 Data Platforms for Intelligent Systems Within
IoT-Based Smart Environment

Platform approaches have proved successful in many areas of technology [60], from
supporting transactions among buyers and sellers in marketplaces (e.g. Amazon),
innovation platforms which provide a foundation on which to develop complemen-
tary products or services (e.g. Windows), to integrated platforms which are a
combined transaction and innovation platform (e.g. Android and the Play Store).

The idea of large-scale “data” platforms have been touted as a possible next step
for the development of smart environments [1] and data ecosystems. An ecosystem
data platform would have to support continuous, coordinated data flows, seamlessly
moving data among intelligent systems. The design of infrastructure to support data
sharing and reuse is still an active area of research. In order to understand the general
requirements necessary to share data, we examine the “FAIR Data” principles [61]
that have been defined to support data reuse within the scientific community. Then,
to understand the specific data sharing requirements for an intelligent systems data
ecosystem, we examine the data management needs of five different IoT-based smart
environments.

2.9.1 FAIR Data Principles

In order to improve the data infrastructure supporting the reuse of research data, a
group of stakeholders from academia, industry, funding agencies, and research
publishers proposed a set of principles known as the FAIR Data Principles
[61]. The FAIR principles are Findability, Accessibility, Interoperability, and Reus-
ability with a detailed breakdown of the principles provided in Table 2.5. The
objective of the principles is to act as a set of guidelines to data producers and
publishers to maximise the reusability of research data. The FAIR principles are
designed to enable proper data management to support knowledge discovery and
innovation, and the subsequent data and knowledge integration and reuse. The
principles define the goals of good data management and stewardship practices to
improve its reusability. The principles can influence the design of algorithms, tools,
and workflows for research data. The broad application of the principles can lead to a
data research ecosystem that supports extracting maximum benefit from research
investments by ensuring transparency, reproducibility, and reusability. Within the
context of this work, we use the principles as a high-level guide for the design of a
data platform to support knowledge sharing between intelligent systems within a
smart environment.
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2.9.2 Requirements Analysis

Over the past years, we have been involved in a number of projects [4, 18, 62, 63]
concerned with next-generation data platforms for intelligent systems within smart
environments. The smart environments focused on intelligent energy and water
management with varying sizes of data ecosystems. The five pilots are:

• Smart Airport: Linate airport in Milan represents large-scale commercial energy
and water consumer for use from washing activities, toilets, restaurants, and
irrigation, flight operations, to safety-critical infrastructure for emergency
response. Linate targets a variety of users, from the company’s employees
(including executives, operational managers, and technical staff), to passengers.
The variety of sensors used in the airport requires the management of heteroge-
neous events and their availability to applications in near-real-time. Significant
contextual data from the airport’s operational legacy systems is needed to process
the events for decision-making.

• Smart Office: The Insight Building was built in the 1990s without a building
management system and has been retrofitted with energy sensors. As typically in
an organisation, Insight has several information systems that run its operations,
including finance and enterprise resource planning, budgeting, and office IT
assets. These enterprise systems can help in identifying energy wastage and
promoting conservation actions within the office.

Table 2.5 FAIR guiding principles for scientific data management and stewardship [61]

To be findable

F1. (Meta)data is assigned a globally unique and persistent identifier

F2. Data is described with rich metadata (defined by R1 below)

F3. Metadata clearly and explicitly includes the identifier of the data it describes

F4. (Meta)data is registered or indexed in a searchable resource

To be accessible

A1. (Meta)data is retrievable by their identifier using a standardised communications protocol

A1.1 The protocol is open, free, and universally implementable

A1.2 The protocol allows for an authentication and authorisation procedure, where necessary

A2. Metadata is accessible, even when the data is no longer available

To be interoperable

I1. (Meta)data uses a formal, accessible, shared, and broadly applicable language for knowledge
representation

I2. (Meta)data uses vocabularies that follow FAIR principles

I3. (Meta)data includes qualified references to other (meta)data

To be reusable

R1. (Meta)data is richly described with a plurality of accurate and relevant attributes

R1.1. (Meta)data is released with a clear and accessible data usage license

R1.2. (Meta)data is associated with detailed provenance

R1.3. (Meta)data meets domain-relevant community standards
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• Smart Homes: The Municipality of Thermi in Greece provides a residential smart
water pilot with a representative sample of ten domestic residences. The target
users are the residents (both adults and children), municipality management, a
developer community for smart home “Apps,” research scientists, and the local
water utility. Data from IoT devices in each home needs to be managed in a near-
real-timemanner to provide feedback to users on their water consumption. Secure
sharing of data with both the research and developer community is needed.

• Mixed Use: The Engineering Building at NUI Galway in Ireland is a state-of-the-
art smart building with significant numbers of sensors and actuators. Target users
include academic staff, managers, technicians, researchers, and students. This
smart environment is designed to be a “living laboratory” where the building
itself is an interactive teaching tool where students can utilise data from the
environment in their projects and research works. Making data easily reusable
by occupants in the environment is an essential requirement.

• Smart School: Coláiste na Coiribe is a newly constructed Irish language second-
ary school. The school accommodates students aged between 12 and 18, together
with teaching and operational staff. The school has been fitted with a commercial
state-of-the-art building management system to manage its energy and water
consumption. A key challenge is to customise the communication of energy
and water data for the diverse range of school stakeholders.

For each of these five smart environments, a system analysis was performed to
identify the functional and non-functional information processing and sharing
requirements. These requirements complement the FAIR principles by including
concrete requirements for data processing, querying, and data ecosystem support,
including the need for iterative, incremental processes. The following common data
platform requirements were identified across the pilots [4]:

• Pay-As-You-Go Data Integration, Accessibility, and Sharing: Each smart envi-
ronment contains potentially thousands of data sources from sensors and things to
legacy information systems. Harnessing this data is critical to enabling the smart
environment. Challenges include the integration of multiple formats and seman-
tics, discoverability and access, and data re-use and sharing in a low-cost and
incremental manner [33, 64–67]. This high-level requirement can be broken
down into a set of technical requirements:

– Standard data syntax, semantics, and linkage: Facilitate integration and shar-
ing, ideally with open standards and non-proprietary approaches.

– Single-point data discoverability and accessibility:Allow the organisation and
access to datasets and metadata through a single location.

– Incremental data management: Enable a low barrier to entry and a pay-as-
you-go paradigm to minimise costs.

• Secure Access Control: Support data access rights to preserve the security of data
and privacy of users in the smart environment. Access control is needed at both
the level of the data source and at the level of the data item (i.e. entity-value).
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• Real-time Data Processing and Historical Querying: Each environment requires
support for the real-time processing of data generated from sensors and things
within the environments. This requirement can be broken down into two technical
requirements:

– Real-time data processing: Including ingestion, aggregation, and pattern
detection within event streams originating from sensors and things in the
smart environment.

– Unified querying of real-time data and historical data: Provide applications
and end-users with a holistic queryable state of the smart environment at a
latency suitable for user interaction.

• Entity-Centric Data Views: Intelligent applications and end-users need to be able
to explore and query the data from an entity perspective, such as energy or water
usage in a specific building zone. The raw data generated by things (e.g. a smart
tap) within the environments often only report on the observed values of a
property (e.g. water consumption). Thus, the raw sensor/thing data may require
additional contextual information, such as the location of the sensor [64–66]. This
high-level requirement can be broken down into two technical requirements:

– Entity management: The storage, linkage, curation, and retrieval of entity data,
such as users, zones, and locations

– Event enrichment: Enhancement of sensor/things streams with contextual data
(e.g. entities) to make the stream data more encapsulated and useful in
downstream processing

The level of importance of these common data requirements varies within each
pilot as detailed in Table 2.6. Many other requirements were identified within the
smart environments, including interoperability of devices and network protocols,
user profiling, the resilience of remote sensors, and advanced privacy-preserving
analytics.

Table 2.6 Level of importance of common data platform requirements [4]

Requirements
Smart
Airport

Smart
Office

Smart
Home

Mixed
Use

Smart
School

Standard data syntax, semantics, and
linkage

High Medium Low Medium Medium

Single-point data discoverability and
accessibility

High Medium High High Medium

Incremental data management High High Low High Medium

Secure access control High High High High Medium

Real-time data processing High High Medium High High

Unified querying of real-time data and
historical data

High High High High High

Entity management High High Medium High Medium

Event enrichment High High High High Medium
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2.10 Summary

The digital transformation is creating a data ecosystem with data on every aspect of
our world spread across a range of information systems. Data ecosystems present
new challenges to the design of intelligent systems and System of Systems that
demands a reconsideration of how we deal with the needs of large-scale, data-rich
smart environments. In this chapter, we have explored the barriers to the sharing of
knowledge among intelligent systems within a smart environment and how they can
be overcome with the capabilities within the Knowledge Value Ecosystem (KVE)
Framework. The implementation of these capabilities was explored using linked
data, knowledge graphs, and data value chains, which provide solid foundations for
tackling system boundaries of knowledge exchange among systems. Finally, the
chapter examined the need for data platforms to support the sharing of data between
intelligent systems within a data ecosystem and identified common data platform
requirements.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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