
Chapter 11
Quality of Service-Aware Complex Event
Service Composition in Real-time Linked
Dataspaces

Feng Gao and Edward Curry

Keywords Complex event processing · Quality-of-service · Modelling · Service
composition · Dataspaces · Internet of Things

11.1 Introduction

The proliferation of sensor devices and services along with the advances in event
processing brings many new opportunities as well as challenges for intelligent
systems. It is now possible to provide, analyse, and react upon real-time, complex
events in smart environments. When existing event services do not provide such
complex events directly, an event service composition may be required. However, it
is difficult to determine which event service candidates (or service compositions)
best suit users’ and applications’ quality-of-service requirements. A sub-optimal
service composition may lead to inaccurate event detection and lack of system
robustness. In this chapter, we address these issues by first providing a Quality-of-
Service (QoS) aggregation schema for complex event service compositions, and then
developing a genetic algorithm to create near-optimal event service compositions
efficiently. The approach is evaluated with both real sensor data collected via
Internet of Things services and synthesised datasets.

The chapter is organised as follows: Sect. 11.2 introduces the technical aspects of
complex event processing within dataspaces, including the design of the service,
pay-as-you-go service levels, and its life cycle. Section 11.3 presents the Quality-of-
Service (QoS) model we use and the QoS aggregation rules we define. Section 11.4
presents the heuristic that enables QoS-aware event service compositions based on
Genetic Algorithms. Section 11.5 evaluates the proposed approach. Section 11.6
discusses related works in QoS-aware service planning, and Sect. 11.7 concludes
and details future work.

© The Author(s) 2020
E. Curry, Real-time Linked Dataspaces,
https://doi.org/10.1007/978-3-030-29665-0_11

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29665-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-29665-0_11

11.2 Complex Event Processing in Real-time Linked
Dataspaces

Real-time data sources are increasingly forming a significant portion of the data
generated in the world. This is in part due to increased adoption of the Internet of
Things (IoT) and the use of sensors for improved data collection and monitoring of
smart environments, which enhance different aspects of our daily activities in smart
buildings, smart energy, smart cities, and others [1]. To support the interconnection
of intelligent systems in the data ecosystem that surrounds a smart environment,
there is a need to enable the sharing of data among intelligent systems.

11.2.1 Real-time Linked Dataspaces

A data platform can provide a clear framework to support the sharing of data among
a group of intelligent systems within a smart environment [1] (see Chap. 2). In this
book, we advocate the use of the dataspace paradigm within the design of data
platforms to enable data ecosystems for intelligent systems.

A dataspace is an emerging approach to data management which recognises that
in large-scale integration scenarios, involving thousands of data sources, it is
difficult and expensive to obtain an upfront unifying schema across all sources
[2]. Within dataspaces, datasets co-exist but are not necessarily fully integrated or
homogeneous in their schematics and semantics. Instead, data is integrated on an
as-needed basis with the labour-intensive aspects of data integration postponed until
they are required. Dataspaces reduce the initial effort required to set up data
integration by relying on automatic matching and mapping generation techniques.
This results in a loosely integrated set of data sources. When tighter semantic
integration is required, it can be achieved in an incremental pay-as-you-go fashion
by detailed mappings among the required data sources.

We have created the Real-time Linked Dataspace (RLD) (see Chap. 4) as a data
platform for intelligent systems within smart environments. The RLD combines the
pay-as-you-go paradigm of dataspaces with linked data, knowledge graphs, and real-
time stream and event processing capabilities to support a large-scale distributed
heterogeneous collection of streams, events, and data sources [4]. In this chapter, we
focus on the complex event processing support service of the RLD.

11.2.2 Complex Event Processing

Complex Event Processing (CEP) detects composed/complex events from real-time
data streams according to predefined Event Patterns. It is a key enabling technology
for smart cities [271], due to the inherent dynamicity of data and applications.

170 11 Quality of Service-ware Complex Event Service Composition. . .

https://doi.org/10.1007/978-3-030-29665-0_2
https://doi.org/10.1007/978-3-030-29665-0_4

However, within a dataspace [19], there is a multitude of heterogeneous event
sources to be discovered and integrated [272]. This poses a classic source selection
problem where it is crucial to determine which event services should be used and
how to compose them to match non-functional requirements defined by users or
applications [273]. The problem of source selection for dataspaces is also tackled in
Chap. 15.

Consider an intelligent travel-planning system using traffic sensors deployed in a
city, for example, traffic sensors in the city of Aarhus, Denmark, as shown in
Fig. 11.1. The events produced by the sensors are all made available in a dataspace
for smart city data. A user (say “Alice”) might need to plan her trip based on the
current traffic condition and would like to keep monitoring the traffic during her
travel. Her request may form an event request with an event pattern shown as an
Event Syntax Tree (EST) in Fig. 11.2. Another user (say “Bob”) might need to deploy
a long-term event request monitoring the traffic condition in his neighbourhood, and
thus form a similar event request. In both cases, multiple sensors are involved, their
observations are aggregated to produce complex events with coarse-grained infor-
mation, and the users may have non-functional requirements for those events, for
example, having an accuracy above some threshold or a latency below a specific
value. Moreover, one complex event might be useful for different event requests,
that is, complex events are reusable. Thus, addressing the users’ functional and
non-functional requirements efficiently and effectively in this context needs to

Fig. 11.1 Traffic sensors in Aarhus City

11.2 Complex Event Processing in Real-time Linked Dataspaces 171

https://doi.org/10.1007/978-3-030-29665-0_15

consider the combinations of different event sources in the dataspace as well as
reusing events on different abstraction levels.

11.2.3 CEP Service Design

The design of the CEP Service within the RLD [4] is based on our existing work in
this area, including [123, 274–276], which is brought together in this chapter. In
[275], CEP applications are provided as reusable services called Complex Event
Services (CESs), and the reusability of those event services is determined by
examining event patterns. Event services can thus collaborate in a distributed,
cross-platform environment, creating an Event Service Network as shown in
Fig. 11.3.

Qa outputs: sum(estimated_time_on_segment); (loc.lat, loc.long);
Qa

GFB ECLoc

AND

Fig. 11.2 Traffic planning event request for Alice [274]

Primitive
Event

Service 2

Primitive
Event

Service 1

Complex Event Service 1

SES Middleware

Complex
Event

Service 2

Complex
Event

Service 3

Event
Engine

Event
pattern

Interacts with
(Req./ Resp.)

Event Stream 2

Event Stream 1

Service Repository
Interacts with

(C.R.U.D)

Service Consumers

Event Service Provider

annotated at Creates

Owns

Things / Sensors

Real-time Linked Dataspace

Fig. 11.3 Overview of an event service network [276]

172 11 Quality of Service-ware Complex Event Service Composition. . .

Within the RLD the complex event service composition problem is supported by
the use of a specialised service to aid in event service composition.

11.2.4 Pay-As-You-Go Service Levels

Dataspace support services follow a tiered approach to data management that
reduces the initial cost and barriers to joining the dataspace. When tighter integration
into the dataspace is required, it can be achieved incrementally by following the
service tiers defined. The incremental nature of the support services is a core enabler
of the pay-as-you-go paradigm in dataspaces. The functionality of the complex event
processing service follows the 5 Star pay-as-you-go model (detailed in Chap. 4) of
the RLD. The complex event processing service has the following tiered-levels of
support:

1 Star No service: No complex event processing is supported.
2 Stars Single-service: Event patterns are identified within a single stream.
3 Stars Multi-service: Event patterns can be composed of multiple event services.
4 Stars QoS-aware: Quality-of-Service (QoS) aware service composition of event

services.
5 Stars Context-aware: Context-aware event processing with the use of knowl-

edge from the dataspace.

In this chapter, we detail the implementation of the CES for the RLD with the aim
to enable a QoS-aware event service composition and optimisation.

11.2.5 Event Service Life Cycle

In order to understand the problem of realising event service composition and
optimisation, we analyse the different activities related to event services from their
creation to termination. We identify the following five key activities in the life cycle
of event services, as depicted in Fig. 11.4:

0. Service Description: The static description of the service metadata is created and
stored in the service repository. Describing services and storing the descriptions is
a preliminary step for any service requests to be realised by the described
services.

1. Request Definition: An event service consumer identifies the requirements on the
interested complex events (as well as the services that deliver the events) and
specifies those requirements in an event service request.

2. Planning: An agent receives a consumer’s request and matches it against service
descriptions in the service repository. If direct matches are found, the matching
service descriptions are retrieved, and the matching process ends. Otherwise,

11.2 Complex Event Processing in Real-time Linked Dataspaces 173

https://doi.org/10.1007/978-3-030-29665-0_4

existing event services are composed to fulfil the requirements, and composition
plans are derived.

3. Deployment and Execution: An agent establishes connections between the event
service consumer and providers by subscribing to event services (for the con-
sumer) based on a composition plan, then it starts the event detection
(if necessary) and messaging process.

4. Adaptation: An agent monitors the status of the service execution to find irregular
states. When irregular states are detected, the planning activity is invoked to
create new composition plans and/or service subscriptions. If the irregular states
occur too often, it may suggest that the service request needs to be re-designed.

We consider efficient and effective management of the event service life cycle
having the following three basic requirements:

• User-Centric Event Request Definition: The event requests should reflect each
individual user’s requirements or constraints on both Functional Properties
(FP) and Non-Functional Properties (NFP) of complex events. Users should be
able to specify different events they are interested in by specifying FP, for
example, event type and pattern. Additional to FP, it is very likely that different
users may have different sets of preferences for the NFPs: some may ask for
accurate results while others may ask for more timely notifications. The
implemented event services should be capable of tackling these requirements
and constraints.

• Automatic Event Service Planning: The service planning activity should be able
to automatically discover and compose CESs according to users’ functional and
non-functional requirements. Planning based on the functional aspects requires
comparing the semantic equivalence of event patterns, while planning based on
the non-functional aspects requires calculating and comparing the composition
plans with regard to the QoS parameters. To fully benefit from automatic imple-
mentation and enable an on-demand event service implementation, the automatic
planning should be efficient to be carried out at run-time.

0: Service
Description

2: Planning

4: Adaptation

3: Deployment
& Execution

1: Request
Definition

Fig. 11.4 Life cycle of an event service [276]

174 11 Quality of Service-ware Complex Event Service Composition. . .

• Automatic Event Service Implementation: The deployment of the composition
plans should also be automatic to facilitate automatic execution. The adaptation
activity should have the ability to automatically detect service failures or con-
straint violations according to users’ requirements at run-time and make appro-
priate adjustments, including re-compose and re-deploy composition plans, to
adapt to changes. The adaptation process should be efficient to minimise infor-
mation loss and maximise the performance of the event services over time.

Within the RLD, the complex event service composition problem is supported by
the use of a specialised service to aid in event service composition. Two issues
should be considered in the design of the CES: QoS aggregation and composition
efficiency. The QoS aggregation for a complex event service relies on how its
member event services are correlated and composed. The aggregation rules are
inherently different from conventional web services. Efficiency becomes an issue
when the complex event consists of many primitive events, and each primitive event
detection task can be achieved by multiple event services. We address both issues by
(1) creating QoS aggregation rules and utility functions to estimate and assess QoS
for event service compositions, and (2) enabling efficient event service compositions
and optimisation regarding QoS constraints and preferences based on Genetic
Algorithms.

11.3 QoS Model and Aggregation Schema

To have a comprehensive approach for QoS-aware event service composition and
optimisation within a dataspace, we need an objective function. In this section, we
first discuss the relevant QoS dimensions for event services. Then, we briefly explain
how we aggregate them in an event service composition and how we derive the event
QoS utility as our objective function.

11.3.1 QoS Properties of Event Services

For an event service (or event service composition), its overall QoS can be discussed
on several dimensions. In this work, we consider QoS attributes from [65] that are
relevant for QoS propagation and aggregation, including:

• Latency (L): Describes the delay in time for an event transmitted by the
servicePrice (P): Describes the monetary costs for an event service.

• Energy Consumption (Eng): Describes the energy costs for an event service.
• Network Consumption (Net): Describes the usage of a network of an event

service, measured by messages consumed per unit time.
• Availability (Ava): Describes the possibility (in percentages) of an event service

being accessible.

11.3 QoS Model and Aggregation Schema 175

• Completeness (C): Describes the completeness (in percentages) of events deliv-
ered by an event service.

• Accuracy (Acc): Describes the possibility (in percentages) of getting correct event
messages.

• Security (S): Describes the security levels (higher numerical value indicates
higher security levels).

By the above definition, a quality vector Q ¼ <L, P, Eng, Net, Ava, C, Acc,
S > can be specified to indicate the QoS performance of an event service in eight
dimensions.

11.3.2 QoS Aggregation and Utility Function

The QoS performance of an event service composition is influenced by three factors:
Service Infrastructure, Composition Pattern, and Event Engine. The Service Infra-
structure refers to computational hardware, service Input/Output (I/O) implementa-
tion, and the physical network connection; it determines the inherent I/O
performance of a service. The Composition Pattern refers to the way that the
member event services are correlated, expressed in event patterns. The internal
implementation of the Event Engine also has an impact on the QoS. Table 11.1
summarises how the different QoS parameters of an event service composition are
calculated based on these three factors. In this chapter, we do not elaborate on the
impact of service infrastructure or event engine but focus on the QoS aggregation
over the composition pattern, that is, how different QoS dimensions propagate over

different event service correlations, which is summarised in Table 11.2. We apply

Table 11.1 Overall Quality of Service calculation [274]

Dimensions

QoS symbols

Overall QoS calculation
Service
infrastructure

Composition
pattern

Event
engine

Latency Li Lc Le L ¼ Li + Lc + Le

Price Pi Pc – P ¼ Pi + Pc
Energy Engi Engc Enge Eng ¼ Engi + Engc + Enge
Network
consumption

– Netc – Net ¼ Netc

Availability Avai Avac – Ava ¼ Avai � Avac
Completeness Ci Cc Ce C ¼ Ci � Cc � Ce

Accuracy Acci Accc Acce Acc ¼ Acci �Accc � Acce
Security Si Sc – S ¼ min(Si, Sc)

176 11 Quality of Service-ware Complex Event Service Composition. . .

the rules in Table 11.2 from leaves to the root of a composition pattern to derive the
overall QoS step-by-step. We refer readers to [275] for a more thorough explanation
of Tables 11.1 and 11.2.

11.3.3 Event QoS Utility Function

Given a quality vector of an event service composition Q¼<L, P, Eng, Net, Ava, C,
Acc, S > representing the service QoS capability, we denote q as one of the eight
quality dimensions in the vector, O(q) as the theoretical optimum value (e.g. for
latency the optimum value is 0 s) in the quality dimension of q, C(q) as the user-
defined value specifying the hard constraints (i.e. worst acceptable value, e.g. 1 s for
latency) on the dimension, and 0�W(q)� 1 as the weighting function of the quality
metric, representing users’ preferences (e.g. W(L) ¼ 1 means latency is very
important for the user and W(L) ¼ 0 means latency is irrelevant for the user).
Furthermore, we distinguish between QoS properties with positive or negative
tendency: Q ¼ Q+[Q�, where Q+ ¼ {Ava, C, Acc, S} is the set of properties
with the positive tendency (larger values the better), and Q� ¼ {L, P, Eng, Net} is
the set of properties with the negative tendency (smaller values the better). The QoS

utility U is derived by: ¼ P
qi2Qþ

W qið Þ ∙ qi�C qið Þð Þ
O qið Þ�C qið Þ �P

qj2Q�
W qjð Þ ∙ qj�O qjð Þð Þ

C qjð Þ�O qj:ð Þ

Table 11.2 Quality of Service aggregation rules based on composition patterns [274]

QoS dimensions for event
service ℰ Aggregation rules Applicable event operators

Pc(ℰ)
P

e2E ice

Pc eð Þ And, Or, Sequence,
Repetition

Engc(ℰ)
P

e2E ice

Engc eð Þ And, Or, Sequence,
Repetition

Netc(ℰ)
P

e2E ice

Cc eð Þ ∙ f eð Þ And, Or, Sequence,
Repetition

Avac(ℰ)
Q

e2E ice

Avac eð Þ And, Or, Sequence,
Repetition

Accc(ℰ)
Q

e2E ice

Accc eð Þ And, Or, Sequence,
Repetition

Sc(ℰ) min Sc eð Þ j e 2 E icef g And, Or, Sequence,
Repetition

Lc(ℰ) Lc eð Þ, e is the last event in Edse Sequence, Repetition

avg Lc eð Þ j e 2 Edsef g And, Or

Cc(ℰ) min Cc eð Þ ∙ f eð Þ j e2Edsef g
card Eð Þ ∙ f Eð Þ And, Sequence, Repetition

max Cc eð Þ�f eð Þ j e2Edsef g
card Eð Þ ∙ f Eð Þ Or

11.3 QoS Model and Aggregation Schema 177

According to the above equation, the best event service composition should have
the maximum utility U. A normalised utility with values between [0,1] can be
derived using the function U ¼ UþjQ�jð Þ= jQþj þ jQ�jð Þ.

11.4 Genetic Algorithm for QoS-Aware Event Service
Composition Optimisation

Event service composition is inherently an NP-hard problem; hence, we propose a
Genetic Algorithm (GA) to find a near-optimal solution in a reasonable time.
Typically, a GA-based search iterates the process of population initialisation, select,
crossover, and mutation to maximise the “fitness” (QoS utility introduced in Sect.
11.3.3) of the solutions in each generation.

11.4.1 Population Initialisation

During population initialisation, we generate individual composition plans as Con-
crete Composition Plans (CCPs). CCPs are event patterns with specific event service
correlations and service bindings for the implementation of event service composi-
tions, that is, each CCP is an individual solution for the event service composition
problem. CCPs are generated from Abstract Composition Plans (ACPs), which are
composition plans without service bindings. ACPs come from the event service
composition request; we mark the reusable nodes in the requested event pattern
(as shown in Fig. 11.5) by identifying isomorphic sub-graphs (as in [275]). Then, by
enumerating all combinations of the implementation of the sub-patterns with reus-
able nodes as roots, we can list all ACPs. Finally, we pick a random subset of ACPs
and generate a set of CCPs by binding event services.

AND

GCB C

AND

GCB

OR

blk

blk

B

C

type=road
block
Loc=B,C,G

type=traffic
loc=segment_B

type=traffic
loc=segment_C

Event Service 2

Event Service 1
Event Service 3

Event
Service 4type=congestion

loc=B,C,G

reusable on
SEQ

Query: Qb
reusable

on B

reusable
on C

reusable
on event

Fig. 11.5 Marking the re-usable nodes [274]

178 11 Quality of Service-ware Complex Event Service Composition. . .

11.4.2 Genetic Encodings for Concrete Composition Plans

Individuals (CCPs) in the population need to be genetically encoded to represent
their various characteristics (composition patterns). Conventionally, web service
compositions are encoded with a sequence of service identifiers, the index of each
service identifier correlates it to the specific service task in the composition. We
follow this principle and encode each leaf in a CCP with an event service identifier in
tree traversal order. However, since the event syntax tree is partially ordered, the
position or index of the event service identifier is insufficient to represent its
corresponding task.

Moreover, ancestor operators of the leaf nodes can help with identifying the role
of the leaf nodes in the CCPs. Therefore, global identifiers are assigned to all the
nodes in the CCPs, and a leaf node in a CCP is encoded with a string of node
identifiers as a prefix representing the path of its ancestors and a service identifier
indicating service binding for the leaf, as shown in Fig. 11.6. For example, a gene for
the leaf node “n13” in P2 is encoded as a string with the prefix “n10n11” and a
service ID for the traffic service candidate for road segment B, that is, “es3”; hence
the full encoding of n13 is <n10n11,es3>. The complete set of encodings for every
gene constitutes the chromosome of P2.

11.4.3 Crossover and Mutation Operations

After the population initialisation and encoding, the algorithm iterates the cycle of
select, crossover, and mutation to find optimal solutions. The selection is trivial;
individuals with better finesses (i.e. QoS utility) are more likely to be chosen to
reproduce. In the following, we explain the details on the crossover, mutation, and
elitism operations designed for GA-based event service composition.

AND

GCB

OR

evt

Reusable node
n1

Query: Qb

n2 n3

n4 n5 n6

cng

OR

blk

Picked Leaf
n7

n8 n9

AND

GCB

OR

blk

Cross Point

n10

n11 n12

n13 n14 n15

es3

es1

es6

es5es4

Chromosome for P1

N8:<n7,es1>,
N9:<n7,es2>.

Chromosome for P2

N13:<n10n11,es3>,
N14:<n10n11,es4>,
N15:<n10n11,es5>,

N12:<n10,es6>.

P1CCP SpaceERF Space

P2

AND

GCB

OR

blk

n10

n11
n9

n13 n14 n15

es3

es6

es5es4

Chromosome for C1

N13:<n10n11,es3>,
N14:<n10n11,es4>,
N15:<n10n11,es5>,

N9:<n7,est2>.

Chromosome for C2

N8:<n10,es1>,
N12:<n10,es6>.

C1

C2

cng

OR

blk

n10

n8 n12

es2es1

Cross Over

es2

Fig. 11.6 Example of genetic encodings and crossover [274]

11.4 Genetic Algorithm for QoS-Aware Event Service Composition Optimisation 179

11.4.3.1 Crossover

To ensure that the crossover operation produces valid child generations, parents
must only exchange genes representing the same part of their functionalities, that is,
the same (sub-) event detection task, specified by semantically equivalent event
patterns. An example of crossover is illustrated in Fig. 11.6. Given two genetically
encoded parent CCPs P1 and P2, the event pattern specified in the query Q and the
Event Reusability Hierarchy (ERH),1 the crossover algorithm takes the following
steps to produce the children:

1. Pick a leaf node l1 randomly from P1; create the node type prefix ntp1 from the
genetic encoding of P1, that is, code1, as follows: replace each node ID in the
prefix of code1 with the operator type.

2. For each leaf l1 in P2, create the node type prefix ntp2 from code2 (i.e. encodings
for l2) and compare it with ntp1. If ntp1¼ ntp2 and the event semantics of l1 and l2
are equivalent, that is, they are merged into the same node in the ERH, then mark
l1, l2 as the crossover points n1, n2. If ntp1¼ ntp2 but the pattern of l1 is reusable to
l2 or l2 is reusable to l1, then search back on code1, code2 until the cross points n1,
n2 are found on code1, code2 such that T(n1) ¼: T(n2), that is, the sub-patterns of
P1, P2 with n1, n2 as the root node of the Event Syntax Tree (EST) of the
sub-patterns are semantically equivalent.

3. If ntp1 is an extension of ntp2, for example, ntp1¼ (And;Or;Seq), ntp2¼ (And;Or)
and the pattern of l1 is reusable to l2 in the ERH, then search back on code1 and try
to find n1 such that the sub-pattern with EST T(n1) is equivalent to l2. If such n1 is
found, mark l2 as n2.

4. If ntp2 is an extension of ntp1, do the same as step 3 and try to find the cross point
n2 in code2.

5. Whenever the cross points n1, n2 are marked in the previous steps, stop the
iteration. If n1 or n2 is the root node, return P1, P2 as they were. Otherwise,
swap the sub-trees in P1, P2 whose roots are n1, n2 (and therefore the relevant
genes), resulting in two new CCPs.

11.4.3.2 Mutation and Elitism

We apply a Mutation operation (with a certain possibility called mutation rate) after
each crossover. The mutation operation randomly changes the composition plan for
a leaf node in a CCP. The result of the mutation could be a different service binding
for the leaf or replacing the leaf node with a new composition using the leaf node as
an event request.

1An ERH is a DAG with nodes representing event patterns and edges representing the reusable
relations, we introduce the ERH in our previous work in [123].

180 11 Quality of Service-ware Complex Event Service Composition. . .

We apply an Elitism operation after each selection of a generation and add an
exact copy of the best individual from the previous generation. Elitism allows us to
ensure the best individual will survive over multiple generations.

11.5 Evaluation

In this section, we present the evaluation results of the proposed approaches. We put
our experiments in the context of an intelligent travel-planning system using both
real and synthetic sensor datasets for the city of Aarhus. In this scenario, a user will
select a travel route and make an event request which tries to continuously monitor
the traffic condition using the sensors deployed along the route that are available in
the dataspace. The evaluation has two parts: in the first part, we analyse in detail the
performance of the GA. In the second part, we demonstrate the usefulness of the QoS
aggregation rules. All experiments are carried out on a machine with a 2.53 GHz duo
core CPU and 4 GB 1067 MHz memory. Experiment results are an average of
30 iterations.

11.5.1 Part 1: Performance of the Genetic Algorithm

In this part of the evaluation, we compare the QoS utility derived by Brute-Force
(BF) enumeration and the developed GA. Then, we test the scalability of the
GA. Finally, we analyse the impact of different GA parameters and provide guide-
lines to identify optimal GA parameter settings.

11.5.1.1 Datasets

Open Data Aarhus (ODAA) is a public platform that publishes sensor data and
metadata about the city of Aarhus. Currently, there are 449 pairs of traffic sensors in
ODAA. Each pair is deployed on one street segment for one direction and reports the
traffic conditions on the street segment. These traffic sensors are used in the
experiments to answer requests on travel planning. We also include some other
sensors in our dataset that might be used in traffic monitoring and travel planning, for
example, air pollution sensors and weather sensors. These sensors are not relevant to
requests like Alice’s (i.e. denoted Qa in Fig. 11.2) or Bob’s (denoted Qb), that is,
they are noise to queries like Qa and Qb (but could be used in other travel-related
queries). In total, we use 900 real sensors from ODAA, in which about half of them
are noise. We denote this dataset sensor repository R0.

Each sensor in R0 is annotated with a simulated random quality vector <L,
Acc, C, S>, where L 2 [0 ms, 300 ms], Acc, C 2 [50%, 100%], S 2 [1, 5], and
frequency f 2 [0.2 Hz, 1 Hz]. We do not model price or energy consumption in the

11.5 Evaluation 181

experiments because their aggregation rules are similar to network consumption. For
similar reasons, we also do not model availability. To test the algorithms on a larger
scale, we further increase the size of the sensor repository by adding N functionally
equivalent sensors to each sensor in R0 with a random quality vector, resulting in the
nine different repositories as shown in Table 11.3. In the experiments, we use a loose
constraint to enlarge the search space, and we set all QoS weights to 1.0. The queries
used in the experiments are summarised in Table 11.4.

11.5.1.2 QoS Utility Results and Scalability

In this set of experiments, we first demonstrate the usefulness of the GA by
comparing it to a BF algorithm and a random pick approach. Figure 11.7 shows
the experimental results for composing Qa over R3 to R9 (R1 and R2 are not tested
here because their solution spaces are too small for GA), where Qa has six service
nodes and one operator. A more complicated variant of Qa with eight service nodes
and four operators is also tested, denoted Q0

a.
The best utility obtained by the GA is the highest utility of the individual in the

last generation before the GA stops. In the current implementation, the GA is
stopped when the current population size is less than five or the difference between
the best and the average utility in the generation is less than 0.01, that is, the
evolution has converged. Given the best utility from BF Ubf, best utility from GA
Uga, and the random utility of the dataset Urand}, we calculate the degree of
optimisation as d ¼ (Uga � Urand)/(Ubf � Urand). From the results in Fig. 11.7, we
can see that the average is d ¼ 89.35% for Qa and Q0

a. In some cases, the BF
algorithm fails to complete, for example, Qa over R8 and R9, because of memory
limits (heap size set to 1024 MB). We can see that for smaller repositories, d is more
significant. This is because, under the same GA settings (initial population size:
200, crossover rate: 95%, mutation rate: 3%), the GA has a higher chance of finding
the global optimum during the evolution when the solution space is small, and the

Table 11.3 Simulated sensor repositories [274]

R1 R2 R3 R4 R5 R6 R7 R8 R9

N 1 2 3 4 5 6 7 8 9

Total size 1800 2700 3600 4500 5400 6300 7200 8100 9000

Table 11.4 Queries used in experiments [274]

Query Description Nodes

Qa Alice’s query on estimated travel time on the
route

1 AND, 6 streams

Qb Bob’s query on traffic condition 1 AND, 1 OR, 4 streams

Q0
a A variant of Qa with more nodes 1 AND, 3 random operators,

8 streams

Q0
b A variant of Qb with more nodes 1 AND, 1 OR, 10 streams

182 11 Quality of Service-ware Complex Event Service Composition. . .

elitism method described in Sect. 11.4.3 makes sure that, if found, the global
optimum “survives” till the end of evolution, for example, in the GA results for Qa

over R3 and R4 in Fig. 11.7.
It is evident that a BF approach for QoS optimisation is not scalable because of

the NP-hard nature of the problem. We analyse the scalability of the GA using
different repository sizes, query sizes (total number of event operator nodes and
event service nodes in the query), as well as different number of CESs in the Event
Reusability Hierarchy (ERH).

From the results in Fig. 11.8a, we can see that the composition time of Qa grows
linearly for GA when the size of the repository increases. To test the GA perfor-
mance with different query sizes using different operators, we use the EST of Qb as a
base and replace its leaf nodes with randomly created sub-trees (invalid ESTs
excluded). Then we test the GA convergence time of these queries over R5. Results
from Fig. 11.8b indicate that the GA execution time increases linearly regarding the
query size.

In order to test the scalability over a different number of CESs in the ERH (called
ERH size), we deploy 10–100 random Complex Event Services (CESs) to R5,
resulting in ten new repositories. We test the GA on a query created in the previous
step (denoted Q0

b) with the size of 12 nodes (two operators, ten sensor services) and
record the execution time in Fig. 11.8c. To ensure each CES could be used in the
composition plan, all CESs added are sub-patterns of Q0

b. From the results, we can
see that although the increment of the average execution time is generally linear, in
some rare test instances there are “spikes”, such as the maximum execution time for
ERHs of size 40 and 80. After analysing the results of those cases, we found that
most (over 90%) of the time is spent on population initialisation, and the complexity
of the ERH causes this, that is, the number of edges considered during ACP creation.

Fig. 11.7 QoS utilities of BF, GA, and random pick [274]

11.5 Evaluation 183

11.5.1.3 Fine-Tuning the Parameters

In the experiments above, a fixed set of settings is used as the GA parameters,
including crossover rate, mutation rate, and population size. To find good settings of
the GA in our given problem domain, we fine-tune the mutation rate, population
size, and crossover rate based on the default setting used above. We change one
parameter value at a time while keeping other parameters unchanged.

In order to determine the effect of the parameter tuning, we define a Cost-
Effectiveness score (i.e. CE-score) as follows: given the random pick utility of a
dataset Urand, we have the final utility derived by GA Uga and the number of
milliseconds taken for the GA to converge tga, CE-score ¼ (Uga � Urand) � 105/tga.
We test two queries Qa, Q

0
b over two new repositories R0

5, R
0
9, which are R5 and R9

2,500

min

a

avg max min avg max

min avg max

1,500

T
im

e
(m

s)

Repo. Size

500

1,000

4,000

Ep. Size
6 8 10 12 14 16 18 205,000 6,000 7,000 8,000 9,000

2,000

5

b

c

3

T
im

e
(s

)

1

2

4

ERH Size
20 40 60 80 100

10

T
im

e
(s

)

0

5

15

Fig. 11.8 (a) GA scalability over repository size, (b) GA scalability over EP size, (c) GA
scalability over ERH size [274]

184 11 Quality of Service-ware Complex Event Service Composition. . .

with 50 and 100 additional CESs, respectively. Hence, we have four test combina-
tions on both simple and complex queries and repositories. The results of fine-tuning
the mutation rate, population size and crossover rate are shown in Fig. 11.9a–c.

From the results in Fig. 11.9a, we can see that the optimal mutation rate is quite
small for all tests, that is, from 0% to 0.4%. Results in Fig. 11.9b indicate that for
smaller solutions spaces such as Qa over R

0
5 and R0

9, the optimal initial population
size is smaller, that is, with 60 individuals in the initial population. For more
complicated queries and larger repositories, using a larger population size, for
example, 100, is more cost-efficient. Results from Fig. 11.9c indicate that for Qa

over R0
5, the optimal crossover rate is 35% because the global optimum is easier to

achieve, and more crossover operations bring additional overhead. However, for
more complicated queries and repositories, a higher crossover rate, for example,
from 90% to 100%, is desired. It is worth noticing that in the results from Fig. 11.9b
and c, the changes in the score for Q0

b over R
0
9 is not significant. This is because the

GA spends much more time trying to initiate the population, making the cost-
effectiveness score small and the differences moderate.

In the previous experiments, we use the selection policy such that every individ-
ual is chosen to reproduce once (except for the elite whose copy is also in the next-
generation). This will ensure the population will get smaller as the evolution pro-
gresses and the GA will converge quickly. This is desirable in our case because the

30

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.5

5

10

20

15

ce
-s

co
re

ce
-s

co
re

Mutation Rate Init. Population Size

25

30

40

0
40

Cross Over Rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60 80 100 120 140 160 180 200 300 500

5

10

20

15

25

35

ce
-s

co
re

30

0

5

10

20

15

25

35

45

Qa-R5’ Qa-R9’ Qb’-R5’ Qb’-R9’

a

Qa-R5’ Qa-R9’ Qb’-R5’ Qb’-R9’

Qa-R5’ Qa-R9’ Qb’-R5’ Qb’-R9’

b

c

Fig. 11.9 (a) CE-score over mutation rate, (b) CE-score over population size, (c) CE-score over
crossover rate [274]

11.5 Evaluation 185

algorithm is executed at run-time and is time sensitive. However, it is also possible to
allow an individual to reproduce multiple times and keep a fixed population size
during evolution.

To compare the differences of having a fixed or flexible population size, we show
the average utility (of Q0

b over R0
9) over the generations in Fig. 11.10. The results

show that the number of generations for flexible population sizes is similar, while
larger sizes achieve higher utilities. Also, the duration of generations in fixed
population sizes is quite different: for a fixed population size of 60, the GA
converges in about 60 generations; and for the size of 100, it lasts more than
100 generations. Larger sizes also produce better results in a fixed population, but
it is much slower, and the utilities are lower than those obtained from flexible
populations. In summary, we can confirm that using a flexible population size is
better than a fixed population size for the GA described in this section.

11.5.2 Part 2: Validation of QoS Aggregation Rules

In this part of the evaluation, we show how the QoS aggregation works in a
simulated environment.

Fig. 11.10 Average utility using flexible (“p ¼ x”) and fixed (“pf ¼ x”) population size [274]

186 11 Quality of Service-ware Complex Event Service Composition. . .

11.5.2.1 Datasets and Experiment Settings

To demonstrate the effect of QoS aggregation and optimisation, we generate two
composition plans CP1 and CP2 with the GA for Qa over R0

9 using the same
constraints specified in Sect. 11.5.1. CP1 is optimised for latency, with the weight
of latency set to 1.0 and other QoS weights set to 0.1; while CP2 is optimised for
network consumption, with the weight of network consumption set to 1.0 and others
set to 0.1. The reason we generate one plan to reduce the latency and the other to
reduce network consumption is that the resulting plans are quite different in struc-
ture, as shown in Fig. 11.11.

When the two composition plans are generated, we transform the composition
plans into stream reasoning queries (e.g., C-SPARQL query). We evaluate the
queries over the traffic data streams produced by ODAA sensors. According to the
composition plan and the event service descriptions involved in the plans, we
simulate the QoS of the event services on a local test machine, that is, we create
artificial delays, wrong and lost messages according to the QoS specifications in
event service descriptions, and set the sensor update frequency as the frequency
annotated (so as to affect the messages consumed by the query engine). Security is
annotated but not simulated, because the aggregation rule for security is trivial, that
is, estimated to be the lowest security level. Notice that the simulated quality is the
Service Infrastructure quality. We observe the results and the query performance
over these simulated streams and compare it with the QoS estimation using the rules
in Tables 11.1 and 11.2, to see the differences between the practical quality of the
composed event streams and the theoretical quality as per our estimation.

11.5.2.2 Simulation Results

The results of the comparison between the theoretical and simulated quality of the
event service composition are shown in Table 11.5. The first column is the quality
dimensions of the two composition plans; the second column is the computed quality
values based on the aggregation rules defined in Table 11.2. These rules consider the

AND

G1F1B1 E1C1Loc1

AND

G2F2B2 E2C2

AND

ESLoc2

sum(estimated_time_on_segment) sum(estimated_time_on_segment)
ES

Composition Plan #1 (CP1): optimised for latency.
Urand1=0.413, U1=0.524

Composition Plan #2 (CP2): optimised for bandwidth composition.
Urand2=0.416, U2=0.483

Fig. 11.11 Composition plans for Qa under different weight vectors [274]

11.5 Evaluation 187

Composition Pattern of the query as well as the Service Infrastructure quality of the
composed services. We denote this quality QoS. However, this is not the end-to-end
QoS, because the quality of the event stream engine needs to be considered. To get
the stream engine performance we deploy the queries with optimal Service Infra-
structure quality, that is, no artificial delay, mistake, or message loss, and we record
the quality of query executions in the third column. We denote this engine quality
QoSee. The simulated end-to-end quality is recorded in the fourth column, denoted
QoSs. We calculate the theoretical end-to-end quality based on QoS and QoSee using
Table 11.1. Notice that the Service Infrastructure qualities of the queries themselves
are not considered since we do not measure the results provided to external service
consumers. Instead, the quality measurement stops at the point when query results
are generated. We denote this theoretical end-to-end quality QoSt and calculate the
deviation d ¼ (QoSs /QoSt) � 1, which is recorded in the last column. From the
results we can see that the GA is highly effective in optimising latency for CP1 and
network consumption for CP2: the latency of the former is 1/7 of the latter and event
messages consumed by the latter are less than 1/8 of the former.

We can also see that the deviations of latency and accuracy are moderate for both
plans. However, the completeness estimation deviates about 15–18% from the actual
completeness. For the network consumption in CP1, the estimation is quite accurate,
that is, about 5% more than the actual consumption. However, the network con-
sumption for CP2 deviates from the estimated value by about 13.51%. The difference
is caused by the unexpected drop in C-SPARQL query completeness when a CES
with imperfect completeness is reused in CP2, which suggests that an accurate
completeness estimation of the service could help improve the estimation of the
network consumption for event service compositions using the service.

Table 11.5 Validation for QoS aggregation and estimation [274]

Composition
pattern Event engine

End-to-end
simulated

End-to-end
deviations

Plan 1
(CP1)

Latency 40 ms 604 ms 673 ms +4.50%

Accuracy 50.04% 100% 51.43% +2.78%

Completeness 87.99% 97.62% 72.71% �14.89%

Network consumption 4.05 msg/s 4.05 msg/s 3.84 msg/s �5.19%

Plan 2
(CP2)

Latency 280 ms 1852 ms 2328 ms +9.19%

Accuracy 53.10% 100% 51.09% �3.79%

Completeness 87.82% 73.18% 46.31% �17.96%

Network consumption 0.37 msg/s 0.40 msg/s 0.32 msg/s �13.51%

188 11 Quality of Service-ware Complex Event Service Composition. . .

11.6 Related Work

In general, Dataspaces follow a “best-effort” model for data management which can
be seen as providing varying Quality of Service levels; this is evident in the area of
search and querying with different mechanisms for indexing and federated queries
[2, 121, 122]. In this section, we discuss the state-of-the-art in QoS-aware service
composition as well as on-demand event/stream processing.

11.6.1 QoS-Aware Service Composition

QoS models and aggregation rules for conventional web services have been
discussed in [273, 277]. In this work, we extract some QoS properties from existing
work and define a similar utility function. However, QoS aggregation in complex
event services is different: the calculation of aggregated QoS depends on the
correlations among member event services, while the impact of event engine per-
formance also needs to be considered. Therefore, a set of new aggregation rules are
developed in this work. GA-based service composition and optimisation have been
explored previously in [273, 278, 279]. However, they only cater for Input, Output,
Precondition, and Effect (IOPE) based service compositions. For composing com-
plex event services, a pattern-based reuse mechanism is required [275].

11.6.2 On-Demand Event/Stream Processing

Our work is not the first attempt that combines Service-Oriented Architectures
(SOA) with Complex Event Processing to achieve on-demand event processing.
Event-driven SOA has been discussed in [280, 281]. However, they only use CEP to
trigger sub-sequential services. SARI [282] uses IOPE-based service matchmaking
for event services, but it has limited matchmaking capability for logical AND and
OR correlations.

A unified event query semantics is essential for a cross-platform and on-demand
event processing [283]. EVA extends the semantic framework proposed by [284]
and provides a transformation mechanism from EVA to target CEP query languages,
but the transformation adaptation happens before run-time, and an on-demand event
processing at run-time is not realised. RSQ-QL [283] is a recent unified RDF Stream
Processing (RSF) query language that in theory supports event processing and
existing RSP engines. However, it has yet to be implemented with a concrete engine.

Semantic Web Service inspired semantic streams [285] uses a prolog-based
reasoning system to discover relevant data streams. It provides support for both
functional and non-functional requirements, but the matchmaking still depends on
the stream types. H2O [286] proposes a hybrid processing mechanism for long-term

11.6 Related Work 189

(coarse-grained) and real-time (fine-grained) queries, the former type of query can
provide partial results for the latter. However, it limits the expressiveness of real-
time queries. Dyknow [287] leverages C-SPARQL as its RSP engine and facilitates
on-demand semantic data stream discovery using stream metadata annotations.
However, Dyknow does not support complex event streams.

11.7 Summary and Future Work

In this chapter, we detail the design of a dataspace support service for the compo-
sition of a complex event service. The service uses a GA-based approach to find
optimised event service compositions within a dataspace. A QoS aggregation
schema is proposed to calculate the overall QoS for an event service composition
based on correlations of member event services. A QoS utility function is defined
based on the QoS model and serves as the objective function in the GA. Our
algorithm is evaluated with both real and synthetic sensor data streams within an
intelligent travel-planning system. Results show that we can achieve about 89%
optimal results in seconds. We also provide experimental results on fine-tuning GA
parameters to further improve the algorithm. Finally, we use experiments to validate
our QoS aggregation schema, and the results indicate that our QoS aggregation and
estimation do not deviate far from the actual QoS.

We are considering the following future directions. Firstly, we will explore rule-
based event service composition as a more general approach for integrating various
event services. The GA-based approach proposed in this work is an ad hoc solution
in the sense that it relies on the event pattern semantics. Changing the event
semantics might introduce significant revisions of the composition algorithm.
Using a rule-based composition algorithm, on the other hand, can easily cope with
various event semantics. Secondly, we will explore the distributed stream processing
mechanisms for RDF streams and find efficient means to support dynamic reasoning
in a distributed manner.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

190 11 Quality of Service-ware Complex Event Service Composition. . .

http://creativecommons.org/licenses/by/4.0/

	Chapter 11: Quality of Service-Aware Complex Event Service Composition in Real-time Linked Dataspaces
	11.1 Introduction
	11.2 Complex Event Processing in Real-time Linked Dataspaces
	11.2.1 Real-time Linked Dataspaces
	11.2.2 Complex Event Processing
	11.2.3 CEP Service Design
	11.2.4 Pay-As-You-Go Service Levels
	11.2.5 Event Service Life Cycle

	11.3 QoS Model and Aggregation Schema
	11.3.1 QoS Properties of Event Services
	11.3.2 QoS Aggregation and Utility Function
	11.3.3 Event QoS Utility Function

	11.4 Genetic Algorithm for QoS-Aware Event Service Composition Optimisation
	11.4.1 Population Initialisation
	11.4.2 Genetic Encodings for Concrete Composition Plans
	11.4.3 Crossover and Mutation Operations
	11.4.3.1 Crossover
	11.4.3.2 Mutation and Elitism

	11.5 Evaluation
	11.5.1 Part 1: Performance of the Genetic Algorithm
	11.5.1.1 Datasets
	11.5.1.2 QoS Utility Results and Scalability
	11.5.1.3 Fine-Tuning the Parameters

	11.5.2 Part 2: Validation of QoS Aggregation Rules
	11.5.2.1 Datasets and Experiment Settings
	11.5.2.2 Simulation Results

	11.6 Related Work
	11.6.1 QoS-Aware Service Composition
	11.6.2 On-Demand Event/Stream Processing

	11.7 Summary and Future Work

