
Parallel Streaming Random Sampling

Kanat Tangwongsan1(B) and Srikanta Tirthapura2

1 CS Program, Mahidol University International College, Nakhon Pathom, Thailand
kanat.tan@mahidol.edu

2 Department of Electrical and Computer Engineering, Iowa State University,
Ames, USA

snt@iastate.edu

Abstract. This paper investigates parallel random sampling from a
potentially-unending data stream whose elements are revealed in a series
of element sequences (minibatches). While sampling from a stream was
extensively studied sequentially, not much has been explored in the par-
allel context, with prior parallel random-sampling algorithms focusing
on the static batch model. We present parallel algorithms for minibatch-
stream sampling in two settings: (1) sliding window, which draws samples
from a prespecified number of most-recently observed elements, and (2)
infinite window, which draws samples from all the elements received.
Our algorithms are computationally and memory efficient: their work
matches the fastest sequential counterpart, their parallel depth is small
(polylogarithmic), and their memory usage matches the best known.

1 Introduction

Consider a model of data processing where data is revealed to the processor
in a series of element sequences (minibatches) of varying sizes. A minibatch
must be processed soon after it arrives. However, the data is too large for all
the minibatches to be stored within memory, though the current minibatch is
available in memory until it is processed.

Such a minibatch streaming model is a generalization of the traditional data
stream model, where data arrives as a sequence of elements. If each minibatch
is of size 1, our model reduces to the streaming model. Use of minibatches is
common. For instance, in a data stream warehousing system [13], data is collected
for a specified period (such as an hour) into a minibatch and then ingested while
statistics and properties need to be maintained continuously. Minibatches may be
relatively large, potentially of the order of Gigabytes or more, and could leverage
parallelism (e.g., a distributed memory cluster or a shared-memory multicore
machine) to achieve the desired throughput. Furthermore, this model matches
the needs of modern “big data” stream processing systems such as Apache Spark
Streaming [22], where newly-arrived data is stored as a distributed data set (an
“RDD” in Spark) that is processed in parallel. Queries are posed on all the data
received up to the most recent minibatch.

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 451–465, 2019.
https://doi.org/10.1007/978-3-030-29400-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_32

452 K. Tangwongsan and S. Tirthapura

This paper investigates the foundational aggregation task of random sam-
pling in the minibatch streaming model. Algorithms in this model observe a
(possibly infinite) sequence of minibatches B1, B2, . . . , Bt, We consider the
following variants of random sampling, all of which are well studied in the context
of sequential streaming algorithms. In the infinite window model, a random
sample is chosen from all the minibatches seen so far. Thus, after observing Bt,
a random sample is drawn from ∪t

i=1Bi. In the sliding window model with
window size w, the sample after observing Bt is chosen from the w most-recent
elements. Typically, the window size w is much larger than a minibatch size.1 In
this work, the window size w is provided at query time, but an upper bound W
on w is known beforehand.

We focus on optimizing the work and parallel depth of our algorithms. This is
a point of departure from the traditional streaming algorithms literature, which
has mostly focused on optimizing the memory consumed. Like in previous work,
we consider memory to be a scarce resource and design for scenarios where the
size of the stream is very large—and the stream, or even a sliding window of the
stream, does not fit in memory. But in addition to memory efficiency, this work
strives for parallel computational efficiency.

Our Contributions. We present parallel random-sampling algorithms for the
minibatch streaming model, in both infinite-window and sliding-window settings.
These algorithms can use the power of shared-memory parallelism to speedup
the processing of a new minibatch as well as a query for random samples.

�Efficient Parallel Algorithms. Our algorithms are provably efficient in parallel
processing. We analyze them in the work-depth model, showing (1) they are
work-efficient, i.e., total work across all processors is of the same order as an
efficient sequential algorithm, and (2) their parallel depth is logarithmic in the
target sample size, which implies that they can use processors nearly linear in
the input size while not substantially increasing the total work performed. In
the infinite-window case, the algorithm is work-optimal since the total work
across all processors matches a lower bound on work, which we prove in this
paper, up to constant factors. Interestingly, for all our algorithms, the work of
the parallel algorithm is sublinear in the size of the minibatch.

�Small Memory. While the emphasis of this work is on improving processing
time and throughput, our algorithms retain the property of having a small mem-
ory footprint, matching the best sequential algorithms from prior work.

Designing such parallel algorithms requires overcoming several challenges.
Sliding-window sampling is typically implemented with Priority Sampling
[1,3], whose work performed (per minibatch) is linear in the size of the minibatch.
Parallelizing it reduces depth but does not reduce work. Generating skip offsets,
à la Algorithm Z [20] (reservoir sampling), can significantly reduce work but
offers no parallelism. Prior algorithms, such as in [20], seem inherently sequential,
since the next location to sample from is derived as a function of the previously
1 One could also consider a window to be the w most recent minibatches, and similar

techniques are expected to work.

Parallel Streaming Random Sampling 453

chosen location. This work introduces a new technique called R3 sampling, which
combines reversed reservoir sampling with rejection sampling. R3 sampling is a
new perspective on Priority Sampling that mimics the sampling distribution
of Priority Sampling but is simpler and has less computational dependency,
making it amendable to parallelization. To enable parallelism, we draw samples
simultaneously from different areas of the stream using a close approximation of
the distribution. This leads to slight oversampling, which is later corrected by
rejection sampling. We show that all these steps can be implemented in parallel.
In addition, we develop a data layout that permits convenient update and fast
queries. As far as we know, this is the first efficient parallelization of the popular
reservoir-sampling-style algorithms.

Related Work. Reservoir sampling (attributed to Waterman) was known since
the 1960s. There has been much follow-up work, including methods for speed-
ing up reservoir sampling by “skipping past elements” [20], weighted reservoir
sampling [9], and sampling over a sliding window [1,3,10,21].

The difference between the distributed streams model [5–7,11] considered
earlier, and the parallel stream model considered here is that in the distributed
streams model, the focus is on minimizing the communication between proces-
sors while in our model, processors can coordinate using shared memory, and
the focus is on work-efficiency of the parallel algorithm. Prior work on shared-
memory parallel streaming has considered frequency counting [8,19] and aggre-
gates on graph streams [17], but to our knowledge, there is none so far on random
sampling. Prior work on warehousing of sample data [4] has considered meth-
ods for sampling under minibatch arrival, where disjoint partitions of new data
are handled in parallel. Our work also considers how to sample from a single
partition in parallel, and can be used in conjunction with a method such as [4].

2 Preliminaries and Notation

A stream S is a potentially infinite sequence of minibatches B1B2, . . ., where
each minibatch consists of one or more elements. Let St denote the stream so
far until time t, consisting of all elements in minibatches B1, B2, . . . , Bt. Let
ni = |Bi| and Nt =

∑t
i=1 ni, so Nt is the size of St. The size of a minibatch is

not known until the minibatch is received, and the minibatch is received as an
array in memory. A stream segment is a finite sequence of consecutive elements
of a stream. For example, a minibatch is a stream segment. A window of size w
is the stream segment consisting of the w most recent elements.

A sample of size s drawn without replacement from a set B with at least s
elements is defined as a random set whose distribution matches S, the result
of the following process. (1) Initialize S to empty. (2) Repeat s times: draw a
uniform random element e from B, add e to S and delete e from B. A sample of
size s drawn with replacement from a non-empty set B is defined as a random set
whose distribution matches T , the result of the following process. (1) Initialize
T to empty. (2) Repeat s times: draw a uniform random element e from B, add
e to T and do not delete e from B.

454 K. Tangwongsan and S. Tirthapura

Let [n] denote the set {1, . . . , n}. For sequence X = 〈x1, x2, . . . , x|X|〉, the
i-th element is denoted by Xi or X[i]. For convenience, negative index −i, written
X[−i] or X−i, refers to the i-th index from the right end—i.e., X[|X| − i + 1].
Following common array slicing notation, let X[a:] be the subsequence of X
starting from index a onward. An event happens with high probability (whp)
if it happens with probability at least 1 − n−c for some constant c ≥ 1. Let
UniformSample(a, b), a ≤ b, be a function that returns an element from {a, a +
1, . . . , b} chosen uniformly at random. For 0 < p ≤ 1, coin(p) ∈ {H,T} returns
heads (H) with probability p and tails (T) with probability 1−p. For m ≤ n, an
m-permutation of a set S, |S| = n, is an ordering of m distinct elements from S.

We analyze algorithms in the work-depth model assuming concurrent reads
and arbitrary-winner concurrent writes. The work of an algorithm is the total
operation count, and depth (also called parallel time or span) is the length of
the longest chain of dependencies within that algorithm. The gold standard in
this model is for an algorithm to perform the same amount of work as the
best sequential counterpart (work-efficient) and to have polylogarithmic depth.
This setting has been fertile ground for research and experimentation on parallel
algorithms. Moreover, results in this model are readily portable to other related
models, e.g., exclusive read and exclusive write, with a modest increase in cost
(see, e.g., [2]).

We measure the space complexity of our algorithms in terms of the number
of elements stored. Our space bounds do not represent bit complexity. Often,
the space used by the algorithm is a random variable, so we present bounds on
the expected space complexity.

3 Parallel Sampling from a Sliding Window

This section presents parallel algorithms for sampling without replacement from
a sliding window (SWOR-Sliwin). Specifically, for target sample size s and
maximum window size W , SWOR-Sliwin is to maintain a data structure R
supporting two operations: (i) insert(Bi) incorporates a minibatch Bi of new
elements arriving at time i into R and (ii) For parameters q ≤ s and w ≤ W ,
sample(q, w) when posed at time i returns a random sample of q elements chosen
uniformly without replacement from the w most recent elements in Si.

In our implementation, sample(q, w) does something stronger and returns a
q-permutation (not only a set) chosen uniformly at random from the w newest
elements from R—this can be used to generate a sample of any size j from 1 till
q by only considering the first j elements of the permutation.

One popular approach to sampling from a sliding window in the sequential
setting [1,3] is the Priority Sampling algorithm: Assign a random priority to
each stream element, and in response to sample(s, w), return the s elements
with the smallest priorities among the latest w arrivals. To reduce the space
consumption to be sublinear in the window size, the idea is to store only those
elements that can potentially be included in the set of s smallest priorities for
any window size w. A stream element e can be discarded if there are s or more

Parallel Streaming Random Sampling 455

elements with a smaller priority than e that are more recent than e. Doing so
systematically leads to an expected space bound of O(s + s log(W/s)) [1]2.

As stated, this approach expends work linear in the stream length to exam-
ine/assign priorities, but ends up choosing only a small fraction of the elements
examined. This motivates the question: How can one determine which elements
to choose, ideally in parallel, without expending linear work to generate or look
at random priorities? We assume W � ni ≥ s, where ni is the size of minibatch
i. The main result of this section is as follows:

Theorem 1. There is a data structure for SWOR-Sliwin that uses O(s +
s log(W/s)) expected space and supports the following operations:

(i) insert(B) for a new minibatch B uses O(s+s log(W
s)) work and O(log W)

parallel depth; and
(ii) sample(q, w) for sample size q ≤ s and window size w ≤ W uses O(q)

work and O(log W) parallel depth.

Note that the work of the data structure for inserting a new minibatch
is only logarithmic in the maximum window size W and independent of the
size of the minibatch. To prove this theorem, we introduce R3 sampling, which
brings together reversed reservoir sampling and rejection sampling. We begin by
describing reversed reservoir sampling, a new perspective on priority sampling
that offers more parallelism opportunities. After that, we show how to implement
this sampling process efficiently in parallel with the help of rejection sampling.

3.1 Simple Reversed Reservoir Algorithm

We now describe reversed reservoir (RR) sampling, which mimics the behav-
ior of priority sampling but provides more independence and more parallelism
opportunities. This process will be refined and expanded in subsequent sections.
After observing sequence X, Simple-RR (Algorithm 1) yields uniform sampling
without replacement of up to s elements for any suffix of X.

We say the i-th most-recent element has age i; this position/element will
be called age i when the context is clear. The algorithm examines the input
sequence X in reverse, X−1,X−2, . . . , and stores selected elements in a data
structure A, recording the age of an element in X as well as a slot (from [s]) into
which the element is mapped. Multiple elements may be mapped to the same
slot. The slot numbers are used to generate a permutation. The probability of
selecting an age-i element into A decreases as i increases.

For maximum sample size s > 0 and integer i > 0, define p
(s)
−i = min

(
1, s

i

)
,

which is exactly the probability age-i element is retained in standard priority
sampling when drawing s samples.

Let A denote the result of Simple-RR. Using this, sampling s elements
without replacement from any suffix of X is pretty straightforward. Define

χ(A) = (νA(1), νA(2), . . . , νA(s))
2 The original algorithm stores the largest priorities but is equivalent to our view.

456 K. Tangwongsan and S. Tirthapura

Algorithm 1. Simple-RR(X, s) — Näıve reversed reservoir sampling
Input: a stream segment X = 〈x1, . . . , x|X|〉 and a parameter s > 0, s ≤ |X|.
Output: a set {(ki, �i)}, where ki is an index into X and �i ∈ [s]

1 π ← Random permutation of [s], A0 = ∅
2 for i = 1, 2, . . . , s do Ai = Ai−1 ∪ {(i, πi)}
3 for i = s + 1, s + 2, . . . , |X| do
4 if coin(p

(s)
−i) == H then

5 � ←UniformSample(1, s)
6 Ai = Ai−1 ∪ {(i, �)}
7 else Ai = Ai−1

8 return A|X|

where νA(�) = arg maxk≥1{(k, �) ∈ A} is3 the oldest element assigned to slot �.
Given A, we can derive Ai for any i ≤ |X| by considering the appropriate subset
of A. We have that χ(Ai) is an s-permutation of the i most recent elements of
X. This is stated in the following lemma:

Lemma 1. If R is any s-permutation of X[−i :], then Pr[R = χ(Ai)] = (i−s)!
i!

Proof. We proceed by induction on i. The base case of i = s is easy to verify
since π is a random permutation of [s] and χ(As) is a permutation of X[−s :]
according to π. For the inductive step, assume that the relationship holds for
any R that is an s-permutation of X[−i :]. Now let R′ be an s-permutation of
X[−(i + 1) :]. Let x−(i+1) denote X[−(i + 1) :]. Consider two cases:

Case I: x−(i+1) appears in R′, say at R′
�. For R′ = χ(Ai+1), it must be the case

that x−(i+1) was chosen and was assigned to slot �. Furthermore, χ(Ai) must be
identical to R′ except in position �, where it could have been any of the i−(s−1)
choices. This occurs w.p. (i − [s − 1]) · (i−s)!

i! · p
(s)
−(i+1) · 1

s = (i+1−s)!
(i+1)! .

Case II: x−(i+1) does not appear in R′. Therefore, R′ must be an s-permutation
of X[−i :] and x−(i+1) was not sampled. This happens with probability (i−s)!

i! ·
(1 − p−(i+1)) = (i+1−s)!

(i+1)! .

In either case, this gives the desired probability. 	

Note that the space taken by this algorithm (the size of A|X|) is O(s +

s log(|X|/s)), which is optimal [10]. The steps are easily parallelizable but still
need O(|X|) work, which can be much larger than the (s + s log(|X|/s)) bound
on the number of elements the algorithm must sample. We improve on this next.

3 Because |X| ≥ s, the function ν is always defined.

Parallel Streaming Random Sampling 457

3.2 Improved Single-Element Sampler

This section addresses the special case of s = 1. Our key ingredient is the ability
to compute the next index that will be sampled, without touching the elements
that are not sampled.

Let X−i be an element just sampled. We can now define a random variable
Skip(i) that indicates how many elements past X−i will be skipped over before
selecting index −(i+Skip(i)) according to the distribution given by Simple-RR.
Conveniently, this random variable can be efficiently generated in O(1) time
using the inverse transformation method [15] because its cumulative distribution
function (CDF) has a simple, efficiently-solvable form: Pr[Skip(i) ≤ k] = 1 −
∏i+k

t=i+1(1−p−t) = 1− i
i+k = k

i+k . This leads to the following improved algorithm:

Algorithm 2. Fast-Single-RR(X) — Fast RR sampling for s = 1
1 i ← 1
2 while i < |X| do
3 A ← A ∪ {(i, 1)}
4 i ← i + Skip(i)

5 return A

This improvement significantly reduces the number of iterations:

Lemma 2. Let TFSR(n) be the number of times the while-loop in the
Fast-Single-RR algorithm is executed on input X with n = |X|.
Then, E[TFSR(n)] = O(1 + log(n)). Also, for m ≥ n and c ≥ 4,
Pr[TFSR(n) ≥ 1 + c · log(m)] ≤ m−c.

Proof. Let Zi be an indicator variable for whether x−i contributes to an iter-
ation of the while-loop. Hence, TFSR(n) = 1 + Z, where Z =

∑|X|
i=2 Zi. But

Pr[Zi = 1] = 1/i, so E[Z] = 1
2 + 1

3 + · · · + 1
n ≤ ln n. This proves the expectation

bound. The concentration bound follows from a Chernoff bound. 	

Immediately, this means that if A = Fast-Single-RR(X) is kept as a simple
sequence (e.g., an array), the running time—as well as the length of A—will be
O(1 + log(|X|)) in expectation. Moreover, Fast-Single-RR(X) produces the
same distribution as Simple-RR with s = 1, only more efficiently computed.

3.3 Improved Multiple-Element Sampler

In the general case of reversed reservoir sampling, generating skip offsets from
the distribution for s > 1 turns out to be significantly more involved than for
s = 1. While this is still possible, e.g., using a variant of Vitter’s Algorithm
Z [20], prior algorithms appear inherently sequential.

458 K. Tangwongsan and S. Tirthapura

This section describes a new parallel algorithm that builds on
Fast-Single-RR. In broad strokes, it first “oversamples” using a simpler dis-
tribution and subsequently, “downsamples” to correct the sampling probability.
To create parallelism, we logically divide the stream segment into s “tracks” of
roughly the same size and have the single-element algorithm work on each track
in parallel.

Track View. Define Create-View(X, k) to return a view corresponding to track
k on X: if Y = Create-View(X, k), then Y−i is X[−α

(k)
s (i)], where α

(k)
s (i) =

i · s + k. That is, track k contains, in reverse order, indices −(s + k),−(2s +
k),−(3s + k), Importantly, these views never have to be materialized.

Algorithm 3 combines the ideas developed so far. We now argue that
Fast-RR yields the same distribution as Simple-RR:

Algorithm 3. Fast-RR(X, s) — Fast reversed reservoir sampling
Input: a stream segment X = 〈x1, . . . , x|X|〉 and a parameter s > 0, s ≤ |X|.
Output: a set {(ki, �i)}, where ki is an index into X and �i ∈ [s]

1 π ← draw a random permutation of [s]

2 T0 ← {(i, πi) | i = 1, 2, . . . , s}
3 for τ = 1, 2, . . . , s in parallel do

4 X
(τ)
• ← Create-View(X, τ)

5 Tτ ← Fast-Single-RR(X
(τ)
•)

6 T ′
τ ← {(i, �) ∈ Tτ | coin(i · s/α(τ)

s (i)) = H} // filter, keep if coin shows heads

7 T ′′
τ ← {(i, UniformSample(1, s)) | (i, _) ∈ T ′

τ } // map

8 return T0 ∪ T ′′
1 ∪ T ′′

2 ∪ · · · ∪ T ′′
s

Lemma 3. Let A be a return result of Fast-RR(X, s). Then, for j = 1, . . . , |X|
and � ∈ [s], Pr[(j, �) ∈ A] = 1

s · p
(s)
−j .

Proof. For j ≤ s, age j is paired with a slot � drawn from a random permutation
of [s], so Pr[(j, �) ∈ A] = 1

s = 1
s · 1 = 1

s · p
(s)
−j . For j > s, write j as j = s · i + τ ,

so age j appears as age i in view X
(τ)
• . Now age j appears in A if both of these

events happen: (1) age i was chosen into Tτ and (2) the coin turned up heads
so it was retained in T ′

τ . These two independent events happen together with
probability p

(1)
−i · i·s

α
(τ)
s (i)

= 1
i · i·s

s·i+τ = s
j = p

(s)
−j . Once age j is chosen, it goes to

slot � with probability 1/s. Hence, Pr[(j, �) ∈ A] = 1
s · p

(s)
−j . 	

3.4 Storing and Retrieving Reserved Samples

How Should We Store the Sampled Elements? An important design goal is for
samples of any size q ≤ s to be generated without first generating s samples.
To this end, observe that restricting χ(A) to its first q ≤ s coordinates yields

Parallel Streaming Random Sampling 459

a q-permutation over the input. This motivates a data structure that stores the
contents of different slots separately.

Denote by R(A), or simply R in clear context, the binned-sample data struc-
ture for storing reserved samples A. The samples are organized by their slot
numbers (Ri)s

i=1, with Ri storing slot i’s samples. Within each slot, samples are
binned by their ages. In particular, each Ri contains �log2(�|X|/s�)� + 1 bins,
numbered 0, 1, 2, . . . , �log2(�|X|/s�)�—with bin k storing ages j in the range
2k−1 < �j/s� ≤ 2k. Below, bin t of slot i will be denoted by Ri[t].

Additional information is kept in each bin for fast queries: every bin k stores
φ(k), defined to be the age of the oldest element in bin k and all younger bins
for the same slot number.

Below is an example. Use s = 3 and |X| = 16. Let the result from Fast-RR
be A = {(1, 2), (2, 3), (3, 1), (7, 1), (10, 3), (11, 3), (14, 2)}. Then, R keeps the fol-
lowing bins, together with φ values:

Bin: Ri[0] Ri[1] Ri[2] Ri[3]

Slot i = 1 {3}φ=3 ∅φ=3 {7}φ=7 ∅φ=7

Slot i = 2 {1}φ=1 ∅φ=1 ∅φ=1 {14}φ=14

Slot i = 3 {2}φ=2 ∅φ=2 {10, 11}φ=11 ∅φ=11

From this construction, the following claims can be made:

Lemma 4. (i) The expected size of the bin Ri[t] is E[|Ri[t]|] ≤ 1.
(ii) The size of slot Ri is expected O(1 + log(|X|/s)). Furthermore, for c ≥ 4,

Pr[|Ri| ≤ 1 + c log2(|X|)] ≥ 1 − |X|−c.

Proof. Bin t of Ri is responsible for elements wit age j in the range 2t−1 <
�j/s� ≤ 2t, for a total of s(2t − 2t−1) = s · 2t−1 indices. Among them, the
age that has the highest probability of being sampled is (s2t−1 + 1), which is
sampled into slot i with probability 1

s · s
s2t−1+1 ≤ 1

s·2t−1 . Therefore, E[|Ri[t]|] ≤
s · 2t−1 · 1

s·2t−1 = 1.

Moreover, let Yt = 1{x−t is chosen into slot i}, so |Ri| =
∑|X|

t=1 Yt. Since E[Yt] =
p
(s)
−t/s = 1

s min(1, s/t), we have

E[|Ri|] =
|X|∑

t=1

E[Yt] = 1 +
|X|∑

t=s+1

1
t

≤ 1 +
∫ |X|

t=s

dt

t
= 1 + ln

(
|X|
s

)
,

which proves the expectation bound. Because Yt’s are independent, using an
argument similar to the proof of Lemma 2, we have the probability bound. 	

Data Structuring Operations. Algorithm 4 shows algorithms for constructing a
binned-sample data structure and answering queries. To Construct a binned-
sample data structure, the algorithm first arranges the entries into groups by slot
number, using a parallel semisorting algorithm, which reorders an input sequence
of keys so that like sorting, equal keys are arranged contiguously, but unlike
sorting, different keys are not necessarily in sorted order. Parallel semisorting of

460 K. Tangwongsan and S. Tirthapura

n elements can be achieved using O(n) expected work and space, and O(log n)
depth [12]. The algorithm then, in parallel, processes each slot, putting every
entry into the right bin. Moreover, it computes a min-prefix, yielding φ(·) for all
bins. There is not much computation within a slot, so we do it sequentially but
the different slots are done in parallel. To answer a Sample query, the algorithm
computes, for each slot i, the oldest age within X[−w:] that was assigned to
slot i. This can be found quickly by figuring out the bin k where w should be.
Once this is known, it simply has to look at φ of bin k − 1 and go through the
entries in bin k. This means a query touches at most two bins per slot.

Cost Analysis. We now analyze Fast-RR, Construct, and Sample for their
work and parallel depth. More concretely:

Lemma 5. (i) By storing T0, Ti’s, and T ′
i ’s as simple arrays, Fast-RR(X, s)

runs in expected O(s + s log |X|
s) work and O(log |X|) parallel depth.

(ii) Construct(A,n, s) runs in O(s+s log n
s) work and O(log n) parallel depth.

(iii) Sample(R, q, t) runs in O(q) work and O(log n) parallel depth, where n is
the length of X on which R was built.

For detailed analysis, see the full paper [18]. In brief, generating the initial length-
s permutation in parallel takes O(s) work and O(log s) depth [14]. The dominant
cost stems from running s parallel instances of Fast-Single-RR, which takes

Algorithm 4. Construction of binned-sample data structure and query
// Below, use the convention that max ∅ = −∞

1 Construct(A, n, s):
Input: A is a sequence of reserved samples, n is the length of the underlying stream

segment X, and s is the target sample size used to generate A.

Output: an instance of binned-sample structure R(A)

2 Use semisorting to arrange A into G1, G2, . . . , Gs by slot number

3 for i = 1, . . . , s in parallel do

4 Create bins Ri[0], . . . , Ri[β], β =
log2(
n/s�)�
5 foreach (j, _) ∈ Gi do

6 Write j into Ri[k], where 2k−1 <
j/s� ≤ 2k

7 Let φ(Ri[0]) = maxRi[0]

// prefix max

8 for k = 1, . . . , β do

9 φ(Ri[k]) ← max(φ(Ri[k − 1]),maxRi[k])

10 return R
11 Sample(R, q, w):

Input: R is a binned-sample structure, q is the number of samples desired, w tells the

algorithm to draw sample from X[−w :].

Output: a q-permutation of X[−w :]

12 for i = 1, . . . , q in parallel do

13 Let k be such that 2k−1 <
w/s� ≤ 2k

14 γ ← max{j ∈ Ri[k] | j ≤ w} // The oldest that is at least as young as w

15 ri ← max(γ, φ(Ri[k − 1]))

16 return (r1, r2, . . . , rq)

Parallel Streaming Random Sampling 461

O(1+log(|X|/s)) work and depth each by Lemma 2. Furthermore, aside from the
cost of semisorting, the cost of Construct follows from Lemma 4(i)–(ii) and
standard analysis. Finally, the cost of Sample follows from Lemma 4, together
with the fact that each query looks at q slots and only 2 bins per slot.

3.5 Handling Minibatch Arrival

This section describes how to incorporate a minibatch into our data structure to
maintain a sliding window of size W . Assume that the minibatch size is ni ≤ W .
If not, we can only consider its W most recent elements. When a minibatch
arrives, retired sampled elements must be removed and the remaining sampled
elements are “downsampled” to maintain the correct distribution.

Remember that the number of selected elements is O(s + s log(W/s)) in
expectation, so we have enough budget in the work bound to make a pass over
them to filter out retired elements. Instead of revisiting every element of the
window, we apply the process below to the selected elements to maintain the
correct distribution. Notice that an element at age i was sampled into slot �

with probability 1
sp

(s)
−i . A new minibatch will cause this element to shift to age j,

j > i, in the window. At age j, an element is sampled into slot � with probability
1
sp

(s)
−j . To correct for this, we flip a coin that turns up heads with probability

p
(s)
−j/p

(s)
−i ≤ 1 and retain this sample only if the coin comes up heads.

Therefore, insert(Bi), |Bi| = ni handles a minibatch arrival as follows:

Step i: Discard and downsample elements in R; the index shifts by ni.
Step ii: Apply Fast-RR on Bi, truncated to the last W elements if ni > W .
Step iii: Run Construct on the result of Fast-RR with a modification where

it appends to an existing R as opposed to creating a new structure.

Overall, this leads to the following cost bound for insert:

Lemma 6. insert takes O(s + s log(W/s)) work and O(log W) depth.

4 Parallel Sampling from an Infinite Window

This section addresses sampling without replacement from an infinite window,
consisting of all elements seen so far in the stream. This is formulated as the
SWOR-Infwin task: For each time i = 1, . . . , t, maintain a random sample
of size min{s,Ni} chosen uniformly without replacement from Si. We present
a work-efficient algorithm for SWOR-Infwin and further show it to be work
optimal, up to constant factors.

For p, q ∈ [r], let H(p, q, r) be the hypergeometric random variable, which can
take an integer value from 0 to min{p, q}. Suppose there are q balls of type 1
and (r − q) balls of type 2 in an urn. Then, H(p, q, r) is the number of balls of
type 1 drawn in p trials, where in each trial, a ball is drawn at random from the
urn without replacement. It is known that E[H(p, q, r)] = pq

r .

462 K. Tangwongsan and S. Tirthapura

Work Lower Bound. We first show a lower bound on the work of any algorithm
for SWOR-Infwin, sequential or parallel, by considering the expected change
in the sample output after a new minibatch is received.

Lemma 7. Any algorithm that solves SWOR-Infwin must have expected work
at least Ω

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)

over minibatches B1 . . . Bt.

Proof. First consider the number of elements that are sampled from each mini-
batch. If Ni ≤ s, then the entire minibatch is sampled, resulting in a work
of Ω(ni). Otherwise, the number of elements sampled from the new minibatch
Bi is H(s, ni, Ni). The expectation is E[H(s, ni, Ni)] = s·ni

Ni
, which is a lower

bound on the expected cost of processing the minibatch. Next, note that any
algorithm must pay Ω(1) for examining minibatch Bi, since in our model the
size of the minibatch is not known in advance. If an algorithm does not examine
a minibatch, then the size of the minibatch may be as large as Ω(Ni), caus-
ing Ω(1) elements to be sampled from it. The algorithm needs to pay at least
Ω(t) over t minibatches. Hence, the total expected work of any algorithm for
SWOR-Infwin after t steps must be Ω

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)
. 	

Parallel Algorithm for SWOR-Infwin. Our solution is presented in Algorithm5.
The main idea is as follows: When a minibatch Bi arrives, generate a random
variable κ according to the hypergeometric distribution to determine how many
of the s samples will be chosen from Bi, as opposed to prior minibatches. Then,
choose a random sample of size κ without replacement from Bi and update
the sample S accordingly. We leverage Sanders et al. [16]’s recent algorithm for
parallel sampling without replacement (from static data), restated below in the
work-depth model:

Observation 2 ([16]). There is a parallel algorithm to draw s elements at
random without replacement from N elements using O(s) work and O(log s)
depth.

Our algorithm uses static parallel sampling without replacement in two
places: once to sample new elements from the new minibatch, and then again
to update the current sample. In more detail, when a minibatch arrives, the
algorithm (i) chooses κ, the number of elements to be sampled from Bi, in
O(1) time; (ii) samples κ elements without replacement from Bi in parallel; and
(iii) replaces κ randomly chosen elements in S with the new samples using a
two-step process, by first choosing the locations in S to be replaced, followed by
writing the new samples to the chosen locations. Details appear in Algorithm 5.

Theorem 3. Algorithm 5 is a work-efficient algorithm for SWOR-Infwin.
The total work to process t minibatches B1, . . . , Bt is O

(
t +

∑t
i=1 min{ni,

sni

Ni
}
)

and the parallel depth of the algorithm for processing a single minibatch is
O(log s). This work is optimal up to constant factors, given the lower bound
from Lemma 7.

Parallel Streaming Random Sampling 463

Algorithm 5. Parallel Algorithm for SWOR-Infwin.
1 Initialization: Sample S ← ∅
2 if minibatch Bi is received then

// Recall ni = |Bi| and Ni =
∑i

j=1 ni

3 if Ni ≤ s then Copy Bi into S in parallel
4 else
5 Let κ be a random number generated by H(s, ni, Ni)
6 Si ← κ elements sampled without replacement from Bi (Obs. 2)
7 Ri ← κ elements sampled without replacement from {1, . . . , s} (Obs. 2)
8 for j = 1 to κ do Replace S[Ri[j]] ← Si[j]

Proof. When a new minibatch Bi arrives, for the case Ni ≤ s, copying ni ele-
ments from Bi to S can be done in parallel in O(ni) work and O(1) depth, by
organizing array S so that the empty locations in the array are all contiguous,
so that the destination for writing an element can be computed in O(1) time.

For the case Ni > s, random variable κ can be generated in O(1) work. The
next two steps of sampling κ elements from Bi and from {1, . . . , n} can each be
done using O(κ) work and O(log κ) depth, using Observation 2. The final for
loop of copying data can be performed in O(κ) work and O(1) depth. Hence,
the expected total work for processing Bi is 1 + min{ni,

sni

Ni
}, and the depth is

O(log κ). Summing over all t minibatches, we get our result. Since κ ≤ s, the
parallel depth is O(log s). 	

5 Parallel Sampling with Replacement

We now consider parallel algorithms for SWR-Infwin, sampling with replace-
ment. A simple solution, which uses O(s) work per minibatch and has O(1)
parallel depth, is to run s independent parallel copies of a single element stream
sampler, which is clearly correct. When minibatch Bi is received, each single
element sampler decides whether or not to replace its sample, with probability
ni/Ni, which can be done in O(1) time. We show that it is possible to do bet-
ter than this by noting that when ni/Ni is small, a single element sampler is
unlikely to change its sample, and hence the operation of all the samplers can be
efficiently simulated using less work. The main results are below (proof omitted):

Theorem 4. There is a parallel algorithm for SWR-Infwin such that for a
target sample size s, the total work to process minibatches B1, . . . , Bt is O(t +∑t

i=1 sni/Ni), and the depth for processing any one minibatch Bi is O(log s).
This work is optimal, up to constant factors.

This work bound is optimal, since the expected number of elements in the
sample that change due to a new minibatch is sni/Ni.

464 K. Tangwongsan and S. Tirthapura

6 Conclusion

We presented low-depth, work-efficient parallel algorithms for the fundamen-
tal data streaming problem of streaming sampling. Both the sliding-window
and infinite-window cases were addressed. Interesting directions for future work
include the parallelization of other types of streaming sampling problems, such
as weighted sampling and stratified sampling.

References

1. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In: Proceedings of the Annual ACM-SIAM Symposium on Dis-
crete algorithms (SODA), pp. 633–634 (2002)

2. Blelloch, G.E., Maggs, B.M.: Chapter 10: parallel algorithms. In: The Computer
Science and Engineering Handbook, 2nd edn. Chapman and Hall/CRC (2004)

3. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows.
In: Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pp. 147–156 (2009)

4. Brown, P.G., Haas, P.J.: Techniques for warehousing of sample data. In: Proceed-
ings of the International Conference on Data Engineering (ICDE), p. 6 (2006)

5. Chung, Y., Tirthapura, S., Woodruff, D.P.: A simple message-optimal algorithm
for random sampling from a distributed stream. IEEE Trans. Knowl. Data Eng.
(TKDE) 28(6), 1356–1368 (2016)

6. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1),
5–14 (2013)

7. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous sampling from
distributed streams. J. ACM 59(2), 10:1–10:25 (2012)

8. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread cooperation in multi-
core architectures for frequency counting over multiple data streams. Proc. VLDB
Endow. (PVLDB) 2(1), 217–228 (2009)

9. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf.
Process. Lett. 97(5), 181–185 (2006)

10. Gemulla, R., Lehner, W.: Sampling time-based sliding windows in bounded space.
In: Proceedings of the International Conference on Management of Data (SIG-
MOD), pp. 379–392 (2008)

11. Gibbons, P., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 281–291 (2001)

12. Gu, Y., Shun, J., Sun, Y., Blelloch, G.E.: A top-down parallel semisort. In: Pro-
ceedings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 24–34 (2015)

13. Johnson, T., Shkapenyuk, V.: Data stream warehousing in tidalrace. In: Proceed-
ingsof the Conference on Innovative Data Systems Research (CIDR) (2015)

14. Reif, J.H.: An optimal parallel algorithm for integer sorting. In: Proceedings of
the IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
496–504 (1985)

15. Ross, S.M.: Introduction to Probability Models, 10th edn. Academic Press,
Cambridge (2009)

Parallel Streaming Random Sampling 465

16. Sanders, P., Lamm, S., Hübschle-Schneider, L., Schrade, E., Dachsbacher, C.:
Efficient parallel random sampling - vectorized, cache-efficient, and online. ACM
Trans. Math. Softw. 44(3), 29:1–29:14 (2018)

17. Tangwongsan, K., Pavan, A., Tirthapura, S.: Parallel triangle counting in mas-
sive streaming graphs. In: Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM), pp. 781–786 (2013)

18. Tangwongsan, K., Tirthapura, S.: Parallel streaming random sampling.
arXiv:1906.04120 [cs.DS], https://arxiv.org/abs/1906.04120, June 2019

19. Tangwongsan, K., Tirthapura, S., Wu, K.: Parallel streaming frequency-based
aggregates. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 236–245 (2014)

20. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

21. Xu, B., Tirthapura, S., Busch, C.: Sketching asynchronous data streams over sliding
windows. Distrib. Comput. 20(5), 359–374 (2008)

22. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), pp. 423–438 (2013)

http://arxiv.org/abs/1906.04120
https://arxiv.org/abs/1906.04120

	Parallel Streaming Random Sampling
	1 Introduction
	2 Preliminaries and Notation
	3 Parallel Sampling from a Sliding Window
	3.1 Simple Reversed Reservoir Algorithm
	3.2 Improved Single-Element Sampler
	3.3 Improved Multiple-Element Sampler
	3.4 Storing and Retrieving Reserved Samples
	3.5 Handling Minibatch Arrival

	4 Parallel Sampling from an Infinite Window
	5 Parallel Sampling with Replacement
	6 Conclusion
	References

