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Abstract. Determining if a parallel program behaves as expected on
any execution is challenging due to non-deterministic executions. Static
analyses help to detect all execution paths that can be executed concur-
rently by identifying multi-valued expressions, i.e. expressions evaluated
differently among processes. This can be used to find collective errors in
parallel programs. In this paper, we propose a new method that com-
bines a control-flow analysis with a multi-valued expressions detection
to find such errors. We implemented our method in the PARCOACH
framework and successfully analyzed parallel applications using MPI,
OpenMP, UPC and CUDA.

1 Introduction

Collective operations and in particular synchronizations are widely used opera-
tions in parallel programs. They are part of languages for distributed parallelism
such as MPI or PGAS (collective communications), shared-memory models like
OpenMP (barriers) and languages for accelerators such as CUDA (synchroniza-
tion within thread blocks, cooperative groups and at warp-level). A valid use
of collective operations requires at least that their sequence is the same for all
threads/processes during a parallel execution. An invalid use (collective error)
leads to deadlocks or undefined memory state that may be difficult to repro-
duce and debug. Indeed, these languages do not require that all processes reach
the same textual collective statement (textual alignment property [1,2]). Find-
ing which collective matches a given collective is needed for collective checking
and requires to analyse the different concurrent execution paths of a parallel
execution.

Aiken and Gay introduced the concept of structural correctness for synchro-
nizations in SPMD programs, based on the notion of multi-valued and single-
valued variables [3]. A variable is said multi-valued if its value is dependent on
the process identifier (single-valued otherwise). A program has structurally cor-
rect synchronization if all processes have the same sequence of synchronization
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 29–43, 2019.
https://doi.org/10.1007/978-3-030-29400-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_3


30 P. Huchant et al.

operations. Thus, if a synchronization is executed conditionally, both branches
of the condition have a synchronization or the condition expression is single-
valued. We can extend the notion of structural correctness to collectives. In this
paper, we propose a novel method to detect collective errors in parallel pro-
grams. It combines an inter-procedural analysis to perform collective matching
and a data-flow analysis to detect multi-valued variables. The first pass finds
control-flow divergence that may lead to collective deadlocks while the second
one filters out the divergences that do not depend on process identifier. We show
on several benchmarks and applications that this combination is more accurate
than the state-of-the-art analyses and resolves some correctness issues. The anal-
ysis has been implemented in the PARallel COntrol flow Anomaly CHecker [4,5]
(PARCOACH) framework and tested on benchmarks and real HPC applications,
using MPI, OpenMP, UPC and CUDA.

Section 2 describes several deadlock situations in parallel programs. Section 3
presents PARCOACH analysis while Sects. 4 and 5 describe our multi-valued
expression detection and its integration in PARCOACH to find collective errors.
Section 6 gives related work on dependence analyses and verification tools.
Section 7 shows experimental results and Sect. 8 concludes our work.

2 Motivation

This section illustrates four possible deadlock situations due to collectives in
MPI, OpenMP, CUDA and UPC as presented in Fig. 1 (from a to d).

The MPI code (Fig. 1a) contains two collectives: MPI Barrier and
MPI Reduce. The call to MPI Barrier at line 17 is performed by all MPI pro-
cesses, whereas the call MPI Reduce in g at line 3 may deadlock. Indeed, variable
n is multi-valued in the condition expression line 14. Odd-ranked processes evalu-
ate the conditional to true and potentially execute the reduce, while even-ranked
ones evaluate it to false, hanging in the MPI Barrier at line 17. On the contrary,
variable s is single-valued. Hence, all processes in g execute the reduce or none.
The goal of our method is to statically report this situation, identifying the
conditional at line 14, and only this one, as a potential cause for mismatched
calls.

According to the OpenMP specification, the same explicit and implicit1 bar-
riers (syntactically) should be executed by all threads. In practice, the OpenMP
runtimes allow the execution of syntactically different barriers, as long as all
threads execute the same number of barriers. The code Fig. 1b is written in
OpenMP. The #pragma omp parallel directive in function f defines r, con-
taining the thread ID (l.10) and s, as private variables. The first barrier line
12 is encountered by all threads as it is in the global control flow. The barrier
line 3 is either executed by all threads of the program or by none of them as s

1 There is an implicit barrier at the end of all worksharing constructs, unless a nowait

clause is specified.
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is single-valued when entering function g at line 14. Because s becomes multi-
valued at line 15, the barrier line 17 is conditionally executed. This leads to a
deadlock situation if the number of threads is greater than 1 at runtime.

The CUDA code (Fig. 1c) manipulates multidimensional thread IDs through
predefined variables such as threadIdx. In CUDA, synchronizations are valid if
executed by all threads within the same block. Before the first synchronization,
the array tile depends on thread IDs at line 7. As the array is shared among
threads, they all share the same version after the synchronization. The synchro-
nization at line 10 is conditionally executed depending on tile[0]. As this value
does not depend on thread ID, there is no possible deadlock. Depending on the
driver, the third synchronization at line 12 may lead to either a deadlock or
an undefined memory configuration. This bug can be difficult to detect for a
programmer in a real code as this is a silent synchronization error.

1 void g(int s) {
2 if(s > 256)
3 MPI Reduce com, ... ;
4 }
5

6 void f() {
7 int s,r,n;
8 MPI_Comm_size(com ,&s);
9 MPI_Comm_rank(com ,&r);

10 if (r % 2)
11 n = 1;
12 else
13 n = 2;
14 if (n == 1)
15 g(s);
16

17 MPI Barrier com ;
18 }

(a) MPI example

1 void g(int s) {
2 if(s)
3 #pragma omp barrier
4 }
5

6 void f() {
7 int r; int s=1;
8 #pragma omp parallel private(r,s)
9 {

10 r=omp_get_thread_num ();
11 ...
12 #pragma omp barrier
13 ...
14 g(s);
15 s=r%2;
16 if(s)
17 #pragma omp barrier
18 }
19 }

(b) OpenMP example

1 void f(int *data) {
2 __shared__ int tile [];
3 int tid = threadIdx.x;
4 int gid =
5 blockIdx.x*blockDim.x

+tid;
6

7 tile[tid] = data[gid];
8 syncthreads ;
9 if (tile [0])

10 syncthreads ;
11 if (tid)
12 syncthreads ;
13 }

(c) CUDA example

1 void f() {
2 int i=1; j=10;
3 if(MYTHREAD %2){
4 while(i<10){
5 upc barrier; i++;
6 }
7 }else{
8 while(j<20){
9 upc barrier; j++;

10 }
11 }
12 }

(d) UPC example

1 void f() {
2 ...
3 if(x)
4 collective
5 ...
6 if(!x)
7 collective
8

9 }

(e) Not veri-
fiable

Fig. 1. Examples of collective issues and a correct program not verifiable by our
analysis.
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The code Fig. 1d is written in Unified Parallel C (UPC), a PGAS language.
The predefined variable MYTHREAD specifies thread index. In this code, because of
the multi-valued expression at line 3, threads with odd ID will call nine barriers
(l.5) while the others will call ten barriers (l.9). Although structurally correct,
this code leads to a deadlock. Our analysis reports all collectives in a loop as
potentially deadlocking. But note that our analysis would return a false positive
if the two loops had the same number of iteration.

A static analysis on the previous codes only detects situations and causes of
possible deadlocks. If the codes are executed with only one process, no deadlock
can happen. Also, our analysis returns a false positive for some correct but
structurally incorrect codes like the example Fig. 1e. In addition to our analysis,
we use PARCOACH instrumentation of programs explained in [5] to handle such
situations.

3 PARCOACH Control-Flow Analysis

Our analysis first uses PARCOACH to find all conditionals (flow-divergences)
that may lead to the execution of different collective sequences.

PARCOACH static analysis relies on the Parallel Program Control Flow
Graph (PPCFG) representation of a program [5]. The PPCFG is a program
control-flow graph (CFG) where nodes are basic blocks and edges represent
the possible flow of control between nodes. To build the PPCFG, PARCOACH
reduces each function control-flow graph and replaces each callsite by the callee
reduced CFG. Then, with a graph traversal of the PPCFG, PARCOACH com-
putes the possible execution order r of each collective c and the iterated post-
dominance frontier (PDF+) for collectives of the same type and order. For a set
of collectives Cr,c, PDF+(Cr,c) corresponds to the control-flow divergences that
may result in the execution or non-execution of a collective in Cr,c. Note that
to handle communicators in MPI programs, PARCOACH analyses the program
for each communicator separately.

4 Multi-valued Expression Detection

PARCOACH finds all conditionals potentially leading to different sequences of
collectives but reports false positives when conditionals do not depend on a multi-
valued expression. This section presents our multi-valued expressions detection.

Enhanced SSA. Our analysis is based on the Static Single Assignment (SSA)
form of the program. In SSA, variables are defined exactly once. Variables
assigned in multiple statements are renamed into new instances, one per state-
ment. This makes explicit def/use chains. When multiple control-flow paths join
in the CFG, renamed variables are combined with a φ-function into a new vari-
able instance. To capture control-flow dependences we compute an enhanced SSA
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where φ-functions are augmented with their predicates: φ(y1, ..., yk) is trans-
formed into φ(y1, ..., yk, p1, ..., pk) with pi the conditionals responsible for the
choice of the yi. These conditionals are determined by computing the PDF+ of
each argument yi of the φ-function as in [6].

For C-like programs, variables that can be referenced with their address
(address-taken variables), are only manipulated through pointers with load and
store instructions in the SSA form. To compute def/use chains for address-taken
variables, we rely on the principles exposed in flow-sensitive pointer analyses
such as [7,8]: First a points-to analysis is computed to handle potential aliases
among arrays and pointers. Then, each load q = ∗p is annotated with a function
μ(o) for each variable o that may be pointed-to by p to represent a potential
use of o at the load. Likewise, each store ∗p = q is annotated with o = χ(o) for
each variable o that may be pointed-to by p to represent a potential def of o at
the store. There is a special case to consider for shared variables. After synchro-
nization (#pragma omp barrier in OpenMP, syncthreads in CUDA), shared
variables have the same value for all threads. To create a new SSA instance that
no longer depends on the value preceding the barrier, synchronizations are anno-
tated with o = χ() for all shared variables o. Then a context-sensitive Mod-Ref
Analysis is performed to capture inter-procedural uses and def as described in
[9]. The purpose of this analysis is to capture the variables referenced and/or
modified in functions through pointers. Each callsite cs is annotated with μ(o)
for each variable o indirectly referenced in the called function. Similarly, each
callsite is annotated with o = χ(o) to generate a new instance of o for each vari-
able indirectly modified in the called function. For each address-taken variable
referenced or modified in a function, a χ function is inserted at the beginning of
the entry node of the CFG and a μ function is inserted at the end of the exit node
of the CFG to represent their initial and final values. Finally, all address-taken
variables are converted into an SSA form. This results in an augmented SSA with
value and control dependences, and additional statements in SSA describing the
effects of pointer manipulations. All possible def/use chains are built inside the
SSA notation. This simplifies the construction of a dependence graph.

PDCG: Program Data- and Control-Flow Dependence Graph. A
program data- and control-flow dependence graph (PDCG) is built from the
enhanced SSA by connecting the def of each variable with its uses, following
the rules presented in Fig. 2. The PDCG captures inter-procedural dependences
(represented by edges between variables from different functions) but its con-
struction only requires to analyze each function once. This graph is used to
find all variables/expressions that are multi-valued. To that end, we identify the
source statements that generate processes identifier and spread the dependencies
following the edges of the PDCG. The first four rules (from OP to STORE) are
based on the work in [7] using similar notations. Our differences are highlighted
in grey.

OP and PHI rules correspond to straightforward data- and control-flow depen-
dences. For an operation � : z = x op y, the def of x and y at lines �′ and �′′ are
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connected to the def of z at line �. For a φ statement � : v3 = φ(v1, v2, ..., pi, ..),
the defs of the old SSA instances v1 and v2 at �1 and �2 are connected to the
def of the new SSA instance v3 at �. For each predicate pi, the def of pi at �3 is
connected to the def of v3 at � to handle the control-flow dependence.

LOAD and STORE rules take into account alias information for load and store
statements. For a load statement � : q = ∗p, the def of each object o at �′′ pointed
to by p is connected to the def of q at �. We also add a link from the def of p at �′

to the def of q at � to denote the dependence of q with the array index. Indeed,
this corresponds to the case where ∗p is in the form of A[e] with e an expression.
If e is multi-valued, then q is multi-valued. Similarly, for each store instruction
� : ∗p = q annotated with [o2 = χ(o1)], the defs of q and p are connected to o2.
However, we do not connect o1 to o2 since we assume that the old value o1 is
overwritten with o2 (strong update).

The CALL rule handles inter-procedural dependences. At each callsite �cs :
r = f(..., p, ...), the def of the effective parameter p is connected to the formal
parameter q in f . Furthermore, the def of the return value x in f is connected
to the def of r at �cs. To handle indirect value-flows for address-taken variables,
given a callsite annotated with [μ(o1)] [o2 = χ(o1)], the def of o1 in the calling
function is connected to o3, the first def of o in f . Similarly, the last def of o in
f denoted o4, is connected to the def of o2 at �cs.

Fig. 2. Building rules for the PDCG.

PHI ELIM and RESET both correspond to edge removal optimizations. After
augmenting φ-nodes with their predicates, false control dependences can appear
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if every operand of a φ-node denotes the same value. This occurs in par-
ticular when considering two identical function calls in two branches of an
if..then..else construct. Even if these two calls use the same single-valued
parameters, the returned value will still depend on the predicate of the con-
ditional (augmented SSA). To tackle this issue, the PHIELIM rule fuses such φ-
nodes with their operands and disconnects the predicates. In distributed memory,
after a value-sharing collective such as an all-to-all collective, the communicated
buffer has the same value for all processes. This implies that this buffer does not
depend on processes ranks after such collective, whatever its rank-dependence
before the collective. To handle this situation, the RESET rule disconnects the
path from the old SSA instance of the buffer to its new SSA instance after a
value-sharing collective (o1@�2 ↪→ o3@�4 ↪→ o4@�5 ↪→ o2@�cs). The same rule
applies to any value-sharing collective where all processes receive the same result
such as MPI Allreduce or MPI Broadcast.

Finally, to detect collectives that may not be executed by all processes/
threads, we rely on PARCOACH analysis. Each collective c of execution order r
is connected to all conditionals in PDF+(Cr,c) (COND rule).

5 Collective Errors Detection

We use the PDCG to track values and nodes that depend on processes identi-
fiers, flooding the graph from seed functions returning IDs or variables allow-
ing tasks to identify themselves: MPI Comm rank and MPI Group rank in MPI,
omp get thread num for OpenMP. In UPC and CUDA, the seed is a vari-
able: MYTHREAD and threadIdx.*. We use the dependence information from
the PDCG to filter out single-valued conditionals from the PDF+ of potentially
unsafe collectives and thus reduce the number of false positives in PARCOACH.
The augmented SSA takes into account value and control dependencies and the
points-to analysis provides the dependencies through aliases. Note that thanks
to the PDCG, our analysis can be path sensitive: An expression may be multi-
valued or not, depending on the preceding calling context.

Algorithm 1 describes our whole collective errors detection. Step 1 represents
PARCOACH control-flow analysis (see Sect. 3) while steps 2 and 3 respectively
detect multi-valued expressions and build the PDCG (see Sect. 4). Finally, step 4
filters out single-valued conditionals and outputs warnings for potential collective
errors.

Example. Figures 3a and c show the enhanced SSA for the MPI code Fig. 1a.
The call to MPI Comm rank is annotated with a χ function to denote the indirect
definition of object o’1 pointed-to by r. This generates a new SSA instance
denoted o’2. Then the object o’2 pointed-to by r is loaded in reg0. Depending
on whether its value is odd or even, the execution flows either to the basic block
labelled if.then or the basic block labelled if.else. These two control-flow
paths join at basic block if.end and a φ-function is inserted to combine the
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// STEP 1. PARCOACH Control-flow Analysis
Input: PPCFG, Output:

⋃

r,c

Or,c � Create the set Or,c = PDF+(Cr,c) for each

collective name c of execution order r

// STEP 2. Multi-Valued Expression Detection
Input: SSA, Output: eSSA � Build an enhanced SSA (eSSA) that captures
data- and control-flow dependencies

// STEP 3. PDCG Construction
Input: eSSA, seeds, Output: PDCG � Build a PDCG to find all multi-valued
expressions and variables from seed functions and variables

// STEP 4. Filter-out single-valued conditionals
Input:

⋃

r,c

Or,c, PDCG, Output: O

for c in collective names of execution order r do
for each node n in Or,c do

if n is single-valued in PDCG (there is an edge between c and n in the
PDCG) then

Or,c ← Or,c − n � remove the node
end
O ← O ∪ (c, {Or,c})

end
Output nodes in O as warnings
return O

Algorithm 1. Collective error detection.

values of reg1 and reg2 into variable n. The predicate cmp1 is added to the
φ-function to indicate its value depends on cmp1.

Figure 3b shows the PDCG corresponding to this example. Rectangle nodes
represent collectives. Diamond and circle nodes respectively represent defini-
tions of address-taken and top-level variables (variables never referenced by their
address). The seed function is MPI Comm rank line 7 and the first multi-valued
object is o’2. All library functions have mocked-up CFGs, tagging output values
as multi-valued when necessary. The graph highlights the rank-dependent path
from o’2 to MPI Reduce in g passing through the conditional cmp2 in f.

In this example, the execution of MPI Reduce depends on the value of cmp
in g and the call to g depends on the value of cmp2 in f. Hence, MPI Reduce@�6
is connected to cmp and cmp2. However, there exists no path from o’2 to cmp
as cmp does not depend on processes ranks. The execution of MPI Barrier is
not governed by any conditional. MPI Barrier@�28 is then not connected to any
node in the graph and it cannot be reached from a seed statement. Since the only
collective highlighted in the graph corresponds to MPI Reduce in g and only one
of the two conditionals governing its execution is highlighted, our new analysis
only issues a warning for the multi-valued conditional line 22 in f and the call
to MPI Reduce in g.



Multi-valued Expression Analysis for Collective Checking 37

1 define void f() {
2 entry:
3 s = alloca_o; // object o1
4 r = alloca_o ’;// object o’1
5 MPI_Comm_size(com , s);

[μ(o1)]
6 [o2 = χ(o1)]
7 MPI_Comm_rank(com , r);

[μ(o’1)]
8 [o’2 = χ(o’1)]
9 reg0 = load r [μ(o’2)]

10 rem = reg0 % 2;
11 cmp1 = rem != 0;
12 br cmp1 , if.then , if.else
13 if.then:
14 reg1 = 1;
15 br label if.end
16 if.else:
17 reg2 = 2;
18 br label if.end
19 if.end:
20 n = φ(reg1 , reg2 , cmp1)
21 cmp2 = n == 1;
22 br cmp2 , if.then2 , if.end2
23 if.then2:
24 reg3 = load s; [μ(o2)]
25 g(reg3);
26 br label if.end2
27 if.end2:
28 MPI_Barrier(com);
29 ret void;
30 }

(a) Function f enhanced SSA.

(b) PDCG.

1 define void g(i32 s) {
2 entry:
3 cmp = s > 256
4 br cmp , if.then , if.end
5 if.then:
6 MPI_Reduce(com , ...);
7 br if.end
8 if.end:
9 ret void

10 }

(c) Function g enhanced
SSA.

Fig. 3. Enhanced SSA form of the MPI code Fig. 1a and its corresponding PDCG.

6 Related Work

This section summarizes works on dependence analyses and gives an overview
of existing tools for collective errors detection in parallel programs.

6.1 Dependence Analyses Techniques

Dependence analyses are the cornerstones of many optimizations/analyses in
compilers. For instance, dependences are used for Taint Analysis [10–12] to
determine how program inputs may affect the program execution and exploit
security vulnerabilities, Information Flow Tracking [13–16] to prevent confiden-
tial information from leaking, static Bug Detection [17,18] or code optimization
and parallelization (e.g. the polyhedral model [19]). One of the difficult issues
when computing data dependences is to deal with pointers/memory aliases and
non scalar variables (e.g. arrays, structures). In SVF [7] the authors annotate
load and store instructions with μ and χ functions to transform address-taken
variables into an SSA form. However, they do not take into account the possible
dependence of the pointer itself (through an array index for instance) when they
build the data dependence graph.
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Many of the aforementioned analyses only consider data dependences whereas
Slowinska et al. [20] showed that omitting control dependences can be a huge
source of false negative results. In [21], the authors introduced the concept of
Strict Control Dependences to reduce the number of false positives in Taint
Analyses and Lineage Tracing. In Parfait [22] the authors propose to extend
φ-functions with predicates in order to handle control dependences. However,
address-taken variables are not transformed into an SSA form.

6.2 Collective Error Detection Techniques

Static analyses operate on the source code of an application and have the advan-
tage of not requiring execution. They are usually based on model checking and
symbolic program execution, limiting their applicability to small and moderate
sized applications (the number of reachable states to consider is combinatorial).
TASS [23] and CIVL [24] use this approach. They rely on symbolic execution and
require source code annotations to detect collective errors in MPI programs. The
OpenMP Analysis Toolkit (OAT) [25] uses the same method for OpenMP pro-
grams by exploring all program paths under symbolic values. SimGridMC [26]is
a model checker for MPI applications. It uses Dynamic Partial Order Reduction
and State Equality techniques to face the state space explosion problem. UPC-
SPIN [27] generates finite models of UPC programs in the modeling language of
the SPIN model checker. For CUDA programs, we can mention GPUVerify [28]
that statically checks that all threads execute the same barriers syntactically.
Unlike our analysis, the method does not give a precise feedback in case of a
potential error. PARCOACH combines an inter-procedural control-flow analysis
with a selective instrumentation to find MPI and OpenMP collective errors. The
method is limited to control-flow information and returns many false positives.
Our new analysis overcomes this limitation and extends the collective verifica-
tion to other parallel programming models. The method presented by Zhang
and Duesterwald in [1] is the closest to our work. It detects synchronization
errors with an inter-procedural barrier matching technique for SPMD programs
with textually unaligned barriers. Compared to our analysis, this method is only
focused on MPI and OpenMP synchronizations and has no pointer analysis.

Unlike static tools, dynamic tools do not report false positives. However,
they are dependent on the input data set and may miss errors (false negatives).
PARCOACH instruments non verifiable programs to verify if processes/threads
are going to call the same collective at a particular step of execution, preventing
deadlocks from happening. This instrumentation is similar to what dynamic tools
like MUST [29] or UPC-CHECK [30] do. However, the instrumentation starts
with the first collectives that may deadlock, avoiding a full instrumentation of
programs.
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7 Experimental Results

Our analysis is implemented as a pass in the LLVM framework 3.9 integrated
into the open source software PARCOACH2.

Figures 4 and 5 show the impact of our multi-valued expression analysis on
PARCOACH. Figure 4 displays the percentage of warnings and conditionals fil-
tered out with our multi-valued analysis compared to the initial PARCOACH
analysis on 3 HPC applications (MILC3, Gadget4 and MPI-PHYLIP [31]), 3
mini HPC applications (CoMD and miniAMR from the Mantevo project [32]

Fig. 4. Percentage of warnings and conditionals filtered by our multi-valued analysis.
100% means that the analysis proves the program is collective error free.

Fig. 5. Percentage of collectives potentially deadlocking.

2 PARCOACH is available at https://github.com/parcoach/parcoach.
3 http://www.physics.utah.edu/∼detar/milc/.
4 https://wwwmpa.mpa-garching.mpg.de/gadget/.

https://github.com/parcoach/parcoach
http://www.physics.utah.edu/~detar/milc/
https://wwwmpa.mpa-garching.mpg.de/gadget/
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and Hydro5) and 5 widely used benchmarks (HPL6, IOR7, AMG8, NAS IS9,
and the CUDA benchmarks from Rodinia10). In the figure, warnings are col-
lectives that may lead to deadlocks, and conditions correspond to conditionals
governing the execution of unsafe collectives. The initial number of warnings
and conditionals found by PARCOACH is given at the top of each bar. 100%
for a warning bar means that the application is collective error-free (all warn-
ings are removed by our analysis, the code is proved safe), 0% means that our
analysis has no impact. For MILC, 91% of the 498 warnings have been removed.
PARCOACH now reports 45 warnings. As shown in the figure, about half con-
ditionals are filtered out by our analysis for most applications and all warnings
are removed for Coral AMG OMP, MPI IS, UPC IS and Rodinia. Figure 5 gives
the percentage of collectives tagged as potentially deadlocking by our analysis.
The total number of collectives is given at the top of each bar. In the figure,
seven applications have less than 20% of collectives potentially deadlocking.

To highlight the functionality of our analysis, we created a microbenchmark
suite containing programs from multiple sources with correct and incorrect use
of MPI collectives11. We compare the performance of the method presented in
[1] and PARCOACH using our multi-valued analysis (PDCG), SVF and Parfait.

Table 1. Multi-valued detection comparison between the work in [1] and PARCOACH
(PAR.) using our PDCG, SVF and Parfait. FP = false positives, FN = false negative.

Program name Origin Description Deadlock Zhang

et. al [1]

PARCOACH

PDCG SVF Parfait

field-sensitive Hydro Structure with a

multi-valued field

no
FP

FP FP FP

index-dep PAR Use of an array yes
�

� FN �

phi-cond PAR Control-flow

dependence

yes
�

� FN �

pointer-instance PAR Fig. 1b yes
�

� � FP

pointer-alias PAR Use of aliases yes
FN

� � FP

barrierReduce CIVL Collective

mismatch

yes
FN

� � �

barrierScatter CIVL Collective

mismatch

yes
FN

� � �

5 https://github.com/HydroBench/Hydro.
6 http://www.netlib.org/benchmark/hpl.
7 http://www.nersc.gov/research-and-development/apex/apex-benchmarks/ior.
8 https://asc.llnl.gov/CORAL-benchmarks/.
9 http://www.nas.nasa.gov/software/NPB.

10 https://www.cs.virginia.edu/∼skadron/wiki/rodinia/index.php.
11 The microbenchmark suite is available at https://gitlab.inria.fr/parcoach/

microbenchmarks.

https://github.com/HydroBench/Hydro
http://www.netlib.org/benchmark/hpl
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/ior
https://asc.llnl.gov/CORAL-benchmarks/
http://www.nas.nasa.gov/software/NPB
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php
https://gitlab.inria.fr/parcoach/microbenchmarks
https://gitlab.inria.fr/parcoach/microbenchmarks
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Table 1. (continued)

Program name Origin Description Deadlock Zhang

et. al [1]

PARCOACH

PDCG SVF Parfait

BcastReduce bad CIVL Collective

mismatch

yes
FN

� � �

mismatch-barrier PAR Collective

mismatch

yes
�

� � �

mismatch barrier com PAR Collective

mismatch

yes
�

� � �

mismatch barrier nb PAR Collective

mismatch

yes
�

� � �

MPIexample PAR Fig. 1a yes
FN

� FN FN

noerror barrier PAR Correct usage of

barrier

no
�

� � �

not verifiable PAR Fig. 1e no
FP

FP FP FP

loop barrier PAR Fig. 1d yes
�

� � �

Table 1 shows the results. Our analysis always detect collective errors compared
to the others. For the remaining false-positive results, a more precise dependence
analysis is required. This is left for future work.

8 Conclusion

This article presents a new static/dynamic method to verify that a parallel
program has structurally correct collectives. The analysis resorts to an inter-
procedural static analysis that can prove in some cases that a program is free of
collective error. The method has been applied successfully on different languages
and is implemented in PARCOACH. Experiments show that our analysis leads
to significant improvement over existing PARCOACH. Furthermore, through a
more precise use of alias and control dependences, our static analysis outperforms
existing data-flow analyses bringing additional preciseness (removing spurious
dependencies) and correctness (adding missing dependencies).
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