
TWA – Ticket Locks Augmented
with a Waiting Array

Dave Dice(B) and Alex Kogan

Oracle Labs, Burlington, MA, USA
{dave.dice,alex.kogan}@oracle.com

Abstract. The classic ticket lock is simple and compact, consisting
of ticket and grant fields. Arriving threads atomically fetch-and-
increment ticket to obtain an assigned ticket value, and then wait for
grant to become equal to that value, at which point the thread holds
the lock. The corresponding unlock operation simply increments grant.
This simple design has short code paths and fast handover (transfer of
ownership) under light contention, but may suffer degraded scalability
under high contention when multiple threads busy wait on the grant

field – so-called global spinning.
We propose a variation on ticket locks where long-term waiting

threads – those with an assigned ticket value far larger than grant

– wait on locations in a waiting array instead of busy waiting on the
grant field. The single waiting array is shared among all locks. Short-
term waiting is accomplished in the usual manner on the grant field.
The resulting algorithm, TWA, improves on ticket locks by limiting the
number of threads spinning on the grant field at any given time, reducing
the number of remote caches requiring invalidation from the store that
releases the lock. In turn, this accelerates handover, and since the lock
is held throughout the handover operation, scalability improves. Under
light or no contention, TWA yields performance comparable to the classic
ticket lock. Under high contention, TWA is substantially more scalable
than the classic ticket lock, and provides performance on par or beyond
that of scalable queue-based locks such as MCS by avoiding the com-
plexity and additional accesses incurred by the MCS handover operation
while also obviating the need for maintaining queue elements.

We provide an empirical evaluation, comparing TWA against ticket
locks and MCS for various user-space applications, and within the Linux
kernel.

Keywords: Locks · Mutexes · Mutual exclusion · Synchronization ·
Concurrency control

1 Introduction

The classic ticket lock [16,17] is compact and has a very simple design. The
acquisition path requires only one atomic operation – a fetch-and-add to incre-
ment the ticket – and the unlock path requires no atomics. Under light or no
c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 334–345, 2019.
https://doi.org/10.1007/978-3-030-29400-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_24&domain=pdf
http://orcid.org/0000-0001-9164-7747
http://orcid.org/0000-0002-4419-4340
https://doi.org/10.1007/978-3-030-29400-7_24


TWA – Ticket Locks Augmented with a Waiting Array 335

contention, the handover latency, defined as the time between the call to unlock
and the time a successor is enabled to enter the critical section, is low. Handover
time impacts the scalability as the lock is held throughout handover, increasing
the effective length of the critical section [11]. A ticket lock is in unlocked state
when ticket and grant are equal. Otherwise the lock is held, and the number
of waiters is given by ticket - grant - 1. Ignoring numeric rollover, grant
always lags or is equal to ticket. The increment operation in unlock either
passes ownership to the immediate successor, if any, and otherwise sets the state
to unlocked.

Ticket locks suffer, however, from a key scalability impediment. All threads
waiting for a particular lock will busy wait on that lock’s grant field. An unlock
operation, when it increments grant, invalidates the cache line underlying grant
for all remote caches where waiting threads are scheduled. In turn, this nega-
tively impacts scalability by retarding the handover step. Ticket locks use global
spinning, as all waiting threads monitor the central lock-specific grant variable.

1 2 5 10 20 50

0
50

10
0

15
0

Threads

U
pd

at
e 

th
ro

ug
hp

ut
 r

at
e 

: M
 w

rit
es

/s
ec

Fig. 1. Invalidation diameter

In Fig. 1 we show the impact of
readers on a single writer. We refer
to the number of participating caches
as the invalidation diameter [8]. The
Invalidation Diameter benchmark
spawns T concurrent threads, with T
shown on the X-axis. A single writer
thread loops, using an atomic fetch-
and-add primitive to update a shared
location. The other T − 1 threads are
readers. They loop, fetching the value
of that location. The shared variable is
sequestered to avoid false sharing and
is the sole occupant of its underlying cache sector. We present the throughput
rate of the writer on the Y-axis. As we increase the number of concurrent readers,
the writer’s progress is slowed. This scenario models the situation in ticket locks
where multiple waiting threads monitor the grant field, which is updated by the
current owner during handover. The benchmark reports the writer’s throughput
at the end of a 10 s measurement interval. The data exhibited high variance due
to the NUMA placement vagaries of the threads and the home node of the vari-
able. As such, for each data point show, we took the median of 100 individual
runs, reflecting a realistic set of samples. The system-under-test is described in
detail in Sect. 4.

The MCS lock [16] is the usual alternative to ticket locks, performing better
under high contention, but also having a more complex path and often lagging
behind ticket locks under no or light contention. In MCS, arriving threads use
an atomic operation to append an element to a queue of waiting threads, and
then busy wait on a field in that element. The lock’s tail variable is explicit and
the head – the current owner – is implicit. When the owner releases the lock it
reclaims the element it originally enqueued and sets the flag in the next element,
passing ownership. Specifically, to convey ownership, the MCS unlock operator



336 D. Dice and A. Kogan

must identify the successor, if any, and then store to the location where the
successor busy waits. The handover path is longer than that of ticket locks and
accesses more distinct shared locations. MCS uses so-called local waiting where
at most one thread is waiting on a given location at any one time. As such, an
unlock operation will normally need to invalidate just one location – the flag
where the successor busy waits. Under contention, the unlock operator must
fetch the address of the successor node from its own element, and then store
into the flag in the successor’s element, accessing two distinct cache lines, and
incurring a dependent access to reach the successor. In the case of no contention,
the unlock operator must use an atomic compare-and-swap operator to detach
the owner’s element.

Ticket locks and TWA require no such indirection or dependent accesses in
the unlock path and also avoid the need for queue elements and the management
thereof. The queue of waiting threads is implicit in ticket locks and TWA, and
explicit in MCS. MCS, ticket locks and TWA all provide strict FIFO admission
order.

Ticket locks are usually a better choice under light or no contention, while
MCS locks are more suitable under heavy contention [2,3]. By employing a
waiting array for long-term waiting, TWA achieves the best of the two worlds, as
demonstrated by our empirical evaluation with multiple user-space applications
and within the Linux kernel.

2 The TWA Algorithm

TWA builds directly on ticket locks. We add a new waiting array for long-term
waiting. The array is shared amongst all threads and TWA locks in an address
space. Arriving threads use an atomic fetch-and-increment instruction to advance
the ticket value, yielding the lock request’s assigned ticket value, and then fetch
grant. If the difference is 0 then we have uncontended acquisition and the thread
may enter the critical section immediately. (This case is sometimes referred to as
the lock acquisition fast-path). Otherwise TWA compares the difference to the
LongTermThreshold parameter. If the difference exceeds LongTermThreshold
then the thread enters the long-term waiting phase. Otherwise control proceeds
to the short-term waiting phase, which is identical to that of normal ticket locks;
the waiting thread simply waits for grant to become equal to the ticket value
assigned to the thread. While LongTermThreshold is a tunable parameter in
our implementation, we found a value of 1 to be suitable for all environments,
ensuring that only the immediate successor waits in short-term mode. All data
reported below uses a value of 1.

A thread entering the long-term waiting phase first hashes its assigned ticket
value to form an index into the waiting array. Using this index, it then fetches
the value from the array and then recheck the value of grant. If the observed
grant value changed, it rechecks the difference between that new value and its
assigned ticket value, and decides once again on short-term versus long-term
waiting. If grant was unchanged, the thread then busy waits for the waiting



TWA – Ticket Locks Augmented with a Waiting Array 337

array value to change, at which point it reevaluates grant. When grant is found
to be sufficiently near the assigned ticket value, the thread reverts to normal
short-term waiting. The values found in the waiting array have no particular
meaning, except to conservatively indicate that a grant value that maps to that
index has changed, and rechecking of grant is required for waiters on that index.

The TWA unlock operator increments grant as usual from U to U + 1 and
then uses an atomic operator to increment the location in the waiting array that
corresponds to threads waiting on ticket value U + 1 + LongTermThreshold,
notifying long-term threads, if any, that they should recheck grant. An atomic
operation is necessary as the location may be subject to hash collisions. We
observe that this change increases the path length in the unlock operator, but
crucially the store that effects handover, which is accomplished by a non-atomic
increment of grant, happens first. Given a LongTermThreshold value of 1, we
expect at most one thread, the immediate successor, to be waiting on grant.
Updating the waiting array occurs after handover and outside the critical section.

All our experiments use a waiting array with 4096 elements, although ide-
ally, we believe the waiting array should be sized as a function of the number
of CPUs in the system. Hash collisions in the table are benign, at worst causing
unnecessary rechecking of the grant field. Our hash function is cache-aware and
intentionally designed to map adjacent ticket values to different 128-byte cache
sectors underlying the waiting array, to reduce false sharing among long-term
waiters. We multiply the ticket value by 127, EXCLUSIVE-OR that result with the
address of the lock, and then mask with 4096 − 1 to form an index into the
waiting array. We selected a small prime P = 127 to provide the equidistribu-
tion properties of a Weyl sequence [15]. We include the lock address into our
deterministic hash to avoid the situation where two locks might operate in an
entrained fashion, with ticket and grant values moving in near unison, and thus
suffer from excessive inter-lock collisions. A given lock address and ticket value
pair always hashes to the same index.

TWA leaves the structure of the ticket lock unchanged, allowing for easy
adoption. As the instance size remains the same, the only additional space cost
for TWA is the waiting array, which is shared over all locks, reflecting a one-time
space cost.

The TWA fast-path for acquisition remains unchanged relative to ticket locks.
The unlock path adds an increment of the waiting array, to notify long-term
waiters, if any. that they should transition from long-term to short-term wait-
ing. We note that TWA doesn’t reduce overall coherence traffic, but does act
to reduce coherence traffic in the critical handover path, constraining the inval-
idation diameter of the store in unlock that accomplishes handover. TWA thus
captures the desirable performance aspects of both MCS locks and ticket locks.

Listing 1.1 depicts a pseudo-code implementation of the TWA algorithm.
Lines 7 through 16 reflect the classic ticket lock algorithm and lines 20 through
71 show TWA. TWA extends the existing ticket lock algorithm by adding lines
41 through 57 for long-term waiting, and line 71 to notify long-term waiters to
shift to classic short-term waiting.



338 D. Dice and A. Kogan

Listing 1.1: Simplified Python-like Implementation of TWA
1 ## Classic Ticket Lock
2

3 class TicketLock :
4 int Ticket = 0 ## Next ticket to be assigned
5 int Grant = 0 ## "Now Serving"
6

7 TicketAcquire (TicketLock * L) :
8 ## Atomic fetch -and -add on L.Ticket
9 auto tx = FetchAdd (L.Ticket , 1)

10 while tx != L.Grant :
11 Pause()
12

13 TicketRelease (TicketLock * L) :
14 ## succession via direct handoff ...
15 ## Increment does not require atomic instructions
16 L.Grant += 1
17

18 ## ===================================================
19

20 ## TWA : Ticket lock augmented with waiting array
21

22 ## tunable parameters
23 ## short -term vs long -term proximity threshold
24 LongTermThreshold = 1 |
25 ArraySize = 4096 |
26

27 ## Global variables :
28 ## Long -term waiting array , initially all 0
29 ## Shared by all locks and threads in the address space
30

31

32 uint64_t WaitArray [ArraySize] |
33

34 TWAAcquire (TWA * L) :
35 auto tx = FetchAdd (L.Ticket , 1)
36 auto dx = tx - L.Grant
37 if dx == 0 :
38 ## fast -path return - uncontended case
39 return
40

41 ## slow path with contention -- need to wait |
42 ## Select long -term vs short -term based on the number |
43 ## of threads waiting in front of us |
44 if dx > LongTermThreshold : |
45 ## long -term waiting via WaitArray |
46 auto at = Hash(L, tx) |
47 for |
48 auto u = WaitArray[at] |
49 dx = tx - L.Grant |
50 assert dx >= 0 |
51 if dx <= LongTermThreshold : break |
52 while WaitArray[at] == u : |
53 Pause() |
54 ## This waiting thread is now "near" the front of |
55 ## the logical queue of waiting threads |
56 ## Transition from long -term waiting to |
57 ## short -term waiting |
58

59 ## classic short -term waiting on L.Grant field
60 while L.Grant != tx :
61 Pause()
62

63 TWARelease (TWA * L) :
64 ## Notify immediate successor , if any
65 ## such threads will be in short -term waiting phase
66 ## non -atomic increment
67 auto k = ++ L.Grant
68

69 ## Notify long -term waiters |
70 ## atomic increment required |
71 FetchAdd (WaitArray[Hash(L,k + LongTermThreshold )], 1)|



TWA – Ticket Locks Augmented with a Waiting Array 339

2.1 Example Scenario – TWA in Action

1 Initially the lock is in unlocked state with Ticket and Grant both 0.
2 Thread T1 arrives at Listing 1.1 line 34 attempting to acquire the lock. T1

increments Ticket from 0 to 1, and the atomic FetchAdd operator returns
the original value of 0 into the local variable tx, which holds the assigned
ticket value for the locking request. At line 36 T1 then fetches Grant observ-
ing a value of 0. Since tx equals that fetched value, we have uncontended
lock acquisition. T1 now holds the lock and can enter the critical section
immediately, without waiting, via the fast path at line 39.

3 Thread T2 now arrives and tries to acquire the lock. The FetchAdd operator
advances Ticket from 1 to 2 and returns 1, the assigned ticket, into tx at
line 35. T2 fetches Grant and notes that tx differs from that value by 1.
The dx variable holds that computed difference, which reflects the number
of threads between the requester and the head of the logical queue, which
is the owner. T2 has encountered contention and must wait. The difference
is only 1, and T2 will be the immediate successor, so T2 proceeds to line
60 for short-term waiting similar to that used in classic ticket locks shown
at line 10. T2 waits for the Grant field to become 1.

4 Thread T3 arrives and advances Ticket from 2 to 3, with the FetchAdd oper-
ator returning 2 as the assigned ticket. The difference between that value (2)
and the value of Grant(0) fetched at line 64 exceeds the LongTermThreshold
(1), so T3 enters the path for long-term waiting at line 49. T3 hashes its
observed ticket value of 2 into an index at, say 100, in the long-term waiting
array and then fetches from WaitArray[at] observing U . To recover from
potential races with threads in the unlock path, T3 rechecks that the Grant
variable remains unchanged (0) at line 49 and that the thread should con-
tinue with long-term waiting. Thread T3 busy waits at lines 52–53 on the
WaitArray value.

5 Thread T4 arrives, advances Ticket from 3 to 4, obtaining a value in its tx
variable of 3. Similar to T3, T4 enters the long-term. T4 hashes its assigned
ticket value of 3 yielding an index of, say, 207, and fetches WaitArray[207]
observing V . T4 then busy waits, waiting for WaitArray[207] to change
from V to any other value.

6 Thread T1 now releases the lock, calling TWARelease at line 63. T1 incre-
ments Grant from 0 to 1 at line 67, passing ownership to T2 and sets local
variable k to the new value (1).

7 Thread T2 waiting at lines 60–61 notices that Grant changed to match its
tx value. T2 is now the owner and may enter the critical section.

8 Thread T1, still in TWARelease at line 71 then hashes k +
LongTermThreshold (the sum is 2) to yield index 100 and then increments
WaitArray[100] from U to U + 1.

9 Thread T3 waiting at lines 52–53 observes that change, rechecks Grant, sees
that it is close to being granted ownership, exits the long-term waiting loop
and switches to classic short-term waiting at lines 60–61. T1 has promoted
T3 from long-term to short-term waiting in anticipation of the next unlock
operation, to eventually be performed by T2.



340 D. Dice and A. Kogan

10 Thread T1 now exits the TWARelease operator.

11 Thread T2 is the current owner, thread T3 is waiting in short-term mode,
and thread T4 is waiting in long-term mode.

3 Related Work

Mellor-Crummey and Scott [16] proposed ticket locks with proportional backoff.
Waiting threads compare the value of their ticket against the grant field. The
difference reflects the number of intervening threads waiting. That value is then
multiplied by some tunable constant, and the thread delays for that period before
rechecking grant. The constant is platform- and load-dependent, and requires
tuning. While this approach may decrease the futile polling rate on grant, it does
not decrease the invalidation diameter. TWA and ticket locks with proportional
backoff both make a distinction among waiting threads based on their relative
position in the queue.

Partitioned Ticket Locks [9] augment each ticket lock with a constant-length
private array of grant fields, allowing for semi-local waiting. Critically, the array
is not shared between locks, and to avoid false sharing within the array, the mem-
ory footprint of each lock instance is significantly increased. Anderson’s array-
based queueing lock [1] is also based on ticket locks. It employs a waiting array
for each lock instance, sized to ensure there is at least one array element for each
potentially waiting thread, yielding a potentially large footprint. The maximum
number of participating threads must be known in advance when initializing the
array. Such dynamic sizing also makes static allocation of Anderson’s locks more
difficult than would be the case for a lock with a fixed size, such as TWA.

Various authors [2,12] have suggested switching adaptively between MCS
and ticket locks depending on the contention level. While workable, this adds
considerable algorithmic complexity, particularly for the changeover phase, and
requires tuning. Lim [13] suggested a more general framework for switching locks
at runtime.

4 Empirical Evaluation

Unless otherwise noted, all data was collected on an Oracle X5-2 system. The sys-
tem has 2 sockets, each populated with an Intel Xeon E5-2699 v3 CPU running
at 2.30 GHz. Each socket has 18 cores, and each core is 2-way hyperthreaded,
yielding 72 logical CPUs in total. The system was running Ubuntu 18.04 with
a stock Linux version 4.15 kernel, and all software was compiled using the pro-
vided GCC version 7.3 toolchain at optimization level “-O3”. 64-bit C or C++
code was used for all experiments. Factory-provided system defaults were used
in all cases, and Turbo mode [18] was left enabled. In all cases default free-
range unbound threads were used. TWA is trivial to implement in C++ with
std::atomic<> primitives.



TWA – Ticket Locks Augmented with a Waiting Array 341

We implemented all user-mode locks within LD PRELOAD interposition
libraries that expose the standard POSIX pthread mutex t programming inter-
face. The framework was made available by Dice et al. [10]. This allows us to
change lock implementations by varying the LD PRELOAD environment vari-
able and without modifying the application code that uses locks. The C++
std::mutex construct maps directly to pthread mutex primitives, so interpo-
sition works for both C and C++ code. All busy-wait loops used the Intel PAUSE
instruction for polite waiting.

We use a 128 byte sector size on Intel processors for alignment to avoid false
sharing. The unit of coherence is 64 bytes throughout the cache hierarchy, but
128 bytes is required because of the adjacent cache line prefetch facility where
pairs of lines are automatically fetched together.

4.1 MutexBench

The MutexBench benchmark spawns T concurrent threads. Each thread loops
as follows: acquire a central lock L; execute a critical section; release L; execute
a non-critical section. At the end of a 10 s measurement interval the benchmark
reports the total number of aggregate iterations completed by all the threads. We
show the median of 5 independent runs in Fig. 2. The critical section advances a
C++ std::mt19937 pseudo-random generator (PRNG) 4 steps. The non-critical
section uses that same PRNG to compute a value distributed uniformly in [0, 200)
and then advances the PRNG that many steps. To facilitate comparison of the
algorithms, the X-axis is logarithmic and the Y-axis is offset to the minimum
score.

As seen in the figure, ticket locks performs the best up to 6 threads, with TWA
lagging slightly behind. As we further increase the thread count, however, ticket
locks fail to scale. MCS provides stable asymptotic performance that surpasses
ticket locks at 24 threads. TWA manages to always outperform MCS, freeing
the developer from making a choice between MCS locks and ticket locks.

1 2 5 10 20 50

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: M

 s
te

ps
/s

ec

MCS
TKT
TWA

Fig. 2. MutexBench

1 2 5 10 20 50

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: M

 s
te

ps
/s

ec

MCS
TKT
TWA

Fig. 3. throw



342 D. Dice and A. Kogan

4.2 throw

The “throw” benchmark launches T threads, each of which loop, executing the
following line of C++ code:

try { throw 20 ;} catch (int e) {}.
Naively, this construct would be expected to scale linearly, but the C++ run-
time implementation acquires mutexes that protect the list of dynamically loaded
modules and their exception tables. The problem is long-standing and has proven
difficult to fix given the concern that some applications might have come to
depend on the serialization1. At the end of a 10 s measurement interval the bench-
mark reports the aggregate number of loops executed by all threads. Throw-catch
operations are performed back-to-back with no intervening delay. In Fig. 3 we
observe that performance drops significantly between 1 and 2 threads. There is
little or no benefit from multiple threads, given that execution is largely seri-
alized, but coherent communication costs are incurred. As we increase beyond
two threads performance improves slightly, but never exceeds that observed at
one thread. Beyond 2 threads, the shape of the graph recapitulates that seen in
MutexBench.

4.3 libslock stress latency

Figure 4 shows the performance of the “stress latency” benchmark from [7]2. The
benchmark spawns the specified number of threads, which all run concurrently
during a 10 s measurement interval. Each thread iterates as follows: acquire a
central lock; execute 200 loops of a delay loop; release the lock; execute 5000
iterations of the same delay loop. The benchmark reports the total number of
iterations of the outer loop.

1 2 5 10 20 50

15
00

00
20

00
00

30
00

00

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 4. libslock stress latency

1 2 5 10 20 50

80
00

00
10

00
00

0
14

00
00

0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 5. LevelDB readrandom

1 https://patchwork.ozlabs.org/patch/652301/.
2 We use the following command line: ./stress latency -l 1 -d 10000 -a 200 -n threads
-w 1 -c 1 -p 5000.

https://patchwork.ozlabs.org/patch/652301/


TWA – Ticket Locks Augmented with a Waiting Array 343

4.4 LevelDB readrandom

In Fig. 5 we used the “readrandom” benchmark in LevelDB version 1.20
database3 varying the number of threads and reporting throughput from the
median of 5 runs of 50 s each. Each thread loops, generating random keys and
then trying to read the associated value from the database. We first populated
a database4 and then collected data5. We made a slight modification to the
db bench benchmarking harness to allow runs with a fixed duration that reported
aggregate throughput. Ticket locks exhibit a very slight advantage over MCS and
TWA at low threads count after which ticket locks fade and TWA matches or
exceeds the performance of MCS. LevelDB uses coarse-grained locking, protect-
ing the database with a single central mutex: DBImpl::Mutex. Profiling indicates
contention on that lock via leveldb::DBImpl::Get().

4.5 RocksDB readwhilewriting

We next present results in Fig. 6 from the RocksDB6 version 5.14.2 database run-
ning the “readwhitewriting” benchmark which has one fixed writer thread and a
variable number of readers. The benchmark is similar to the form found in Lev-
elDB, above, but the underlying database allows more concurrency and avoids
the use of a single central lock. We intentionally use a command-line configured
to stress the locks that protect the sharded LRU cache, causing contention in
LRUShard::lookup()7.

1 2 5 10 20 50

50
00

00
15

00
00

0
25

00
00

0
35

00
00

0

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: o

ps
/s

ec

MCS
TKT
TWA

Fig. 6. RocksDB readwhilewriting

1 2 5 10 20 50

0.
10

0.
15

0.
20

0.
25

0.
30

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e 
: M

 a
cq

ui
re

s/
se

c

QSpinlock
TKT
TWA

Fig. 7. LockTorture

3 leveldb.org.
4 db bench —threads=1 —benchmarks=fillseq —db=/tmp/db/.
5 db bench —threads=threads —benchmarks=readrandom
—use existing db=1 —db=/tmp/db/ —duration=50.

6 rocksdb.org.
7 db bench —duration=200 —threads=threads
—benchmarks=readwhilewriting —compression type=none
—mmap read=1 —mmap write=1 —cache size=100000
—cache numshardbits=0 —sync=0 —verify checksum=0.

http://www.leveldb.org
http://www.rocksdb.org


344 D. Dice and A. Kogan

4.6 Linux Kernel locktorture

We ported TWA into the Linux kernel environment and evaluated its perfor-
mance with the locktorture benchmark8. Locktorture is distributed as a part
of the Linux kernel and is implemented as a loadable kernel module. The bench-
mark spawns a specified number of threads, each of which loops, contending for
a central lock. We used locktorture to compare TWA, classic ticket locks, and
the default kernel qspinlock.

The Linux qspinlock construct [4,5,14] is a compact 32-bit lock, even on
64-bit architectures. The low-order bits of the lock word constititue a simple
test-and-set lock while the upper bits encode the tail of an MCS chain. In order
to fit into a 32-bit work – a critical requirement – the chain is formed by logical
CPU identifiers instead of traditional MCS queue node pointers. The result is a
hybrid of MCS and test-and-set9. We note that qspinlocks replaced classic ticket
locks as the kernel’s primary low-level spin lock mechanism in 2014, and ticket
locks replaced test-and-set locks, which are unfair and allow unbounded bypass,
in 2008 [6].

The average critical section duration used by locktorture is a function
of the number of concurrent threads. In order to use the benchmark to mea-
sure and report scalability, we augmented it to parameterize the critical and
non-critical section durations, which are expressed as steps of the thread-local
pseudo-random number generator provided in the locktorture infrastructure.
We used 20 steps for the critical section. Each execution of the non-critical
section computes a uniformly random distributed number in [0− 400) and then
steps the local random number generator that many iterations. At the end of a
run (lasting 30 s in our case), the total number of lock operations performed by
all threads is reported. We report the median of 7 such runs in Fig. 7.

As we can see in Fig. 7, classic ticket locks perform well at low conconcurrency
but fade as the number of threads increases. TWA performs the same or slightly
better than qspinlock, although TWA is far simpler10.

5 Conclusion

TWA is a straightforward extension to classic ticket locks, providing the best
performance properties of ticket locks and MCS locks. Like ticket locks, it is
simple, compact, and has a fixed memory footprint. The key benefit conferred
by TWA arises from improved transfer of ownership (handover) in the unlock
path, by reducing the number of threads spinning on the grant field at any given
time. Even though TWA increases the overall path length in the unlock operation,
adding an atomic fetch-and-increment operation compared to the classic ticket
lock, it decreases the effective critical path duration for contended handover.
8 https://www.kernel.org/doc/Documentation/locking/locktorture.txt.
9 https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c.

10 An extended version of this paper is available at https://arxiv.org/abs/1810.01573,
where we apply various complexity measures to compare ticket locks, qspinlock, and
TWA.

https://www.kernel.org/doc/Documentation/locking/locktorture.txt
https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c
https://arxiv.org/abs/1810.01573


TWA – Ticket Locks Augmented with a Waiting Array 345

References

1. Anderson, T.E.: The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. (1990). https://doi.org/10.1109/
71.80120

2. Antić, J., Chatzopoulos, G., Guerraoui, R., Trigonakis, V.: Locking made easy. In:
Proceedings of the 17th International Middleware Conference, Middleware 2016.
ACM (2016). http://doi.acm.org/10.1145/2988336.2988357

3. Boyd-Wickizer, S., Kaashoek, M.F., Morris, R., Zeldovich, N.: Non-scalable locks
are dangerous. In: Ottawa Linux Symposium (OLS) (2012). https://www.kernel.
org/doc/ols/2012/ols2012-zeldovich.pdf

4. Corbet, J.: Cramming more into struct page, 28 August 2013. https://lwn.net/
Articles/565097. Accessed 01 Oct 2018

5. Corbet, J.: MCS locks and qspinlocks, 11 March 2014. https://lwn.net/Articles/
590243. Accessed 12 Sept 2018

6. Corbet, J.: Ticket spinlocks, 6 February 2008. https://lwn.net/Articles/267968.
Accessed 12 Sept 2018

7. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: SOSP (2013). http://doi.acm.
org/10.1145/2517349.2522714

8. Dice, D.: Malthusian locks. In: Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017 (2017). http://doi.acm.org/10.1145/3064176.
3064203

9. Dice, D.: Brief announcement: a partitioned ticket lock. In: Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2011 (2011). http://doi.acm.org/10.1145/1989493.1989543

10. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for design-
ing NUMA locks. ACM Trans. Parallel Comput. (2015). http://doi.acm.org/10.
1145/2686884

11. Eyerman, S., Eeckhout, L.: Modeling critical sections in Amdahl’s law and its
implications for multicore design. In: ISCA. ACM (2010). http://doi.acm.org/10.
1145/1815961.1816011

12. Ha, P.H., Papatriantafilou, M., Tsigas, P.: Reactive spin-locks: a self-tuning app-
roach. In: 8th International Symposium on Parallel Architectures, Algorithms and
Networks, ISPAN 2005 (2005). https://doi.org/10.1109/ISPAN.2005.73

13. Lim, B.H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
In: Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS VI. ACM (1994).
http://doi.acm.org/10.1145/195473.195490

14. Long, W.: qspinlock: introducing a 4-byte queue spinlock implementation, 31 July
2013. https://lwn.net/Articles/561775. Accessed 19 Sept 2018

15. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. (2003). https://doi.org/10.18637/jss.
v008.i14. https://www.jstatsoft.org/v008/i14

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (1991). http://doi.
acm.org/10.1145/103727.103729

17. Reed, D.P., Kanodia, R.K.: Synchronization with eventcounts and sequencers.
Commun. ACM (1979). http://doi.acm.org/10.1145/359060.359076

18. Verner, U., Mendelson, A., Schuster, A.: Extending Amdahl’s law for multicores
with turbo boost. IEEE Comput. Arch. Lett. (2017). https://doi.org/10.1109/LCA.
2015.2512982

https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
http://doi.acm.org/10.1145/2988336.2988357
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
https://lwn.net/Articles/565097
https://lwn.net/Articles/565097
https://lwn.net/Articles/590243
https://lwn.net/Articles/590243
https://lwn.net/Articles/267968
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/3064176.3064203
http://doi.acm.org/10.1145/3064176.3064203
http://doi.acm.org/10.1145/1989493.1989543
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/1815961.1816011
http://doi.acm.org/10.1145/1815961.1816011
https://doi.org/10.1109/ISPAN.2005.73
http://doi.acm.org/10.1145/195473.195490
https://lwn.net/Articles/561775
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v008.i14
https://www.jstatsoft.org/v008/i14
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/359060.359076
https://doi.org/10.1109/LCA.2015.2512982
https://doi.org/10.1109/LCA.2015.2512982

	TWA – Ticket Locks Augmented with a Waiting Array
	1 Introduction
	2 The TWA Algorithm
	2.1 Example Scenario – TWA in Action

	3 Related Work
	4 Empirical Evaluation
	4.1 MutexBench
	4.2 throw
	4.3 libslock stress_latency
	4.4 LevelDB readrandom
	4.5 RocksDB readwhilewriting
	4.6 Linux Kernel locktorture

	5 Conclusion
	References




